8 A v
D |

e
” DSC 408 I8
t Lecture 25 : Shortest i

Paths in Weighted T
.P Graphs. Bellman-Ford -
2 ’

T ————
-ttt

Bellman-Ford

T ———
..............................

I lllllllllllllllllllllll=l=
.-

Bellman-Ford

- e Dijkstra’s algorithm works only with positive weights.

e Bellman-Ford allows us to find shortest distances in the
graphs with negative weights as well.

="’ =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

II.__,
Intuition

Shortest paths that have many edges are “harder” to discover.
o May require many updates.

e Shortest paths that have few edges are “easier” to discover.

e Once we've discovered all of the shortest paths with few edges,
P it makes it easier to discover the shortest paths with more edges.

< =8

B ————T
e

.I.-—' Example

“What is the shortest path from a to f?

I lllllllllllllllllllllll=l=
.-

o
< =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

.I.-—' Example

“What is the shortest path from a to f?

P Path: a, b, c, d, e, g, f Length: 2-1+1+3-1+0=4

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

=I.-—' Updating All Edges

e Suppose we update all of the edges, one by one.

e Then all nodes whose shortest path from s has only one
edge are guaranteed to be estimated correctly.

="’ =8

B ————T
e

Loop Invariant

e One iteration: update all edges in arbitrary order.

e Loop invariant: After « iterations, all nodes whose
shortest path from s has = a edges are guaranteed to be
estimated correctly.

11113999

T ————
.............................

==llllllllllllllllllllllll=ll

.I._’
= The Bellman-Ford Algorithm

‘def bellman_ford(graph, weights, source):
"""Assume graph is directed.”"”
est = {node: float('inf') for node in graph.nodes}
est[source] 0
predecessor {node: None for node in graph.nodes}

. for i1 in range(?):
for (u, v) in graph.edges:

update(u, v, weights, est, predecessor)

= return est, predecessor

B ————T
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:
c, d), (a, b), (b, c), (g, f), (e, g),
g, e), (d, e), (e, 1), (8, Q)

e

"l'f‘l'f"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:
c, d), (a, b), (b, c), (g, f), (e, g),
g, e), (d, e), (e, 1), (8, Q)

e

o

"l'f‘l'f"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:
c, d), (a3, b), (b,), (g, f), (e, q),
g, e), (d, e), (e, 1), (8, Q)

N gy,

Do we update distance
for d?

o

"l'f‘l'f"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:
te—d}, (3, b), (b, c), (g, f), (e, q),
(g, e), (d, e), (e, f), (8, g)

Do we update distance
for d? No

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:
{4}, (3, b), (b, c), (g, f), (e, q),
(g, e), (d, e), (e, f), (8, g)

Do we update distance
for b?

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:
te—d), t8:-b). (b, 0), (g,), (e, q),
(g, e), (d, e), (e, f), (8, g)

Do we update distance
for b? Yes

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:
te—d), ta-b). (b,), (g, f), (e, g),
(g, e), (d, e), (e, f), (8, g)

Do we update distance
for c?

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:

ted}, ta-b), tb¢), (g,), (e, q),
(g, e), (d, e), (e, f), (8, g)

Do we update distance
for c? Yes

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:

ted}, ta-b), tb¢), (g, f), (e, q),
(g, e), (d, e), (e, f), (8, g)

Do we update distance
for f? No

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:

te.d}, ta- b}, tb¢), (61, (e, g),
(g, e), (d, e), (e, f), (8, g)

Do we update distance
for g? No

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:

(g. e), (d, e), (e, f), (a, g)

Do we update distance
for e? No

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:
tg—<}. (d, e), (e, f), (8, 9)

Do we update distance
for e? No

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:

tg-€). (d-¢), (e, 1), (a, g)

Do we update distance
for f? No

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:

tge}), (d-e), (eH, (3, g)

Do we update distance
for g?

