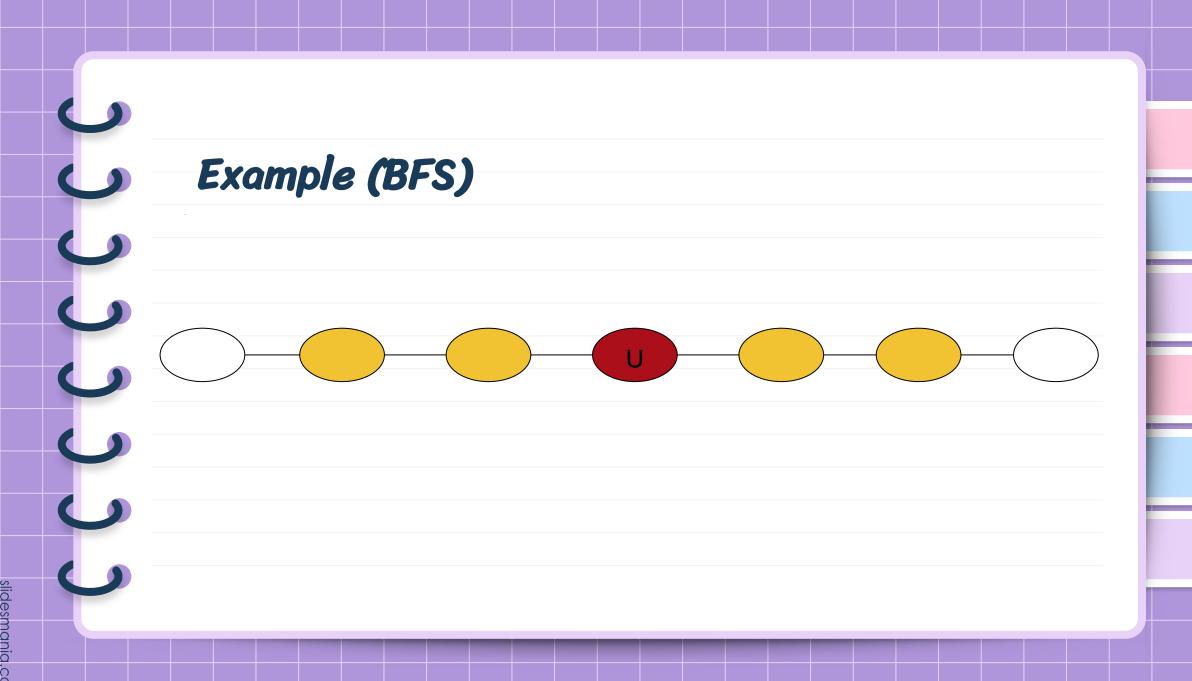
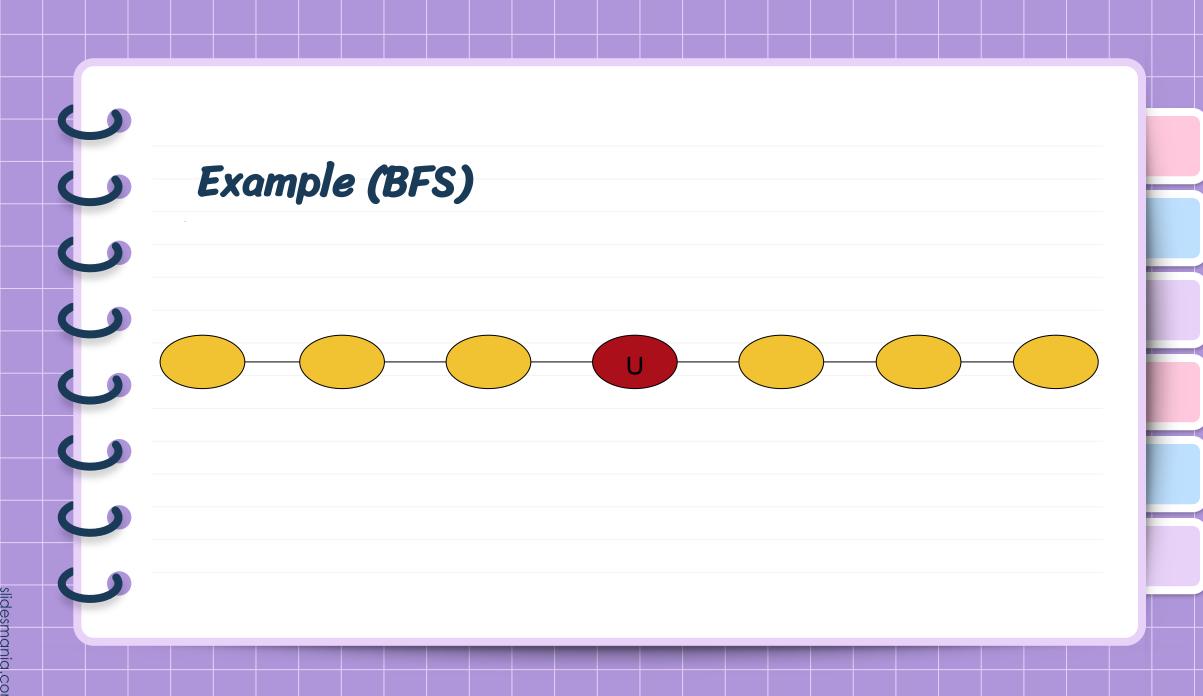
DSC 40B Lecture 22: Depth First Search

