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❖

Weighted Graphs

● An edge weighted graph 𝐺 = (𝑉 , 𝐸, 𝜔) is a triple where  
(𝑉 , 𝐸) is a graph and 𝜔 ∶ 𝐸 → ℝ maps each edge to a 
weight.

●  Can be directed or undirected.
●  In general, weights can be positive, negative, zero.
●  Many uses, such as representing metric spaces.



❖

Path Lengths

● The length of a path in a weighted graph (usually) refers 
to the total weight of all edges in the path.

Example:  
(LegoLand, Airport, Zoo)
34 + 5 = 39



❖

Shortest Paths

● A shortest path between 𝑢 and 𝑣 is a path between 𝑢 and 
𝑣 with minimum length.

● In other words, minimum total weight.



❖

Example
What is the shortest path from a to f?
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A: Some positive 
number

B: Some negative 
number

C:  0 

D: Inf. loop
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Example
What is the shortest path from a to f?

a

b

c d

e

fg

   2

-1
   1

3

2

7 0

3
-1

Path: a, b, c, d, e, g, f         Length: 2 - 1 + 1 + 3 - 1 + 0 = 4



❖

Today (and next time)

● How do we find shortest paths in weighted graphs?



❖

Idea #0

●  Does BFS work?
○ No, not really. Only if all weights are the same.

●  Can we “convert” a weighted graph to an unweighted one?



❖

Idea #0. How can we convert?

u v
     3



❖

Idea #0. When will it fail?

u v



❖

Idea #0

●  Step 1: “Convert” weighted graph to unweighted one with 
dummy nodes.

●  Step 2: Call BFS on this new graph.



❖

Idea #0

● Very inefficient for large weights.

● What if edge weights are floats, or negative?



❖

Ideas #1 and #2

● We’ll look at two algorithms: Bellman-Ford and Dijkstra’s.
○ Input: weighted graph, source vertex 𝑠.
○ Output: shortest paths from 𝑠 to every other node.

● Both work by:
○ keeping track of shortest known path (estimates).
○ iteratively updating these until they’re correct.



❖

Shortest Path Estimates

● Bellman-Ford and Dijkstra’s keep track of the shortest paths 
found so far; we call these the estimated shortest paths.

●  For each node 𝑢, remember 𝑢’s:
○ predecessor in estimated shortest path;
○ distance from source 𝑠 in estimated shortest path.

●  Key: estimated distance will always be ≥ actual distance.



❖

Updates
●  Both algorithms work by iteratively updating their 

estimates.

●  On each iteration, consider a new edge (𝑢, 𝑣).
Ask: is the best known shortest path from
                 source → ⋯ → 𝑢 → 𝑣
shorter than the best known shortest path from
                source → ⋯ → predecessor[v] → 𝑣?

●  If it is, we have discovered a shorter path to 𝑣.
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Dijkstra’s Algorithm

● Intuition
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Update Rule:

if d(b) + cost(b, c)

  d(b)

cost (b, d)
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● Intuition
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Dijkstra’s Algorithm

● Intuition

a b c
   3    5

   3   ∞ 

Update Rule:

if d(b) + cost(b, c)< d(c):

    d(c)=d(b) + cost(b, d)

  d(b)

cost (b, d)

  d(c)
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Dijkstra’s Algorithm

● Intuition

a b c
   3    5

   3   ∞ 

Update Rule:

if d(b) + cost(b, c)< d(c):

    d(c)=d(b) + cost(b, d)

If 3 + 5 < ∞:
    d(c) = 8   d(b)

cost (b, d)

  d(c)
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Dijkstra’s Algorithm

● Intuition
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If 3 + 5 < ∞:
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cost (b, d)

  d(c)
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Select the shorted path: 2
Update rule:

If 2 + 2 < 5, update 

if d(u) + cost(u, v)< d(v):

    d(v)=d(u) + cost(u, v)
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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If 3 + 4 < 11, update 

if d(u) + cost(u, v)< d(v):

    d(v)=d(u) + cost(u, v)
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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    d(v)=d(u) + cost(u, v)
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Update rule:

If 4 + 1 < 7, update

if d(u) + cost(u, v)< d(v):

    d(v)=d(u) + cost(u, v)
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Dijkstra’s Algorithm
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if d(u) + cost(u, v)< d(v):

    d(v)=d(u) + cost(u, v)
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❖

Dijkstra’s Idea

●  Keep track of set 𝐶 of “correct” nodes.
○ Nodes whose distance estimate is correct.

● At every step, add node outside of 𝐶 with smallest 
estimated distance; update only its neighbors.

●  A “greedy” algorithm.



