
❖

DSC 40B
Lecture 25 : Shortest

Paths in Weighted
Graphs. Bellman-Ford

❖

Bellman-Ford

❖

Bellman-Ford

● Dijkstra’s algorithm works only with positive weights.

● Bellman-Ford allows us to find shortest distances in the
graphs with negative weights as well.

❖

Intuition

● Shortest paths that have many edges are “harder” to discover.
○ May require many updates.

● Shortest paths that have few edges are “easier” to discover.

● Once we’ve discovered all of the shortest paths with few edges,
it makes it easier to discover the shortest paths with more edges.

❖

Example
What is the shortest path from a to f?

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3
-1

❖

Example
What is the shortest path from a to f?

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3
-1

Path: a, b, c, d, e, g, f Length: 2 - 1 + 1 + 3 - 1 + 0 = 4

❖

Updating All Edges

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3
-1

● Suppose we update all of the edges, one by one.

● Then all nodes whose shortest path from 𝑠 has only one
edge are guaranteed to be estimated correctly.

❖

Loop Invariant

● One iteration: update all edges in arbitrary order.

● Loop invariant: After 𝛼 iterations, all nodes whose
shortest path from 𝑠 has ≤ 𝛼 edges are guaranteed to be
estimated correctly.

❖

The Bellman-Ford Algorithm

def bellman_ford(graph, weights, source):
”””Assume graph is directed.”””

est = {node: float('inf') for node in graph.nodes}
est[source] = 0
predecessor = {node: None for node in graph.nodes}

for i in range(?):
for (u, v) in graph.edges:

update(u, v, weights, est, predecessor)
return est, predecessor

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),

(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3
-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),

(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3
-1

 0

∞

∞ ∞

∞

∞

∞

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),

(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3
-1

 0

∞

∞ ∞

∞

∞

∞

Do we update distance
for d?

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),

(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

∞

∞ ∞

∞

∞

∞

Do we update distance
for d? No

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),

(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

∞

∞ ∞

∞

∞

∞

Do we update distance
for b?

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),

(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

∞ ∞

∞

∞

∞

Do we update distance
for b? Yes

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),

(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

∞ ∞

∞

∞

∞

Do we update distance
for c?

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),

(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 ∞

∞

∞

∞

Do we update distance
for c? Yes

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),

(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 ∞

∞

∞

∞

Do we update distance
for f? No

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 ∞

∞

∞

∞

Do we update distance
for g? No

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 ∞

∞

∞

∞

Do we update distance
for e? No

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 ∞

∞

∞

∞

Do we update distance
for e? No

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 ∞

∞

∞

∞

Do we update distance
for f? No

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 ∞

∞

∞

∞

Do we update distance
for g?

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 ∞

∞

∞

7

Do we update distance
for g? Yes

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 ∞

∞

∞

7

It was just a single iteration of BF

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 ∞

∞

∞

7

We only can guarantee one correct
edge after this iteration: (a, b)

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 ∞

∞

∞

7

Do we update distance for d? Yes

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

∞

∞

7

Do we update distance for b? No

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

∞

∞

7

Do we update distance for c? No

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

∞

∞

7

Do we update distance for f? Yes

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

∞

7

7

Do we update distance for f? Yes

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

∞

7

7

Do we update distance for g? No

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

∞

7

7

Do we update distance for e? Yes

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

10

7

7

Do we update distance for e? Yes

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

10

7

7

Do we update distance for e? Yes

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

7

7

Do we update distance for f? No

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

7

7

Do we update distance for g? No

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

7

7

It was the end of the second
iteration of BF

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

7

7

One more time

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

7

7

No change

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

7

7

No change

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

7

7

No change

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

7

7

No change

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

7

7

Update for node g.

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

7

4

Update for node g.

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

7

4

No change

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

7

4

No change

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

7

4

No change

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

7

4

No change

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

7

4

It was the end of the third iteration
of BF

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

7

4

Is everything look correct?

A: Yes, we are done!

B: No: Wrong number

C: No: Wrong predecessor

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

7

4

What edge to we need to
update?

A: All of them
B: (e, f)
C: (g, f)
D: (e, g)
E: (d, e)

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

4

4

What edge to we need to
update?

A: All of them
B: (e, f)
C: (g, f)
D: (e, g)
E: (d, e)

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

4

4

How many total iterations
did we perform?

4

-1

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

4

4

Do we have to run one
more iteration?

No

-1

❖

Loop Invariant

● One iteration: update all edges in arbitrary order.

● Loop invariant: After 𝛼 iterations, all nodes whose
actual shortest path from 𝑠 has ≤ 𝛼 edges are guaranteed
to be estimated correctly.

