
❖

DSC 40B
Lecture 23. : Shortest

Paths in Weighted
Graphs. Dijkstra

❖ Shortest Paths in
Weighted Graphs

❖

Map

UCSD

zoo
Airport

Lego
land

Flama
Llama

❖

UCSD

zoo
Airport

Lego
land

Flama
Llama

12 miles

10 miles

8 miles

5 miles

11 miles

21 miles

34 miles

Map

❖

Map

UCSD

zoo
Airport

Lego
land

Flama
Llama

12 miles

10 miles

8 miles

5 miles

11 miles

21 miles

34 miles

❖

Weighted Graphs

● An edge weighted graph 𝐺 = (𝑉 , 𝐸, 𝜔) is a triple where
(𝑉 , 𝐸) is a graph and 𝜔 ∶ 𝐸 → ℝ maps each edge to a
weight.

● Can be directed or undirected.
● In general, weights can be positive, negative, zero.
● Many uses, such as representing metric spaces.

❖

Path Lengths

● The length of a path in a weighted graph (usually) refers
to the total weight of all edges in the path.

Example:
(LegoLand, Airport, Zoo)
34 + 5 = 39

❖

Shortest Paths

● A shortest path between 𝑢 and 𝑣 is a path between 𝑢 and
𝑣 with minimum length.

● In other words, minimum total weight.

❖

Example
What is the shortest path from a to f?

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

-1
3

A: Some positive
number

B: Some negative
number

C: 0

D: Inf. loop

❖

Example
What is the shortest path from a to f?

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

-1
3

❖

Example
What is the shortest path from a to f?

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3
-1

❖

Example
What is the shortest path from a to f?

a

b

c d

e

fg

 2

-1
 1

3

2

7 0

3
-1

Path: a, b, c, d, e, g, f Length: 2 - 1 + 1 + 3 - 1 + 0 = 4

❖

Today (and next time)

● How do we find shortest paths in weighted graphs?

❖

Idea #0

● Does BFS work?
○ No, not really. Only if all weights are the same.

● Can we “convert” a weighted graph to an unweighted one?

❖

Idea #0. How can we convert?

u v
 3

❖

Idea #0. When will it fail?

u v

❖

Idea #0

● Step 1: “Convert” weighted graph to unweighted one with
dummy nodes.

● Step 2: Call BFS on this new graph.

❖

Idea #0

● Very inefficient for large weights.

● What if edge weights are floats, or negative?

❖

Ideas #1 and #2

● We’ll look at two algorithms: Bellman-Ford and Dijkstra’s.
○ Input: weighted graph, source vertex 𝑠.
○ Output: shortest paths from 𝑠 to every other node.

● Both work by:
○ keeping track of shortest known path (estimates).
○ iteratively updating these until they’re correct.

❖

Shortest Path Estimates

● Bellman-Ford and Dijkstra’s keep track of the shortest paths
found so far; we call these the estimated shortest paths.

● For each node 𝑢, remember 𝑢’s:
○ predecessor in estimated shortest path;
○ distance from source 𝑠 in estimated shortest path.

● Key: estimated distance will always be ≥ actual distance.

❖

Updates
● Both algorithms work by iteratively updating their

estimates.

● On each iteration, consider a new edge (𝑢, 𝑣).
Ask: is the best known shortest path from
 source → ⋯ → 𝑢 → 𝑣
shorter than the best known shortest path from
 source → ⋯ → predecessor[v] → 𝑣?

● If it is, we have discovered a shorter path to 𝑣.

❖

Dijkstra’s Algorithm

● Intuition

a b c
 3 5

❖

Dijkstra’s Algorithm

● Intuition

a b c
 3 5

 3

❖

Dijkstra’s Algorithm

● Intuition

a b c
 3 5

 3 ∞

❖

Dijkstra’s Algorithm

● Intuition

a b c
 3 5

 3 ∞ 8

❖

Dijkstra’s Algorithm

● Intuition

a b c
 3 5

 3 ∞

Update Rule:

if d(b)

 d(b)

❖

Dijkstra’s Algorithm

● Intuition

a b c
 3 5

 3 ∞

Update Rule:

if d(b) + cost(b, c)

 d(b)

cost (b, d)