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

..............................
(]
.I_’ Suppose graph.edges returns edges in following order: -..
B ' B
. Do we update distance .
. for g? Yes .
B B
B B
¥ -
B B
O B
.I o B
- -

T
-ttt

..............................
(]
=I_’ Suppose graph.edges returns edges in following order: -.=
. It was just a single iteration of BF .
B B
B B
i =
B B
O B
.= o B
- - -

T
-ttt

..............................
[[B O
.I_’ Suppose graph.edges returns edges in following order: -..
.t: tg—e), td—e), te—f), (o-0) a
We only can quarantee one correct

. edge after this iteration: (a, b) .
o .
o L
=I . -
o L
- .
.I.) .
= -

T
-ttt

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:

— -
o 0

. d). (3, b), (b, c), (g, f), (e, g),
, e), (d, e), (e, f), (3, Q) Do we update distance for d? Yes

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:

. b
, €

-

, (b,), (g, f), (e, q),

Do we update distance for b? No
, (e,), (a, g) P

Q o

—

~ L]
~

N gy,

| -

g, e),

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:

1

, {88}, (b, c), (g, f), (e,),
e), (d, e), (e, f), (a, g)

Do we update distance for c? No

/'\

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:

{e-d), (a:b), (b€}, (9. f), (e, Q),

(g, e), (d, e), (e,), (3, g) Do we update distance for f? Yes

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

..............................
(]
. Suppose graph.edges returns edges in following order: ---
B B
. <. (9.). (e, g). Do we update distance for f? Yes .
N (g, €), (d, e), (e,), (a, g) P | -
B B
B B
B B
i =
B B
O B
¥ =
(0)
=- T T ———————
-ttt

..............................
(]
. Suppose graph.edges returns edges in following order: ---
B B
. <. tg-. (. 9). Do we update distance for g? No .
N (g, €), (d, e), (e,), (a, g) P % -
B B
B B
B B
i =
B B
O B
¥ =
(0)
=- T T ———————
-ttt

..............................
. Suppose graph.edges returns edges in following order: ---
o |
=t (g e) () (e f) (g) Do we update distance for e? Yes =
o |
o |
o L
K :
o L
O [
o -
(0]
=- T —— T W W ——
-ttt

..............................
. Suppose graph.edges returns edges in following order: ---
o |
=t ta-) e, f) (g) Do we update distance for e? Yes =
o |
o |
o L
K :
o L
O [
o -
(0]
=- T —— T W W ——
-ttt

..............................
. Suppose graph.edges returns edges in following order: ---
o |
=t ta-) (d e) (e f) (g) Do we update distance for e? Yes =
o |
o |
o L
K :
o L
O [
o -
(0]
=- T —— T W W ——
-ttt

..............................
(]
. Suppose graph.edges returns edges in following order: ---
B B
=t :)I, : l’,)l, (e: f),l (a,’g)l """ Do we update distance for f? No =
B B
B B
B B
i =
B B
O B
O -
(0)
=- T T ———————
-ttt

..............................
(]
. Suppose graph.edges returns edges in following order: ---
B B
=t :)I, : l’,)l, ; H,I (a,' g)' """ Do we update distance for g? No =
B B
B B
B B
i =
B B
O B
O -
(0)
=- T T ———————
-ttt

..............................
g Y
. Suppose graph.edges returns edges in following order: ---
B B
b (e}, ta-b), (6:-6), (69, (e-g)- B
It was the end of the second
. (-g—e-) tde), te-), (-a—g-) iteration of BF .
B B
B B
B B
¥ -
B B
O B
C :
0
=- T T ———————
-ttt

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g), _
| One more time

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:

No change

— -
o 0

,d), (a8, b), (b,), (g, f), (e, g),
,e), (d, e), (e,), (a, q)

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:

c, d), (a,b), (b, c), (g, f), (e, g),

g, e), (d, e), (e, f), (3, Q) No change

e T)

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:

c,d), (a, b), (b, o), (g, f), (e,),

g, e), (d, e), (e, f), (3, Q) No change

e T)

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

Suppose graph.edges returns edges in following order:

c, d), (a, b), (b, c), (g, f), (e, g),

g, e), (d, e), (e, f), (3, Q) No change

e T)

o

"l'f‘l"!"f'!"!."!'