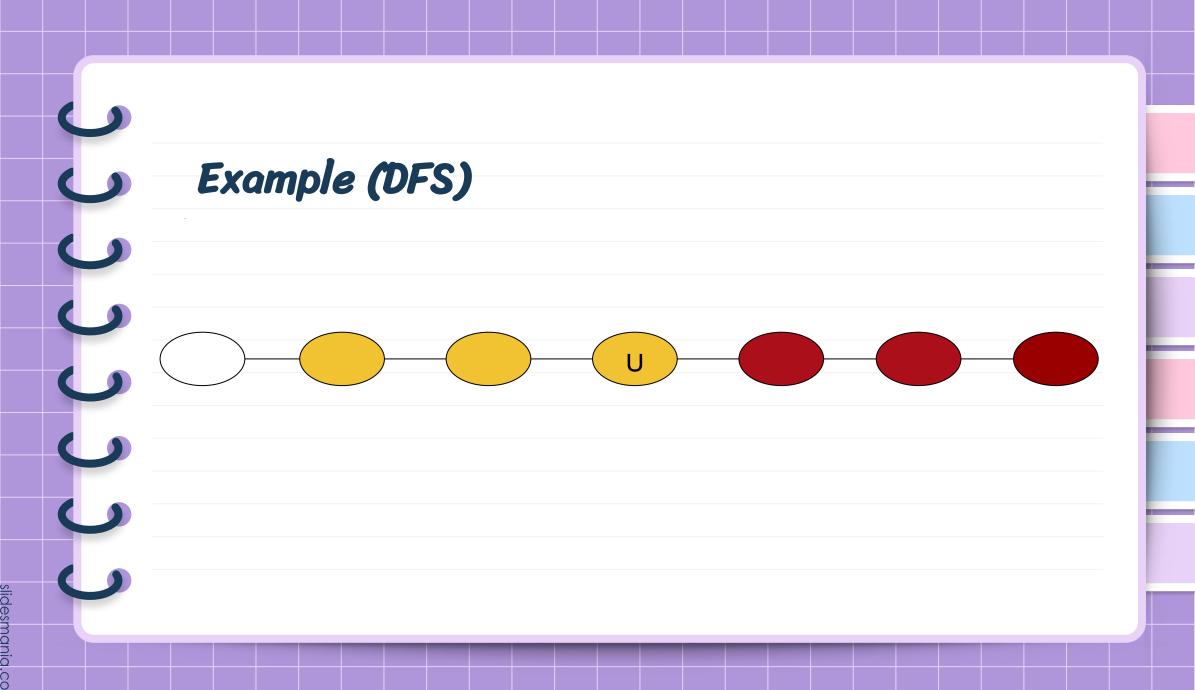
Depth First Search

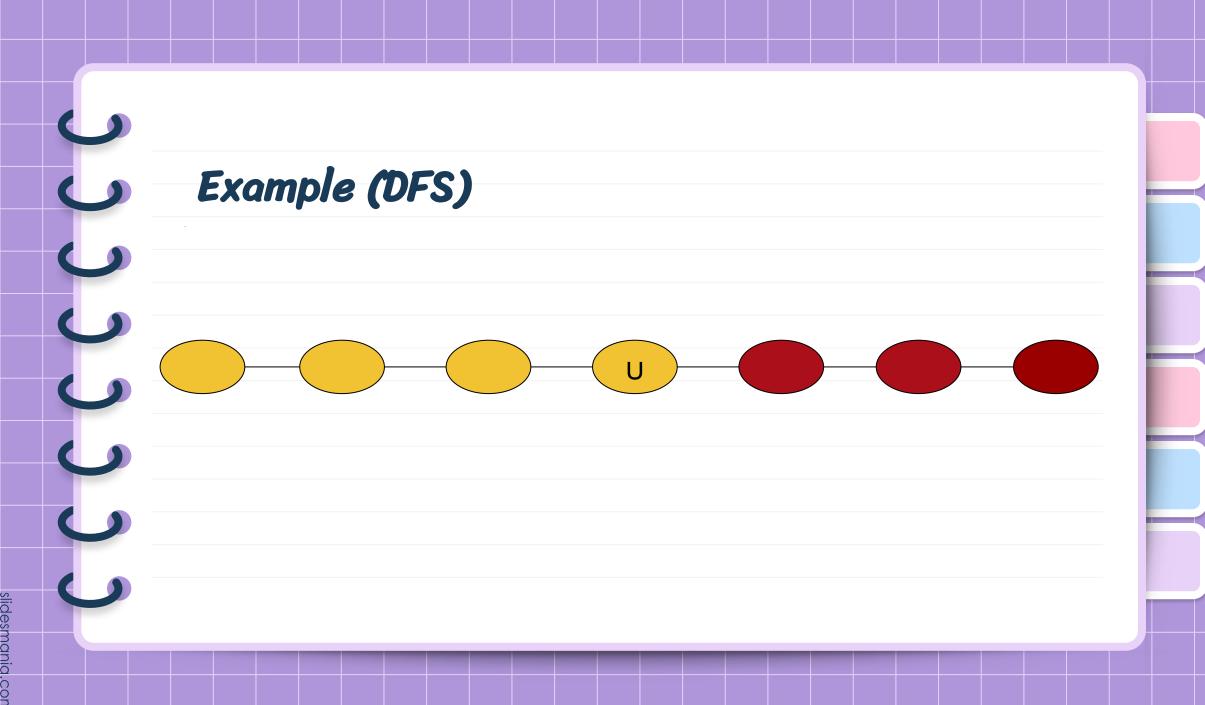
Visiting the Next Node

- Which node do we process next in a search?
- **BFS**: the <u>oldest</u> pending node.
- DFS (today): the <u>newest</u> pending node.
 - Naturally recursive.
 - Useful for solving different problems.









```
def dfs(graph, u, status = None):
    """Start a DFS at `u`."""
    # initialize status if it was not passed
    if status is None:
        status = {node: 'undiscovered' for node in graph.nodes}
    status[u] = 'pending'
    for v in graph.neighbors(u): # explore edge (u, v)
        if status[v] == 'undiscovered':
            dfs(graph, v, status)
    status[u] = 'visited'
```

Write the nested function calls for a DFS on the graph below. def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) dfs(g) def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) dfs(g) def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) dfs(g) def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph

below.

```
dfs(a)
  dfs(b)
  dfs(d)
  dfs(e)
  dfs(g)
```

a f

What node becomes v?