❖

Dijkstra’s Algorithm

● Intuition

a b c
 3 5

 3 ∞

Update Rule:

if d(b) + cost(b, c)< d(c):

 d(b)

cost (b, d)

 d(c)

❖

Dijkstra’s Algorithm

● Intuition

a b c
 3 5

 3 ∞

Update Rule:

if d(b) + cost(b, c)< d(c):

 d(c)=d(b) + cost(b, d)

 d(b)

cost (b, d)

 d(c)

❖

Dijkstra’s Algorithm

● Intuition

a b c
 3 5

 3 ∞

Update Rule:

if d(b) + cost(b, c)< d(c):

 d(c)=d(b) + cost(b, d)

If 3 + 5 < ∞:
 d(c) = 8 d(b)

cost (b, d)

 d(c)

❖

Dijkstra’s Algorithm

● Intuition

a b c
 3 5

 3 8

Update Rule:

if d(b) + cost(b, c)< d(c):

 d(c)=d(b) + cost(b, d)

If 3 + 5 < ∞:
 d(c) = 8 d(b)

cost (b, d)

 d(c)

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0 5

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

2

5

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

2

5

3

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

2

5

3

∞

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

2

5

3

∞

Select the shorted path: 2

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

2

5

3

∞

Select the shorted path: 2
Update rule:

If 2 + 2 < 5, update

if d(u) + cost(u, v)< d(v):

 d(v)=d(u) + cost(u, v)

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

2

4

3

∞

Select the shorted path: 2
Update rule:

If 2 + 2 < 5, update

if d(u) + cost(u, v)< d(v):

 d(v)=d(u) + cost(u, v)

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

2

4

3

∞

Select the shorted path: 2
Update rule:

If 2 + 9 < inf, update

if d(u) + cost(u, v)< d(v):

 d(v)=d(u) + cost(u, v)

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

2

4

3

11

Select the shorted path: 2
Update rule:

If 2 + 9 < inf, update

if d(u) + cost(u, v)< d(v):

 d(v)=d(u) + cost(u, v)

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

2

4

3

11

Select the shorted path: 3

if d(u) + cost(u, v)< d(v):

 d(v)=d(u) + cost(u, v)

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

2

4

3

11

Select the shorted path: 3

if d(u) + cost(u, v)< d(v):

 d(v)=d(u) + cost(u, v)

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

2

4

3

11

Select the shorted path: 3
Update rule:

If 3 + 4 < 11, update

if d(u) + cost(u, v)< d(v):

 d(v)=d(u) + cost(u, v)

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

2

4

3

7

Select the shorted path: 3
Update rule:

If 3 + 4 < 11, update

if d(u) + cost(u, v)< d(v):

 d(v)=d(u) + cost(u, v)

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

2

4

3

7

Select the shorted path: 4

if d(u) + cost(u, v)< d(v):

 d(v)=d(u) + cost(u, v)

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

2

4

3

7

Select the shorted path: 4

if d(u) + cost(u, v)< d(v):

 d(v)=d(u) + cost(u, v)

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

2

4

3

7

Select the shorted path: 4
Update rule:

If 4 + 1 < 7, update

if d(u) + cost(u, v)< d(v):

 d(v)=d(u) + cost(u, v)

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

2

4

3

5

Select the shorted path: 4
Update rule:

If 4 + 1 < 7, update

if d(u) + cost(u, v)< d(v):

 d(v)=d(u) + cost(u, v)

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

2

4

3

5

Select the shorted path: 4
Update rule:

If 4 + 1 < 7, update

if d(u) + cost(u, v)< d(v):

 d(v)=d(u) + cost(u, v)

❖

Dijkstra’s Algorithm

a b c
 5 1

d

e

 2
 2

 9

 3 4

 0

2

4

3

5

if d(u) + cost(u, v)< d(v):

 d(v)=d(u) + cost(u, v)

a

 b 2

c 5

d 2

e 3

❖

Dijkstra’s Idea

● Keep track of set 𝐶 of “correct” nodes.
○ Nodes whose distance estimate is correct.

● At every step, add node outside of 𝐶 with smallest
estimated distance; update only its neighbors.

● A “greedy” algorithm.