T ————
.............................

IIIlIIIIIIIIIIIIIIIIIIIIIIIIII
. Suppose graph.edges returns edges in following order: ---
o o
= (c.d), (a,b). (b,c). (g.f).(e.0). B
b (g. e), (d, e), (e, f), (a, Q) paate Tornode 9. |
o o
o o
o o
o o
© :
O o
o :
- et
T ————
-ttt

IIIlIIIIIIIIIIIIIIIIIIIIIIIIII
. Suppose graph.edges returns edges in following order: ---
o o
= (c.d), (a,b). (b,c). (g.f).(e.0). B
b (g. e), (d, e), (e, f), (a, Q) paate Tornode 9. |
o o
o o
o o
o o
© :
O o
o :
- et
T ————
-ttt

..............................
S B S A B
.I Suppose graph.edges returns edges in following order: ---
= (c. d), (3, b), (b, <), (g, f), (e, 0) =
c,d), (a, b), (b, c), (g, 1), (e, 9),

.i (g. €). (d, &), (e,), (a, q) No change b
B B
B B
B B
B B
< -
B B
O B
£ -
= -

T
-ttt

..............................
S B S A B
.I Suppose graph.edges returns edges in following order: ---
= (c. d), (3, b), (b, <), (g, f), (e, 0) =
c,d), (a, b), (b, c), (g, 1), (e, 9),

.i (g. €). (d, e), (e, f), (a, g) No change b
B B
B B
B B
B B
< -
B B
O B
£ -
= -

T
-ttt

..............................
S B S A B
.I Suppose graph.edges returns edges in following order: ---
= (c. d), (3, b), (b, <), (g, f), (e, 0) =
c,d), (a, b), (b, c), (g, 1), (e, 9),

.i (9. €). (d.), (e, f), (a, 0) No change b
B B
B B
B B
B B
< -
B B
O B
£ -
= -

T
-ttt

..............................
S B S A B
.I Suppose graph.edges returns edges in following order: ---
= (c. d), (3, b), (b, <), (g, f), (e, 0) =
c,d), (a, b), (b, c), (g, 1), (e, 9),

.i (9. €). (d.), (e. f), (5. g) No change b
B B
B B
B B
B B
< -
B B
O B
£ -
= -

T
-ttt

..............................
(]
. Suppose graph.edges returns edges in following order: ---
B B
= (c.), (a,b). (b, c), (9.), (e. 9). e end of the third frerat B
. (g' e) (d. e) (e, f) (a. g) c’)ch\éaII:st e end of the third iteration .
B B
B B
B B
i =
B B
O B
¥ =
(0)
=- T T ———————
-ttt

!!lllllllllllllllllllll=ll

Suppose graph.edges returns edges in following order:

Is everything look correct?
c, d), (a, b), (b, c), (g, f), (e, g).

(
(9. e), (d, e), (e, f), (a, g) A: Yes, we are done!

B: No: Wrong number

C: No: Wrong predecessor

'!."C"C'!‘L"!'

e

- =8

B ————T
e

lllllIllllllllllllllllllllllll
[S e s A
.I Suppose graph.edges returns edges in following order: ---
. What edge to we need to .
] (c, d), (a. b), (b, <), (g.), (e, g), update? B
L (g. e), (d, e), (e, f), (a, @) B
B L
B L
B L
B L
II » L
B L
- L
O B
- :

T ——
-ttt

lllllIllllllllllllllllllllllll
[S e s A
.I Suppose graph.edges returns edges in following order: ---
. What edge to we need to .
] (c, d), (a. b), (b, <), (g.), (e, g), update? B
L (g. e), (d, e), (e, f), (a, @) B
B L
B L
B L
B L
II » L
B L
- L
Lo B
= L