A: e B: h

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) dfs(g) dfs(h) def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered':

dfs(graph, v, status)

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) dfs(g) dfs(h) def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered':

dfs(graph, v, status)

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) dfs(g) dfs(h) def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status)

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':

dfs(graph, v, status)

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':

dfs(graph, v, status)

status[u] = 'visited'

Write the nested function calls for a DFS on the graph below.

dfs(a)

dfs(b)

dfs(d)

dfs(e)

dfs(g)

dfs(h)

Write the nested function calls for a DFS on the graph below.

dfs(a)

dfs(b)

dfs(d)

dfs(e)

dfs(g)

dfs(h)

Write the nested function calls for a DFS on the graph below.

dfs(a)

dfs(b)

```
dfs(b)
                                dfs(d)
                                  dfs(e)
                                  dfs(i)
def dfs(graph, u, status = None):
   """Start a DFS at `u`."""
   status[u] = 'pending'
   for v in graph.neighbors(u): # explore edge (u, v)
```

status[u] = 'visited'

if status[v] == 'undiscovered':

dfs(graph, v, status)

Write the nested function calls for a DFS on the graph below.

dfs(a)

```
dfs(a)

dfs(b)

dfs(d)

dfs(e)

dfs(g)

dfs(h)

dfs(i)

def dfs(graph, u, status = None):

"""Start a DFS at `u`."""

....
```

```
"""Start a DFS at `u`."""

. . .

status[u] = 'pending'

for v in graph.neighbors(u): # explore edge (u, v)

    if status[v] == 'undiscovered':

        dfs(graph, v, status)

status[u] = 'visited'
```

Write the nested function calls for a DFS on the graph below.

dfs(a)

```
dfs(a)

dfs(b)

dfs(d)

dfs(e)

dfs(g)

dfs(h)

dfs(i)

def dfs(graph, u, status = None):

"""Start a DFS at `u`."""
```

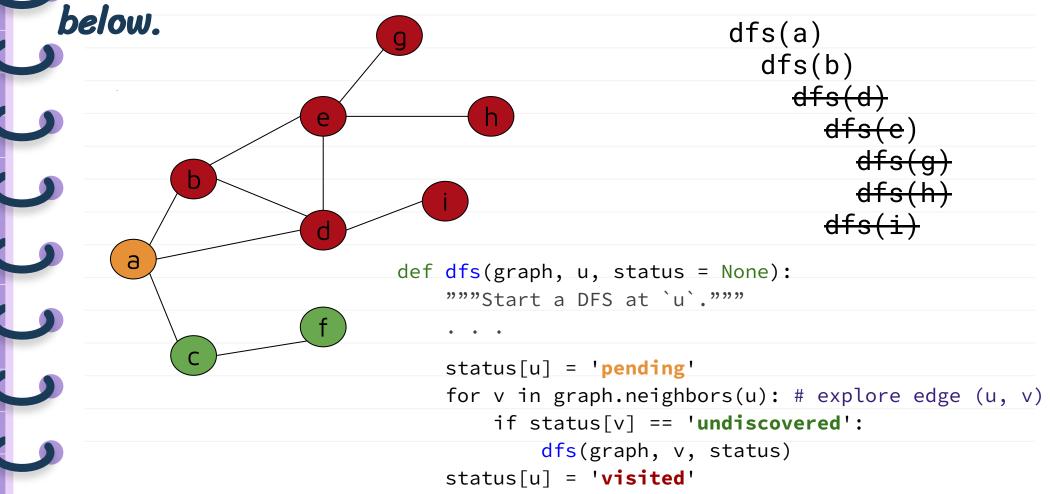
Write the nested function calls for a DFS on the graph

```
below.
                                                        dfs(a)
                                                           dfs(b)
                                                             dfs(d)
                                                                dfs(e)
                             def dfs(graph, u, status = None):
                                 """Start a DFS at `u`."""
                                 status[u] = 'pending'
                                 for v in graph.neighbors(u): # explore edge (u, v)
                                     if status[v] == 'undiscovered':
                                         dfs(graph, v, status)
                                 status[u] = 'visited'
```

Write the nested function calls for a DFS on the graph below.

```
dfs(a)
                             dfs(b)
                                dfs(d)
                                   dfs(e)
def dfs(graph, u, status = None):
   """Start a DFS at `u`."""
   status[u] = 'pending'
   for v in graph.neighbors(u): # explore edge (u, v)
       if status[v] == 'undiscovered':
           dfs(graph, v, status)
   status[u] = 'visited'
```