❖

Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

empty set
C = set()

while there are nodes still outside of C
find node u outside of C with smallest
estimated distance

C.add(u)

for v in graph.neighbors(u):
update(u, v, weights, est, pred)

return est, pred

❖

Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

empty set
C = set()

while there are nodes still outside of C
find node u outside of C with smallest
estimated distance

C.add(u)

for v in graph.neighbors(u):
update(u, v, weights, est, pred)

return est, pred

s

a

b

c

∞

∞

∞
0

❖

Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

empty set
C = set()

while there are nodes still outside of C
find node u outside of C with smallest
estimated distance

C.add(u)

for v in graph.neighbors(u):
update(u, v, weights, est, pred)

return est, pred

s

a

b

c

∞

∞

∞
0

 2

5

3

❖

Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

empty set
C = set()

while there are nodes still outside of C
find node u outside of C with smallest
estimated distance

C.add(u)

for v in graph.neighbors(u):
update(u, v, weights, est, pred)

return est, pred

s

a

b

c

2

∞

∞
0

 2

5

3

❖

Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

empty set
C = set()

while there are nodes still outside of C
find node u outside of C with smallest
estimated distance

C.add(u)

for v in graph.neighbors(u):
update(u, v, weights, est, pred)

return est, pred

s

a

b

c

2

3

∞
0

 2

5

3

❖

Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

empty set
C = set()

while there are nodes still outside of C
find node u outside of C with smallest
estimated distance

C.add(u)

for v in graph.neighbors(u):
update(u, v, weights, est, pred)

return est, pred

s

a

b

c

2

3

5
0

 2

5

3

❖

❖

 0 ∞

∞ ∞ ∞

C = { }

❖

 0 ∞

∞ ∞ ∞

C = { A }

❖

 0 ∞

6 ∞ ∞

C = { A }

pred =
 {B:A,

❖

 0 15

6 ∞ ∞

C = { A }

pred =
 { B:A,
 E:A,#fornow

❖

 0 15

6 ∞ ∞

C = { A, B }

pred =
 { B:A,
 E:A,#fornow

❖

 0 15

6 7 ∞

C = { A, B }

pred =
 { B:A,
 E:A,#fornow
 C:B,

❖

 0 15

6 7 ∞

C = { A, B, C }

pred =
 { B:A,
 E:A,#fornow
 C:B,

❖

 0 15

6 7 8

C = { A, B, C }

pred =
 { B:A,
 E:A,#fornow
 C:B,
 D:C

❖

 0 15

6 7 8

C = { A, B, C, D }

pred =
 { B:A,
 E:A,#fornow
 C:B,
 D:C

❖

 0 15

6 7 8

C = { A, B, C, D }

pred =
 { B:A,
 E:A,#fornow
 C:B,
 D:C

❖

 0 12

6 7 8

C = { A, B, C, D }

pred =
 { B:A,
 E:D,
 C:B,
 D:C

❖

 0 12

6 7 8

How many times do
we update (“touch”)
each edge?

A: Once

B: Twice

C: |E|

D: |V|

E: Something else

❖

Proof Idea

Claim: at beginning of any iteration of Dijkstra’s, if 𝑢 is node ∉ 𝐶
with smallest estimated distance, the shortest path to 𝑢 has been
correctly discovered.

❖

Proof Idea
● Let 𝑢 be node outside of 𝐶 for which est[u] is smallest.
● We’ve discovered a path from 𝑠 to 𝑢 of length est[u].
● Any path from 𝑠 to 𝑢 has to exit 𝐶 somewhere.
● Any path from 𝑠 to 𝑢 will cost at least est[u] just to exit 𝐶.

❖

Question

● Is there a limitation for Dijkstra’s algorithm?

❖

Exercise

● Why do the edge weights need to be positive?
● Come up with a simple example graph with some

negative edge weights where Dijkstra’s fails to compute
the correct shortest path.

❖

Example

a c
 3

b

d

 2

 10

What is the fastest way
to get to b?

❖

Example

a c
 3

b

d

 2

 10

What is the fastest way
to get to b?

 2

❖

Example

a c
 3

b

d

 2

 10

What is the fastest way
to get to b?

 2

Do we ever have to consider
another path to b?

❖

Example

a c
 3

b

d

 2

 10

What is the fastest way
to get to b?

 2

Do we ever have to consider
another path to b? No.

❖

Example

a c
 3

b

d

 2

 10

What is the fastest way
to get to b?