T ——————
IIIlIIIIIIIIIIIIIIIIIIIIIIIIII

IllllIllllllllllllllllllllllll
[P A I B
.I Suppose graph.edges returns edges in following order: ---
. How many total iterations .
= (c, d), (3, b), (b, c), (g,), (e, g), did we perform? N
.t: (g. e), (d, e), (e, f), (a, @) B
B L
B L
B L
B L
II » L
B L
- L
e B
- -

T ——
-ttt

IlIllIllllllllllllllllllllllll
[P A I B
.I Suppose graph.edges returns edges in following order: ---
. Do we have to run one .
= (c, d), (3, b), (b, c), (g,), (e, g), more iteration? B
.t: (g. e), (d, e), (e, f), (a, @) B
B L
B L
B L
B L
II » L
B L
- L
e B
- -

T ——
-ttt

Loop Invariant

e One iteration: update all edges in arbitrary order.

e Loop invariant: After « iterations, all nodes whose
actual shortest path from s has = a edges are guaranteed
to be estimated correctly.

11113999

T ————
.............................

==llllllllllllllllllllllll=l=
.-

B
=I"'. Bellman-Ford

e Claim: each node must have a shortest path which is simple
(Edge case: cycles of weight zero)
i: e The most edges a simple path can haveis |V | -1
e Idea of Bellman-Ford: iteratively update all edges, repeat

.P |V | - 1times.
= -

B ————T
.............................

==llllllllllllllllllllllll=ll

.I._’
= The Bellman-Ford Algorithm

‘def bellman_ford(graph, weights, source):
"""Assume graph is directed.”"”
est = {node: float('inf') for node in graph.nodes}
est[source] 0
predecessor {node: None for node in graph.nodes}

. for i1 in range(len(graph.nodes)-1):
for (u, v) in graph.edges:

update(u, v, weights, est, predecessor)

= return est, predecessor

B ————T
.............................

ll lllllllllllllllllllllll=l=
.-

. /||| || |
.I_’ The Bellman-Ford Algorithm: Complexity

def bellman_ford(graph, welghts source) :
Assume graph is directed.
est = {node: float('inf') for node in graph.nodes}
- est[source] =0
. predecessor = {node: None for node in graph.nodes}

. for i in range(len(graph.nodes)-1):
for (u, v) in graph.edges:
update(u, v, weights, est, predecessor)
return est, predecessor

.P Setup: time:

.p Each update takes time
There are exactly updates
= Total time complexity:

B ————T
.............................

ll lllllllllllllllllllllll=l=
.-

. /||| || |
.I_’ The Bellman-Ford Algorithm: Complexity

def bellman_ford(graph, welghts source) :
Assume graph is directed.
est = {node: float('inf') for node in graph.nodes}
- est[source] =0
. predecessor = {node: None for node in graph.nodes}

. for i in range(len(graph.nodes)-1):
for (u, v) in graph.edges:
update(u, v, weights, est, predecessor)
return est, predecessor

.P Setup: V) time:

.p Each update takes time
There are exactly updates
= Total time complexity:

B ————T
.............................

ll lllllllllllllllllllllll=l=
.-

. /||| || |
.I_’ The Bellman-Ford Algorithm: Complexity

def bellman_ford(graph, welghts source) :
Assume graph is directed.
est = {node: float('inf') for node in graph.nodes}
- est[source] =0
. predecessor = {node: None for node in graph.nodes}

. for i in range(len(graph.nodes)-1):
for (u, v) in graph.edges:
update(u, v, weights, est, predecessor)
return est, predecessor

P Setup: V) time
o O

.p Each update takes time
There are exactly updates
= Total time complexity:

B ————T
.............................

