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Weighted Graphs

e An edge weighted graph G = (V, E, w) is a triple where
(V,E)isagraphandw : E— R maps each edge to a
weight.

e (an be directed or undirected.
e In general, weights can be positive, negative, zero.
e Many uses, such as representing metric spaces.
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=I-—' Path Lengths %

- o The length of a path in a weighted graph (usually) refers
to the total weight of all edges in the path.

Example:
(LegoLand, Airport, Zoo)

P 34 + 5 = 39
I
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Shortest Paths

e A shortest path between u and v is a path between u and
v with minimum length.

e In other words, minimum total weight.
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A Some posmve
number

Example

_ B: Some negative
“What is the shortest path from a to f? number

C: O

D: Inf. loop
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“What is the shortest path from a to f?
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Example

“What is the shortest path from a to f?

"l'f'!.'f"f'!"!."!'

T ————
.............................



I lllllllllllllllllllllll=l=
.-

.I.-—' Example

“What is the shortest path from a to f?

P Path: a, b, c, d, e, g, f Length: 2-1+1+3-1+0=4

B ————T
.............................




==llllllllllllllllllllllll=ll

.
.I"’ Today (and next time)

e How do we find shortest paths in weighted graphs?

o
< =8
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Idea #0

e Does BFS work?
o No, not really. Only if all weights are the same.

e (Can we “convert’ a weighted graph to an unweighted one?
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Idea #0. How can we convert?
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Idea #0. When will it fail?
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I"'. Idea #0

e Step 1: "Convert” weighted graph to unweighted one with
dummy nodes.

e Step 2: Call BFS on this new graph.
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Ideas #1 and #2

e We’'ll look at two algorithms: Bellman-Ford and Dijkstra’s.
o Input: weighted graph, source vertex s.
o Output: shortest paths from s to every other node.

e Both work by:
o keeping track of shortest known path (estimates).
o iteratively updating these until they're correct.
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Shortest Path Estimates

e Bellman-Ford and Dijkstra’s keep track of the shortest paths
found so far; we call these the estimated shortest paths.

e For each node u, remember u’'s:
o predecessor in estimated shortest path;
o distance from source s in estimated shortest path.

e Key: estimated distance will always be z actual distance.
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.I"’. Updates

~ e Both algorithms work by iteratively updating their
. estimates.

. e On each iteration, consider a new edge (u, v).
. Ask: is the best known shortest path from
. source > - > U >V

shorter than the best known shortest path from
source > - > predecessor|[v] > v?

e |Ifitis, we have discovered a shorter path to v.
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=I"‘. Djjkstra’s Algorithm

- e |ntuition
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o
=I"‘. Djjkstra’s Algorithm

- e |ntuition
(a =6 —(c)
3 = 8
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o
=I"'. Djjkstra’s Algorithm

- e |ntuition

(o (b )—(c)
3 oo

Update Rule:

if d(b)
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o
=I"'. Djjkstra’s Algorithm

cost (b, d)
\ if d(b) + cost(b, c)

(o (b )—(c)
3 oo

Update Rule:
- e |ntuition
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o
=I"'. Djjkstra’s Algorithm

cost (b, d)
\ if d(b) + cost(b, c)< d(c):

(o (b )—(c)
3 oo

Update Rule:
- e |ntuition

o
< =8

B ————T
e




==llllllllllllllllllllllll=l=
.-

o
=I"'. Djjkstra’s Algorithm

cost (b, d)
\ if d(b) + cost(b, c)< d(c):

d(c)=d(b) + cost(b, d)
3 o0

Update Rule:
- e |ntuition

o
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o
=I"'. Djjkstra’s Algorithm

cost (b, d)
\ if d(b) + cost(b, c)< d(c):

3 5 d(c)=d(b) + cost(b, d)
(o (b —(c)
.P ’ /oo f3+5 < oo
)
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Update Rule:
- e |ntuition
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o
=I"'. Djjkstra’s Algorithm

cost (b, d)
\ if d(b) + cost(b, c)< d(c):