 2

Do we ever have to consider
another path to b? No.

Let’s make another path
that is better than 2.

❖

Example

a c
 3

b

d

 2

 10

Let’s make another path
that is better than 2.

 -20

20

Will the algorithm work for
these weights?

❖

Example

a c
 3

b

d

 2

 10

Let’s make another path
that is better than 2.

 -20

20

Will the algorithm work for
these weights? Yes.

❖

Example

a c
 3

b

d

 2

 10

Let’s make another path
that is better than 2.

 20

-20

Will the algorithm work for
these weights?

❖

Example

a c
 3

b

d

 2

 10

Let’s make another path
that is better than 2.

 20

-20

Will the algorithm work for
these weights? No.

❖

Example

a c
 3

b

d

 2

 10

 4

-20

❖

Example

a c
 3

b

d

 2

 10

 2

 4

-20

3

10

❖

Example

a c
 3

b

d

 2

 10

 2

 4

-20

3

10

❖

Example

a c
 3

b

d

 2

 10

 2

 4

-20

3

10

❖

Example

a c
 3

b

d

 2

 10

 2

 4

-20

-10

10

❖

Implementation

❖

Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

empty set
C = set()

while there are nodes still outside of C
find node u outside of C with smallest
estimated distance

C.add(u)

for v in graph.neighbors(u):
update(u, v, weights, est, pred)

return est, pred

❖

Dijkstra’s Algorithm: Naïve Implementation

key = est.get)

❖

Dijkstra’s Algorithm: Naïve Implementation

key = est.get) inefficient

❖

Priority Queues

❖

Priority Queues
● A priority queue allows us to store (key, value) pairs,

efficiently return key with lowest value.

● Suppose we have a priority queue class:
○ PriorityQueue(priorities) will create a priority

queue from a dictionary whose values are priorities.

○ The .extract_min() method removes and returns key
with smallest value.

○ The .change_priority(key, value) method
changes key’s value.

❖

Example

>>> pq = PriorityQueue({
 'w': 5,
 'x': 4,
 'y': 1,
 'z': 3
})
>>> pq.extract_min()
'Y'
>>> pq.change_priority('w', 2)
>>> pq.extract_min()
?

❖

Example

>>> pq = PriorityQueue({
 'w': 5,
 'x': 4,
 'y': 1,
 'z': 3
})
>>> pq.extract_min()
'Y'
>>> pq.change_priority('w', 2)
>>> pq.extract_min()
'w'

❖

Dijkstra’s Algorithm: Priority Queue

❖

Heaps

● A priority queue can be implemented using a heap.

● If a binary min-heap is used:
○ PriorityQueue(est) takes Θ(𝑉) time.

○ .extract_min() takes 𝑂(log 𝑉) time.

○ .change_priority() takes 𝑂(log 𝑉) time.

❖

Time Complexity Using Min Heap

Θ(𝑉)

❖

Time Complexity Using Min Heap

Θ(𝑉)

Θ(1)

❖

Time Complexity Using Min Heap

Θ(𝑉)

Θ(1)

O(log v)

❖

Time Complexity Using Min Heap

Θ(𝑉)

Θ(1)

O(log v)

O(log v)

❖

Time Complexity Using Min Heap

Θ(𝑉)

Θ(1)

O(log v)

O(log v)

Time Complexity:

❖

Time Complexity Using Min Heap

Θ(𝑉)

Θ(1)

O(log v)

O(log v)

Time Complexity: Θ(𝑉 log V)

❖

Time Complexity Using Min Heap

Θ(𝑉)

Θ(1)

O(log v)

O(log v)

Time Complexity: Θ(𝑉 log V + E Log V)

❖

Loop Invariant

● Assume that edge weights are positive.

● Before each iteration of Dijkstra’s algorithm, both the
distance estimate and the predecessor of the first node in
the priority queue are correct.

❖

Exercise

True or False: in Dijkstra’s algorithm, a node’s predecessor can
be changed after it is first set.

A: True

B: False

C: Not sure yet

❖

Exercise

True or False: in Dijkstra’s algorithm, a node’s predecessor can
be changed after it is popped from the priority queue.

A: True

B: False

C: Not sure yet

❖

Do you have any questions?

Thank you!

CampusWire!