Write the nested function calls for a DFS on the graph



Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) dfs(i) def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) dfs(i) def dfs(graph, u, status = None): """Start a DFS at `u`.""" status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) dfs(i) def dfs(graph, u, status = None): (c) """Start a DFS at `u`.""" dfs(f) status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status)

status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) dfs(i) def dfs(graph, u, status = None): (c) """Start a DFS at `u`.""" dfs(f) status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered':

dfs(graph, v, status)

status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) dfs(i) def dfs(graph, u, status = None): (c) """Start a DFS at `u`.""" dfs(f) status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) dfs(i) def dfs(graph, u, status = None): (c) """Start a DFS at `u`.""" dfs(f) status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) dfs(i) def dfs(graph, u, status = None): (c) """Start a DFS at `u`.""" dfs(f) status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) dfs(i) def dfs(graph, u, status = None):
 """Start a DFS at `u`."""
 dfs(c)
 dfs(f) status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) dfs(i) def dfs(graph, u, status = None):
 """Start a DFS at `u`."""
 dfs(c)
 dfs(f) status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Write the nested function calls for a DFS on the graph below. dfs(a) dfs(b) dfs(d) dfs(e) dfs(i) def dfs(graph, u, status = None):
 """Start a DFS at `u`."""
 dfs(c)
 dfs(f) status[u] = 'pending' for v in graph.neighbors(u): # explore edge (u, v) if status[v] == 'undiscovered': dfs(graph, v, status) status[u] = 'visited'

Differences

- In BFS, we "finish" a node u before moving on to the next.
- In DFS, we go to many other nodes, but "come back" to u.
- We'll see that the nested structure of the recursive function calls gives us useful new information about the graph's structure.

Full DFS

- dfs(u) will visit all nodes **reachable** from u.
 - \circ But not all nodes may be reachable from u!
- To visit all nodes in graph, need full DFS.

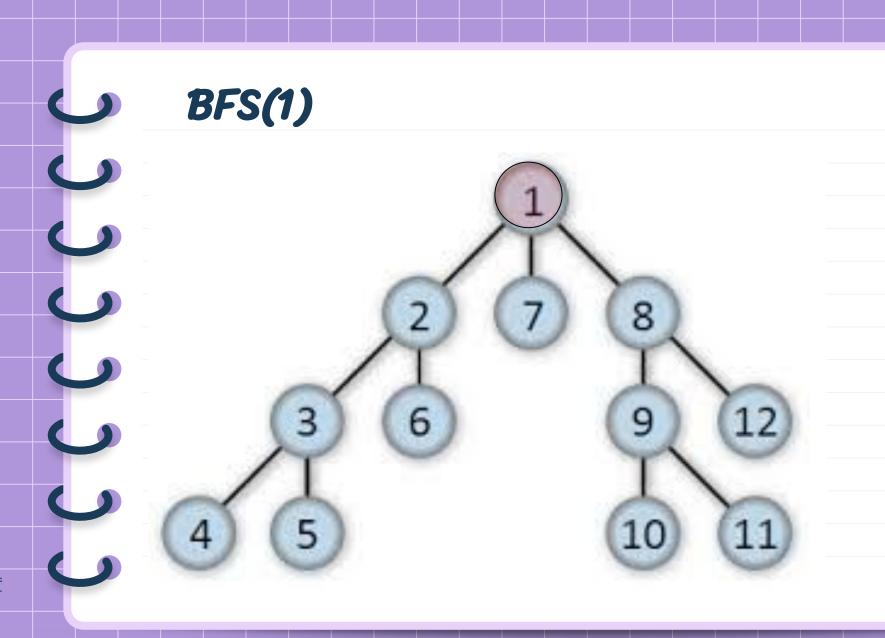
```
def full_dfs(graph):
    status = {node: 'undiscovered' for node in graph.nodes}
    for node in graph.nodes:
    if status[node] == 'undiscovered'
        dfs(graph, node, status)
```

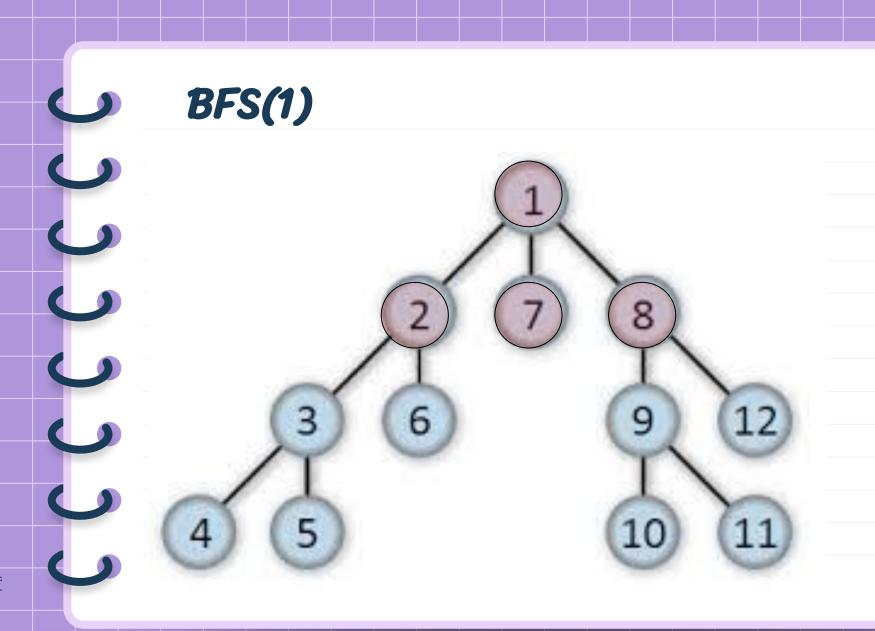
```
def full_dfs(graph):
    status = {node: 'undiscovered' for node in graph.nodes}
    for node in graph.nodes:
        if status[node] == 'undiscovered'
            dfs(graph, node, status)
def dfs(graph, u, status=None):
    """Start a DFS at `u`."""
    # initialize status if it was not passed
    if status is None:
        status = {node: 'undiscovered' for node in graph.nodes}
    status[u] = 'pending'
    for v in graph.neighbors(u): # explore edge (u, v)
        if status[v] == 'undiscovered':
            dfs(graph, v, status)
    status[u] = 'visited'
```