❖

Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

# empty set
C = set()

# while there are nodes still outside of C
# find node u outside of C with smallest
# estimated distance

C.add(u)

for v in graph.neighbors(u):
update(u, v, weights, est, pred)

return est, pred
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Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

# empty set
C = set()

# while there are nodes still outside of C
# find node u outside of C with smallest
# estimated distance
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Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

# empty set
C = set()

# while there are nodes still outside of C
# find node u outside of C with smallest
# estimated distance

C.add(u)

for v in graph.neighbors(u):
update(u, v, weights, est, pred)

return est, pred
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❖

  0 15

6 7 8

C = { A, B, C }
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C = { A, B, C, D }

pred = 
   { B:A,
     E:A,#fornow
      C:B,
     D:C
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  0 12

6 7 8

C = { A, B, C, D }

pred = 
   { B:A,
     E:D,
      C:B,
     D:C
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  0 12

6 7 8

How many times do 
we update (“touch”) 
each edge?

A: Once

B: Twice

C: |E|

D: |V|

E: Something else



❖

Proof Idea

Claim: at beginning of any iteration of Dijkstra’s, if 𝑢 is node ∉ 𝐶 
with smallest estimated distance, the shortest path to 𝑢 has been 
correctly discovered.



❖

Proof Idea
● Let 𝑢 be node outside of 𝐶 for which est[u] is smallest.
● We’ve discovered a path from 𝑠 to 𝑢 of length est[u].
●  Any path from 𝑠 to 𝑢 has to exit 𝐶 somewhere.
●  Any path from 𝑠 to 𝑢 will cost at least est[u] just to exit 𝐶.



❖

Question 

● Is there a limitation for Dijkstra’s algorithm?



❖

Exercise 

● Why do the edge weights need to be positive?
● Come up with a simple example graph with some 

negative edge weights where Dijkstra’s fails to compute 
the correct shortest path.
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to get to b?
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Do we ever have to consider 
another path to b?  No.
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Example

a c
   3

b

d
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    10

What is the fastest way 
to get to b?

 2

Do we ever have to consider 
another path to b?  No.

Let’s make another path 
that is better than 2.
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Implementation



❖

Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

# empty set
C = set()

# while there are nodes still outside of C
# find node u outside of C with smallest
# estimated distance

C.add(u)

for v in graph.neighbors(u):
update(u, v, weights, est, pred)

return est, pred
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Dijkstra’s Algorithm: Naïve Implementation

key = est.get)
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Dijkstra’s Algorithm: Naïve Implementation

key = est.get) inefficient
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Priority Queues



❖

Priority Queues
● A priority queue allows us to store (key, value) pairs, 

efficiently return key with lowest value.

●  Suppose we have a priority queue class:
○ PriorityQueue(priorities) will create a priority 

queue from a dictionary whose values are priorities.

○ The .extract_min() method removes and returns key 
with smallest value.

○ The .change_priority(key, value) method
changes key’s value.



❖

Example

>>> pq = PriorityQueue({
          'w': 5,
          'x': 4,
          'y': 1,
          'z': 3
})
>>> pq.extract_min()
'Y'
>>> pq.change_priority('w', 2)
>>> pq.extract_min()
?



❖

Example

>>> pq = PriorityQueue({
          'w': 5,
          'x': 4,
          'y': 1,
          'z': 3
})
>>> pq.extract_min()
'Y'
>>> pq.change_priority('w', 2)
>>> pq.extract_min()
'w'



❖

Dijkstra’s Algorithm: Priority Queue



❖

Heaps

●  A priority queue can be implemented using a heap.

●  If a binary min-heap is used:
○ PriorityQueue(est) takes Θ(𝑉 ) time.

○ .extract_min() takes 𝑂(log 𝑉 ) time.

○ .change_priority() takes 𝑂(log 𝑉 ) time.
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Time Complexity Using Min Heap

Θ(𝑉 )
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Time Complexity Using Min Heap

Θ(𝑉 )

Θ(1 )

O(log v )

O(log v )

Time Complexity: Θ(𝑉 log V )
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Time Complexity Using Min Heap

Θ(𝑉 )

Θ(1 )

O(log v )

O(log v )

Time Complexity: Θ(𝑉 log V + E Log V)



❖

Loop Invariant

●  Assume that edge weights are positive.

● Before each iteration of Dijkstra’s algorithm, both the 
distance estimate and the predecessor of the first node in 
the priority queue are correct.



❖

Exercise

True or False: in Dijkstra’s algorithm, a node’s predecessor can 
be changed after it is first set.

A: True

B: False

C: Not sure yet



❖

Exercise

True or False: in Dijkstra’s algorithm, a node’s predecessor can 
be changed after it is popped from the priority queue.

A: True

B: False

C: Not sure yet



❖

Do you have any questions?

Thank you!

CampusWire!