3 5 d(c)=d(b) + cost(b, d)
(o (b —(c)
.P ’ /8 f3+5 <o
)
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Update Rule:
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=I.__. D{jkstra’s Azlgorithm
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=I.__. D{jkstra’s Azlgorithm
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=I.__. D{jkstra’s Azlgorithm
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=I.__. D{jkstra’s Azlgorithm

==llllllllllllllllllllllll=ll

Select the shorted path: 2
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=I.__. D{jkstra’s Azlgorithm

Select the shorted path: 2
Update rule:

If 2 + 2 < 5, update

if d(u) + cost(u, v)< d(v):
=i-'. d(u) + cost(u, v)
L
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=I.__. D{jkstra’s Azlgorithm

Select the shorted path: 2
Update rule:

If 2 + 2 < 5, update

if d(u) + cost(u, v)< d(v):
=i-'. d(u) + cost(u, v)
L
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=I.__. D{jkstra’s Azlgorithm

Select the shorted path: 2
Update rule:

If 2 + 9 < inf, update

if d(u) + cost(u, v)< d(v):
=i-'. d(u) + cost(u, v)
L
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=I.__. D{jkstra’s Azlgorithm

Select the shorted path: 2
Update rule:

If 2 + 9 < inf, update

if d(u) + cost(u, v)< d(v):
=i-'. d(u) + cost(u, v)
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=I.__. D{jkstra’s Azlgorithm

Select the shorted path: 3

if d(u) + cost(u, v)< d(v):
=l—. d(u) + cost(u, v)
L

B ————T
e



==llllllllllllllllllllllll=ll

=I.__. D{jkstra’s Azlgorithm

Select the shorted path: 3

if d(u) + cost(u, v)< d(v):
=l—. d(u) + cost(u, v)
L
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=I.__. D{jkstra’s Azlgorithm

Select the shorted path: 3
Update rule:

If 3 +4 <11, update

if d(u) + cost(u, v)< d(v):
=i-'. d(u) + cost(u, v)
L
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=I.__. D{jkstra’s Azlgorithm

Select the shorted path: 3
Update rule:

If 3 +4 <11, update

if d(u) + cost(u, v)< d(v):
=P d(u) + cost(u, v)
L
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=I.__. D{jkstra’s Azlgorithm

Select the shorted path: 4

if d(u) + cost(u, v)< d(v):
=P d(u) + cost(u, v)
L
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=I.__. D{jkstra’s Azlgorithm

Select the shorted path: 4

if d(u) + cost(u, v)< d(v):
=l—. d(u) + cost(u, v)
L
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=I.__. D{jkstra’s Azlgorithm

Select the shorted path: 4
Update rule:

If 4 + 1 < 7, update

if d(u) + cost(u, v)< d(v):

= d(u) + cost(u, v)
T T ——————
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=I.__. D{jkstra’s Azlgorithm

Select the shorted path: 4
Update rule:

If 4 + 1 < 7, update

if d(u) + cost(u, v)< d(v):

= d(u) + cost(u, v)
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.............................



==llllllllllllllllllllllll=ll

=I.__. D{jkstra’s Azlgorithm

Select the shorted path: 4
Update rule:

If 4 + 1 < 7, update

if d(u) + cost(u, v)< d(v):
=i-'. d(u) + cost(u, v)
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=I.__. DUkstra s Azlgorithm —_

b
Cc
d
e

if d(u) + cost(u, v)< d(v):
=P d(u) + cost(u, v)
L
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= Djjkstra’s Idea

e Keep track of set C of “correct” nodes.
o Nodes whose distance estimate is correct.

e At every step, add node outside of C with smallest
estimated distance; update only its neighbors.