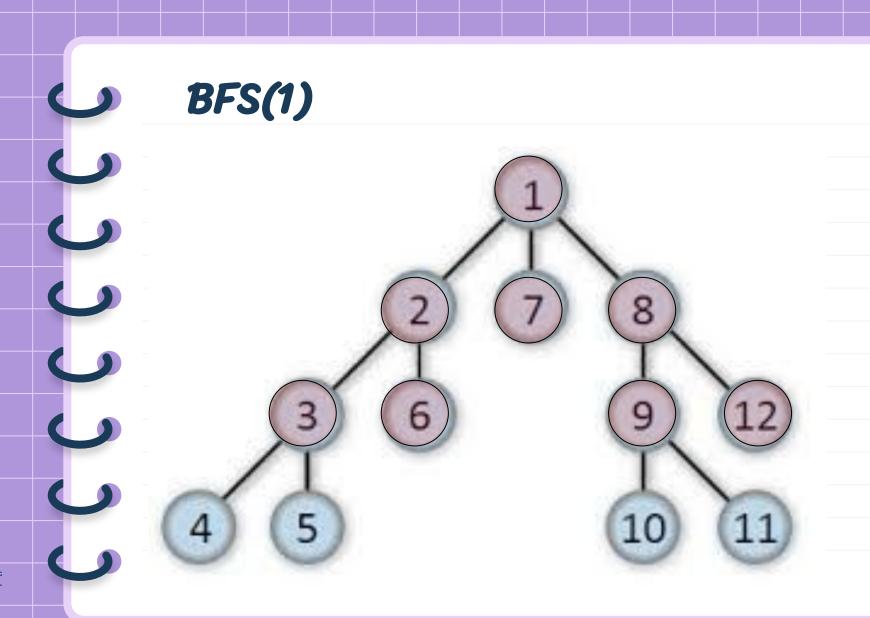
Time Complexity

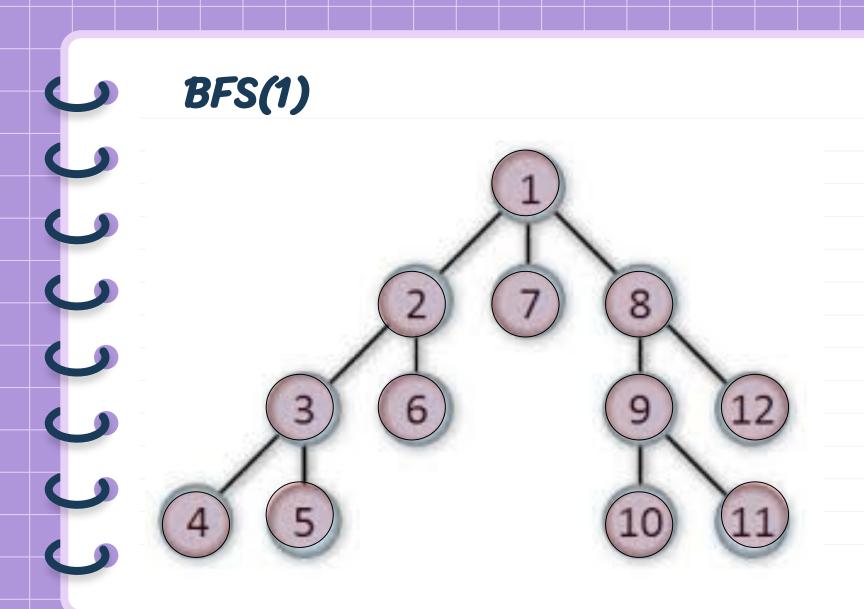
- In a full DFS:
 - o dfs called on each node exactly once.
 - Similar to BFS, each edge is explored exactly:
 - once if directed
 - twice if undirected
- Time: $\Theta(V + E)$, just like BFS.

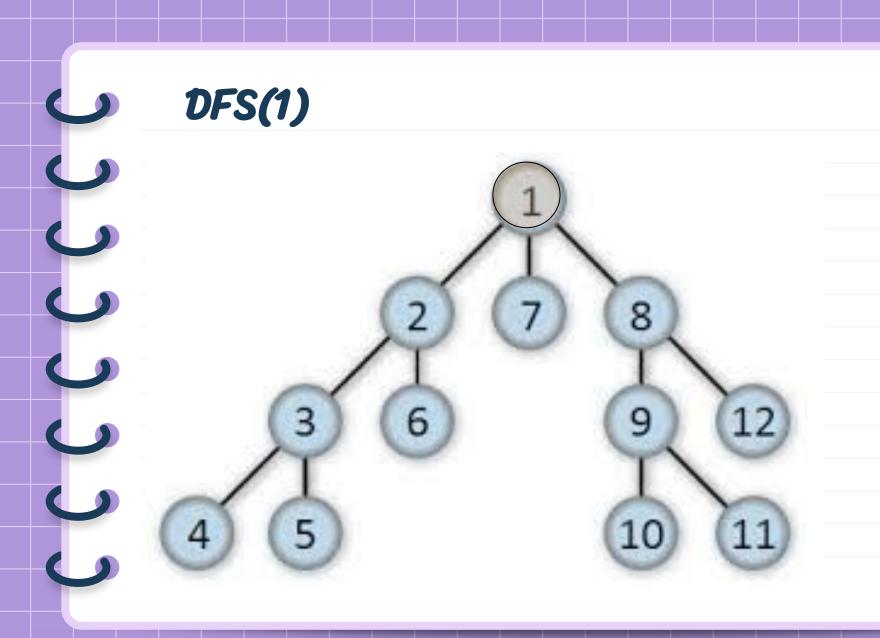
BFS vs DFS Check BFS (1): What do you expect to see first? A: Level (2, 7, 8) B: Level (3, 6, 9, 12) C: Branch (4, 3, 2, 1) D: Branch (12, 8, 1) E: Something else