❖

Bellman-Ford

● Claim: each node must have a shortest path which is simple
(Edge case: cycles of weight zero)

● The most edges a simple path can have is |𝑉 | − 1

● Idea of Bellman-Ford: iteratively update all edges, repeat
|𝑉 | − 1 times.

❖

The Bellman-Ford Algorithm

def bellman_ford(graph, weights, source):
”””Assume graph is directed.”””

est = {node: float('inf') for node in graph.nodes}
est[source] = 0
predecessor = {node: None for node in graph.nodes}

for i in range(len(graph.nodes)-1):
for (u, v) in graph.edges:

update(u, v, weights, est, predecessor)
return est, predecessor

❖

The Bellman-Ford Algorithm: Complexity
def bellman_ford(graph, weights, source):
”””Assume graph is directed.”””

est = {node: float('inf') for node in graph.nodes}
est[source] = 0
predecessor = {node: None for node in graph.nodes}

for i in range(len(graph.nodes)-1):
for (u, v) in graph.edges:

update(u, v, weights, est, predecessor)
return est, predecessor

Setup: _________________________time:

Each update takes _______________time

There are exactly ________________updates

Total time complexity:________________

❖

The Bellman-Ford Algorithm: Complexity
def bellman_ford(graph, weights, source):
”””Assume graph is directed.”””

est = {node: float('inf') for node in graph.nodes}
est[source] = 0
predecessor = {node: None for node in graph.nodes}

for i in range(len(graph.nodes)-1):
for (u, v) in graph.edges:

update(u, v, weights, est, predecessor)
return est, predecessor

Setup: _________________________time:

Each update takes _______________time

There are exactly ________________updates

Total time complexity:________________

 Θ (V)

❖

The Bellman-Ford Algorithm: Complexity
def bellman_ford(graph, weights, source):
”””Assume graph is directed.”””

est = {node: float('inf') for node in graph.nodes}
est[source] = 0
predecessor = {node: None for node in graph.nodes}

for i in range(len(graph.nodes)-1):
for (u, v) in graph.edges:

update(u, v, weights, est, predecessor)
return est, predecessor

Setup: _________________________time

Each update takes _______________time

There are exactly ________________updates

Total time complexity:________________

 Θ (V)

 Θ (1)

❖

The Bellman-Ford Algorithm: Complexity
def bellman_ford(graph, weights, source):
”””Assume graph is directed.”””

est = {node: float('inf') for node in graph.nodes}
est[source] = 0
predecessor = {node: None for node in graph.nodes}

for i in range(len(graph.nodes)-1):
for (u, v) in graph.edges:

update(u, v, weights, est, predecessor)
return est, predecessor

Setup: _________________________time

Each update takes _______________time

There are exactly ________________updates

Total time complexity:________________

 Θ (V)

 Θ (1)

 (|V|-1) x |E|

❖

The Bellman-Ford Algorithm: Complexity
def bellman_ford(graph, weights, source):
”””Assume graph is directed.”””

est = {node: float('inf') for node in graph.nodes}
est[source] = 0
predecessor = {node: None for node in graph.nodes}

for i in range(len(graph.nodes)-1):
for (u, v) in graph.edges:

update(u, v, weights, est, predecessor)
return est, predecessor

Setup: _________________________time

Each update takes _______________time

There are exactly ________________updates

Total time complexity:________________

 Θ (V)

 Θ (1)

 (|V|-1) x |E|

 Θ (V + VE)

❖

Early Stopping and
Negative Cycles

❖

Early Stopping

● B-F may not need to run for |𝑉 | − 1 iterations.
● If no predecessors change, we can break:

❖

Suppose graph.edges returns edges in following order:

(c, d), (a, b), (b, c), (g, f), (e, g),
(g, e), (d, e), (e, f), (a, g)

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3

 0

2

1 2

5

4

4

How many total iterations
did we perform?
4

How many iterations
according to the code?
|V|-1, i.e. 6

-1

❖

Early Stopping

● B-F may not need to run for |𝑉 | − 1 iterations.
● If no predecessors change, we can break:

❖

Negative Cycles

● A negative cycle is a cycle whose total edge weight is
negative:

a d f

b

c

e

 3 4

 -2

 -1 -2

3

❖

Negative Cycles

● A negative cycle is a cycle whose total edge weight is
negative:

a d f

b

c

e

 3 4

 -2

 -1 -2

3

● If a graph has a negative cycle, (some) shortest paths are
not well defined.

❖

Detecting Negative Cycles

● If graph does not have negative cycles, estimated
distances eventually stop changing (after at most |𝑉 | − 1
iterations).

● If graph has negative cycles, estimated distances always
decrease.

● To detect them: run a |𝑉 |th iteration; if distances
change, a negative cycle exists.

❖

Detecting Negative Cycles

❖

Do you have any questions?

Thank you!

CampusWire!