.P e A “greedy” algorithm.
= L
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=I__. Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

# empty set
C = set()

# while there are nodes still outside of C
# find node u outside of C with smallest
# estimated distance

C.add(u)

for v in graph.neighbors(u):

update(u, v, weights, est, pred)
=i_,. return est, pred
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=I__. Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

# empty set
C = set()

# while there are nodes still outside of C o
# find node u outside of C with smallest <:::>
. # estimated distance
C.add (u) oo

for v in graph.neighbors(u):
update(u, v, weights, est, pred) 0 G
P return est, pred o)
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=I__. Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

# empty set
C = set()

# while there are nodes still outside of C <:::>cn

# find node u outside of C with smallest
.P # estimated distance

C.add(u)

for v in graph.neighbors(u):

update(u, v, weights, est, pred)
=i) return est, pred
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=I__. Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
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pred = {node: None for node in graph.nodes}

# empty set
C = set()

# while there are nodes still outside of C <:::>2

# find node u outside of C with smallest
.P # estimated distance

C.add(u)

for v in graph.neighbors(u):

update(u, v, weights, est, pred)
=i) return est, pred
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=I__. Outline of Dijkstra’s Algorithm
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.P # estimated distance
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for v in graph.neighbors(u):
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=I__. Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

# empty set
C = set()

# while there are nodes still outside of C <:::>2

# find node u outside of C with smallest
.P # estimated distance

C.add(u)

for v in graph.neighbors(u):

update(u, v, weights, est, pred)
=i) return est, pred
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How many times do
we update (“touch”)
each edge?

4 A: Once

B: Twice

C: |E]

’»CI UD v

E: Something else
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0
.I._, Proof Idea

Claim: at beginning of any iteration of Dijkstra’s, if u is node ¢ C
“with smallest estimated distance, the shortest path to u has been
correctly discovered.

e
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=I..) Proof Idea

Let u be node outside of C for which est[u] is smallest.
We've discovered a path from s to u of length est[u].

Any path from s to u has to exit C somewhere.

Any path from s to u will cost at least est[u] just to exit C.
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I-" Question

i - o |s there a limitation for Dijkstra’s algorithm?
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I
Exercise

e Why do the edge weights need to be positive?

Come up with a simple example graph with some
negative edge weights where Dijkstra’s fails to compute
the correct shortest path.

o
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.I.__. Example

What is the fastest way
to get to b?
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What is the fastest way
to get to b?
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.I.__. Example

What is the fastest way
to get to b?

Do we ever have to consider
another path to b?
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.I.__. Example

What is the fastest way
to get to b?

Do we ever have to consider
another path to b? No.
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.I.__. Example

What is the fastest way
to get to b?

Do we ever have to consider
another path to b? No.

Let’s make another path
that is better than 2.
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.I.__. Example

Let’'s make another path
that is better than 2.

Will the algorithm work for
these weights?

="’ =8
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.I.__. Example

Let’'s make another path
that is better than 2.

Will the algorithm work for
these weights? Yes.
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.I.__. Example

Let’'s make another path
that is better than 2.

Will the algorithm work for
these weights?
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.I.__. Example

Let’'s make another path
that is better than 2.

Will the algorithm work for
these weights? No.
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=I__. Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

# empty set
C = set()

# while there are nodes still outside of C
# find node u outside of C with smallest
# estimated distance

C.add(u)

for v in graph.neighbors(u):

update(u, v, weights, est, pred)
=i_,. return est, pred
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=I.__. Dijkstra’s Algorithm: Naive Implementation

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = o
pred = {node: None for node in graph.nodes}

outside = set(graph.nodes)
while outside:
. # find smallest with linear search
P u = min(outside, key = est.get)
outside.remove(u)
for v in graph.neighbors(u):

I update(u, v, weights, est, pred)
= return est, pred ..
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=I.__. Dijkstra’s Algorithm: Naive Implementation

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = o
pred = {node: None for node in graph.nodes}

outside = set(graph.nodes)

while outside:

. # find smallest with linear search
u = min(outside, key = est.get) inefficient
outside.remove(u)

for v in graph.neighbors(u):

I update(u, v, weights, est, pred)
= return est, pred ..
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.I.-J Priority Queue ADT

* Emergency
Department waiting
room operates as a
priority queue

* Patients sorted
according to
seriousness, NOT
how long they have

T ————
e



=lllllllllllllllllllllllll=l=
.-

Priority Queues
~ e A priority queue allows us to store (key, value) pairs,
efficiently return key with lowest value.

e Suppose we have a priority queue class:
o PriorityQueue(priorities) will create a priority
queue from a dictionary whose values are priorities.

o The .extract_min() method removes and returns key
with smallest value.