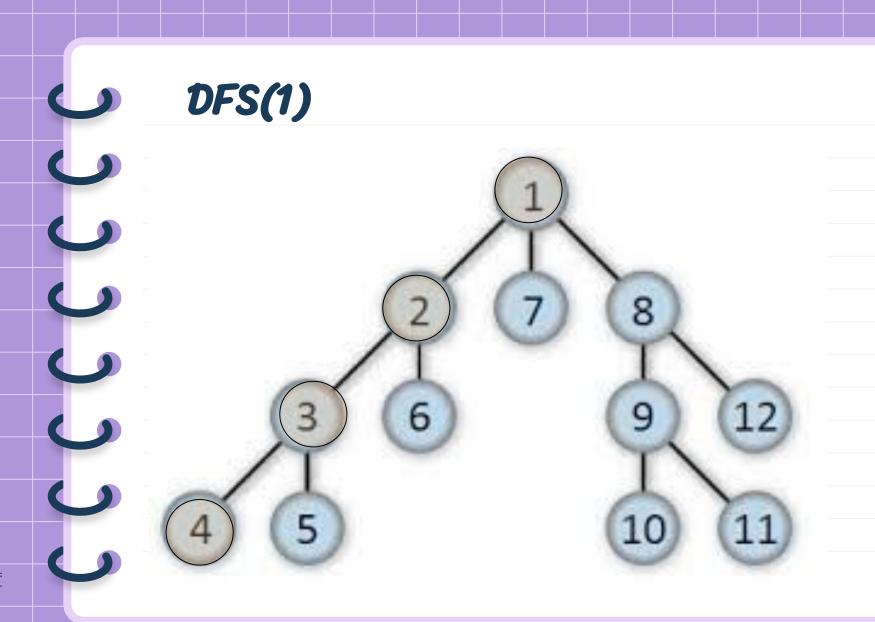


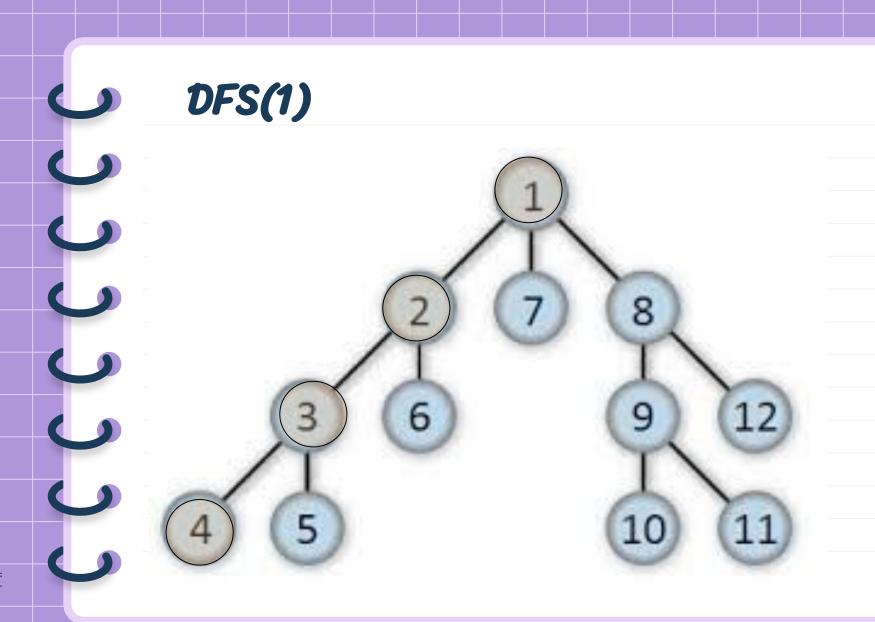


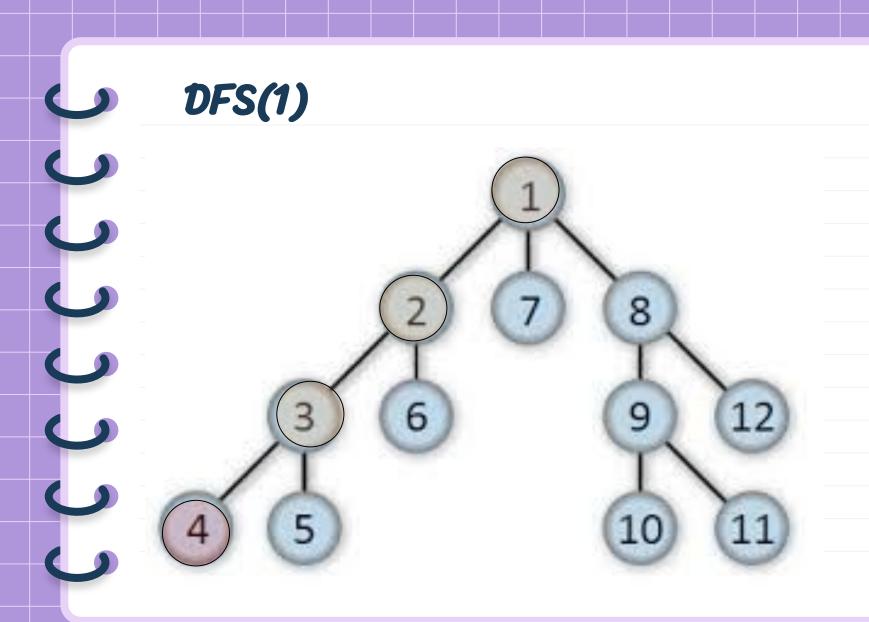




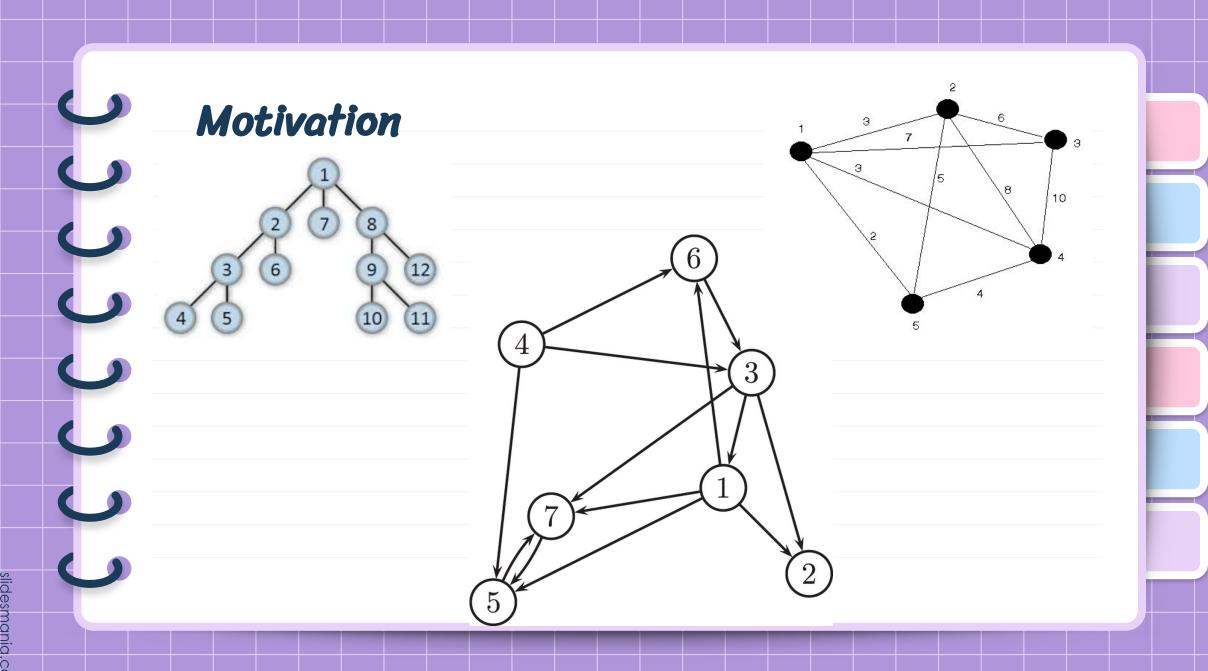








Nesting Properties of DFS



Is there a cycle? 7

Why do we care?

In computer programs (dependency graphs):

If you have tasks that depend on each other, a cycle means a circular dependency — task A depends on B, and B depends on A — so you can't complete any of them. Detecting the cycle helps prevent deadlocks or infinite loops.

• In scheduling or planning:

When building a project schedule or course prerequisite list, a cycle means it's impossible to order the tasks — e.g., "CS101 requires CS201, and CS201 requires CS101." You can't take either first.

Last time: DFS

mic

Last time: DFS

dfs(1)

Last time: DFS dfs(1)

Last time: DFS dfs(1) dfs(2)

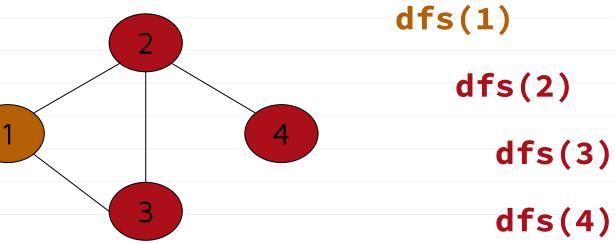
Last time: DFS dfs(1) dfs(2) dfs(3)

Last time: DFS dfs(1) dfs(2) dfs(3)

Last time: DFS dfs(1) dfs(2) dfs(3) dfs(4)

Last time: DFS dfs(1) dfs(2) dfs(3) dfs(4)

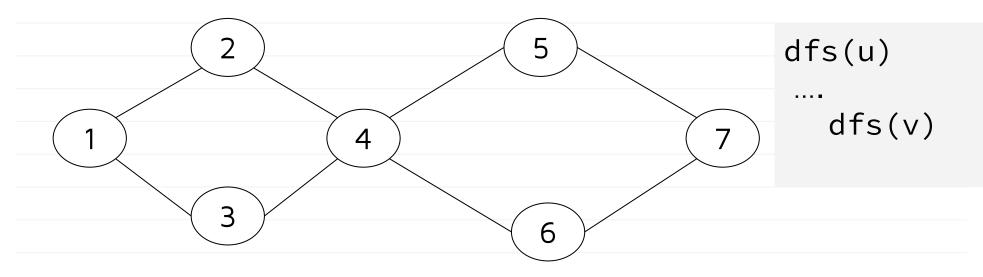
Last time: DFS



Last time: DFS dfs(1) dfs(2) dfs(3) dfs(4)