ll lllllllllllllllllllllll=l=
.-

. /||| || |
.I_’ The Bellman-Ford Algorithm: Complexity

def bellman_ford(graph, welghts source) :
Assume graph is directed.
est = {node: float('inf') for node in graph.nodes}
- est[source] =0
. predecessor = {node: None for node in graph.nodes}

. for i in range(len(graph.nodes)-1):
for (u, v) in graph.edges:
update(u, v, weights, est, predecessor)
return est, predecessor

P Setup: V) time
o O

.p Each update takes time
There are exactly __UVI=1) X IEl ypdates
= Total time complexity:

B ————T
.............................

ll lllllllllllllllllllllll=l=
.-

. /||| || |
.I_’ The Bellman-Ford Algorithm: Complexity

def bellman_ford(graph, welghts source) :
Assume graph is directed.
est = {node: float('inf') for node in graph.nodes}
- est[source] =0
. predecessor = {node: None for node in graph.nodes}

. for i in range(len(graph.nodes)-1):
for (u, v) in graph.edges:
update(u, v, weights, est, predecessor)
return est, predecessor

P Setup: V) time
o O

.) Each update takes time
. There are exactly _ (UVI=1) X IEl ypdates
i'. Total time complexity: © (V + VE)
T T ——————
.............................

93322290

Early Stopping and
Negative Cycles

==llllllllllllllllllllllll=l=
.-

=I.-—' Early Stopping

- o B-F may not need to run for |V | - 1 iterations.
e |f no predecessors change, we can break:

o
< =8

B ————T
e

!!lllllllllllllllllllll=ll

Suppose graph.edges returns edges in following order:

How many total iterations
c, d), (3, b), (b, c), (g, f), (e, g). did we perform?

g. e), (d, e), (e, f), (a, g) 4

How many iterations
according to the code?
IVI-1, 1.e. 6

(
(

'!."C"C'!‘L"!'

e

- =8

B ————T
e

NN
——— =aEE
.

Early Stopping

e B-F may not need to run for |V | - 1 iterations.
e If no predecessors change, we can break:

def bellman_ford(graph, weights, source):
"""Early stopping version.”””
est = {node: float('inf') for node in graph.nodes}
est[source] = o
predecessor = {node: None for node in graph.nodes}

for i in range(len(graph.nodes) - 1):
any_changes = False
for (u, v) in graph.edges:
changed = update(u, v, weights, est, predecessor)
any_changes = changed or any_changes
if not any_changes:
break
return est, predecessor

1999999499

T ————
Lttt

IllllIlllllllllllllllllllllll
-

D Negative Cycles

. - o A negative cycle is a cycle whose total edge weight is

. negative:

l

EP O
EP L

B ————T
e

IllllIlllllllllllllllllllllll
-

D Negative Cycles

. - o A negative cycle is a cycle whose total edge weight is

. negative:

l

.P C 3
.I e If a3 graph has a negative cycle, (some) shortest paths are

= not well defined.
T T ——————
.............................

==llllllllllllllllllllllll=ll

.I.__.
B Detecting Negative Cycles

e If graph does not have negative cycles, estimated
distances eventually stop changing (after at most |V | - 1
iterations).

If graph has negative cycles, estimated distances always
decrease.

.P To detect them: run a |V |th iteration; if distances

change, a negative cycle exists.

B ————T
.............................

NN
——— =aEE
.

Detecting Negative Cycles

def bellman_ford(graph, weights, source):
"""Farly stopping version, detects negative cycles.
est = {node: float('inf') for node in graph.nodes}
est[source] =
predecessor = {node: None for node in graph.nodes}

mnnrn

for i in range(len(graph.nodes)):
any_changes = False
for (u, v) in graph.edges:
changed = update(u, v, weights, est, predecessor)
any_changes = changed or any_changes
if not any_changes:
break
this will be True if negative cycles exist
contains_negative_cycles = any_changes
return est, predecessor, contains_negative_cycles

1999999499

T ————
Lttt

Thank you!

.I CampusWire!
=l--

)