= o The .change_priority(key, value) method

changes key’s value.
= T T ——————
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Example

>>> pq = PriorityQueue({
'w': 5,

X 4,

Iyl: 1’

|Z|, 3
pg.extract_min()

pg.change_priority('w', 2)
pg.extract_min()

"l'f'!.'f"f'!"!."!'
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Example

>>> pq = PriorityQueue({
'w': 5,

X 4,

Iyl: 1’

|Z|, 3
pg.extract_min()

pg.change_priority('w', 2)
pg.extract_min()
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I N O
.I.__. Dijkstra’s Algorithm: Priority Queue

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = o
pred = {node: None for node in graph.nodes}

priority _queue = PriorityQueue(est)
while priority_queue:
= priority_queue.extract_min()

. for v in graph.neighbors(u):
changed = update(u, v, weights, est, pred)
if changed:
priority_queue.change_priority(v, est[v])
=i". return est, pred
T T ———



Heaps

e A priority queue can be implemented using a heap.

e |f a binary min-heap is used:
o PriorityQueue(est) takes O(V) time.

o .extract_min() takes O(log V) time.

o .change_priority() takes O(log V) time.
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Time Complexity Using Min Heap -

def dijkstra(graph, weights, source):

est = {node: float('inf') for node in graph.nodes}
est[source] = 0

pred = {node: None for node in graph.nodes}

priority_queue = PriorityQueue(est)
while priority_queue:
u = priority_queue.extract_min()
for v in graph.neighbors(u):
changed = update(u, v, weights, est, pred)
if changed:
priority_queue.change_priority(v, est[v])

"."C"C'!"C'!'
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return est, pred
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Time Complexity Using Min Heap -

def dijkstra(graph, weights, source):

est = {node: float('inf') for node in graph.nodes}
est[source] = 0

pred = {node: None for node in graph.nodes}

priority_queue = PriorityQueue(est)
while priority_queue:
u = priority_queue.extract_min()
for v in graph neighbors(u).
changed = update(u, v, weights, est, pred)
if changed:
priority_queue.change_priority(v, est[v])

P return est, pred
= L
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Time Complexity Using Min Heap -

def dijkstra(graph, weights, source):

est = {node: float('inf') for node in graph.nodes}
est[source] = 0

pred = {node: None for node in graph.nodes} — (V)

priority_queue = PriorityQueue(est)

while priority queue:
u = priority_queue.extract_min() O(log v )

for v in graph neighbors(u).
changed = update(u, v, weights, est, pred) o(1)
if changed:

priority_queue.change_priority(v, est[v])

P return est, pred
= L
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def dijkstra(graph, weights, source):

est = {node: float('inf') for node in graph.nodes}
est[source] = 0

pred = {node: None for node in graph.nodes} — (V)

priority_queue = PriorityQueue(est)

while priority queue:
u = priority_queue.extract_min() O(log v )

for v in graph neighbors(u).
changed = update(u, v, weights, est, pred) o(1)

if changed:

priority_queue.change_priority(v, est[v]) O(log v )

=i-’ return est, pred Time Complexity: @(V log V + E Log V)
T T ——————
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Loop Invariant

e Assume that edge weights are positive.

e Before each iteration of Dijkstra’s algorithm, both the
distance estimate and the predecessor of the first node in
the priority queue are correct.
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Exercise

True or False: in Dijkstra’s algorithm, a node’s predecessor can
be changed after it is first set.
A: True

B: False

C: Not sure yet
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Exercise

“True or False: in Dijkstra’s algorithm, a node’s predecessor can
be changed after it is popped from the priority queue.

A: True

.P B: False
C: Not sure yet
= =l
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Thank you!
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