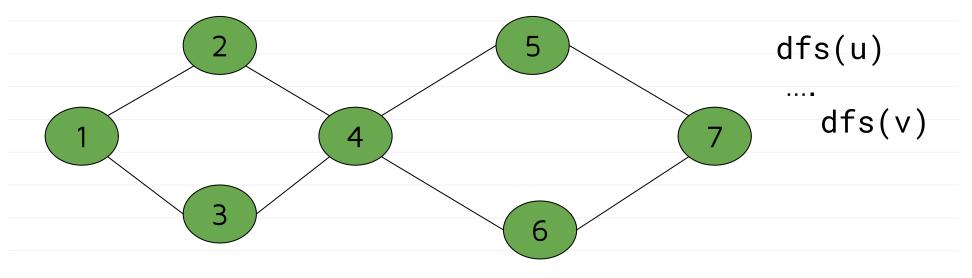
Exercise #1

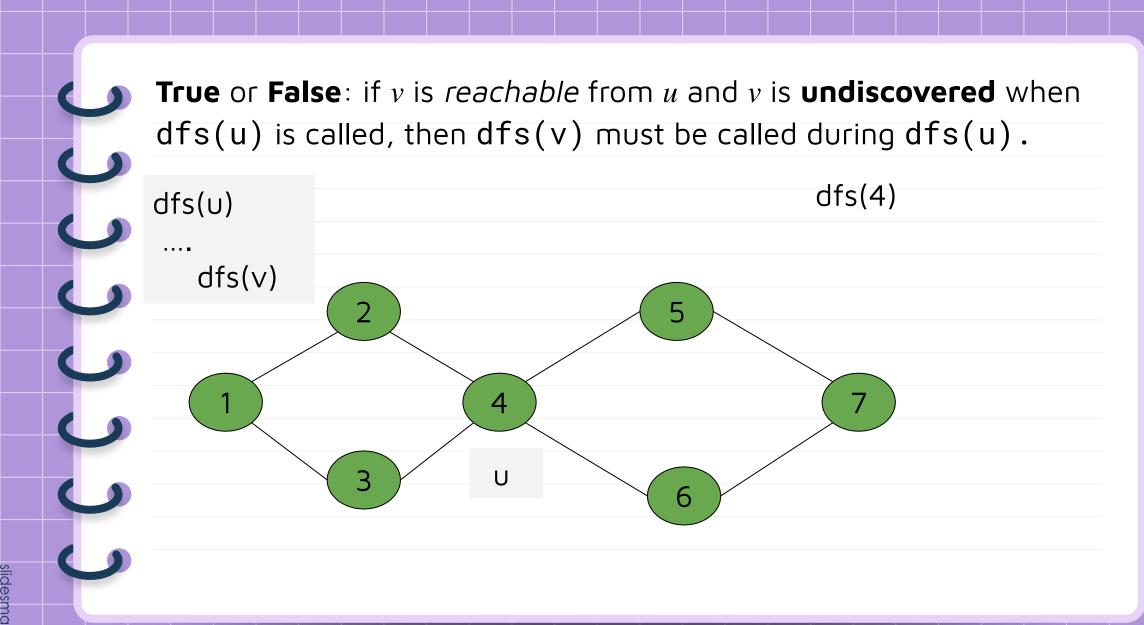
True or **False**: if v is *reachable* from u and v is **undiscovered** when dfs(u) is called, then dfs(v) must be called during dfs(u).



Exercise

True or **False**: if v is *reachable* from u and v is **undiscovered** when dfs(u) is called, then dfs(v) must be called *during* dfs(u).





True or **False**: if v is *reachable* from u and v is **undiscovered** when dfs(u) is called, then dfs(v) must be called during dfs(u). dfs(4) dfs(u) dfs(1) dfs(v) U

True or **False**: if v is *reachable* from u and v is **undiscovered** when dfs(u) is called, then dfs(v) must be called during dfs(u). dfs(u) dfs(4) dfs(4)dfs(v) dfs(1) U

True or **False**: if v is *reachable* from u and v is **undiscovered** when dfs(u) is called, then dfs(v) must be called during dfs(u). dfs(u) dfs(4)dfs(4)dfs(2)dfs(v) dfs(1) U

True or **False**: if v is *reachable* from u and v is **undiscovered** when dfs(u) is called, then dfs(v) must be called during dfs(u). dfs(u) dfs(4)dfs(4)dfs(2)dfs(v) dfs(1) U

True or **False**: if v is *reachable* from u and v is **undiscovered** when dfs(u) is called, then dfs(v) must be called during dfs(u). dfs(4)dfs(u) dfs(4)dfs(2)dfs(1) dfs(v) dfs(1) U

True or **False**: if v is *reachable* from u and v is **undiscovered** when dfs(u) is called, then dfs(v) must be called during dfs(u). dfs(4)dfs(u) dfs(4)dfs(2)dfs(v) dfs(1) dfs(1) U So far it works out

True or **False**: if v is *reachable* from u and v is **undiscovered** when dfs(u) is called, then dfs(v) must be called during dfs(u). dfs(4)dfs(u) dfs(4)dfs(2)dfs(v) dfs(1) dfs(1)dfs(3)4 U 3

True or **False**: if v is *reachable* from u and v is **undiscovered** when dfs(u) is called, then dfs(v) must be called during dfs(u). dfs(4)dfs(u) dfs(4)dfs(2)dfs(v) dfs(1) dfs(1)dfs(3)4 U

True or **False**: if v is *reachable* from u and v is **undiscovered** when dfs(u) is called, then dfs(v) must be called during dfs(u). dfs(4)dfs(u) dfs(4)dfs(2)dfs(v) dfs(1) dfs(1)dfs(3)4 U

True or **False**: if v is *reachable* from u and v is **undiscovered** when dfs(u) is called, then dfs(v) must be called during dfs(u). dfs(4)dfs(u) dfs(4)dfs(2)dfs(v) dfs(1) U

True or **False**: if v is *reachable* from u and v is **undiscovered** when dfs(u) is called, then dfs(v) must be called during dfs(u). dfs(4)dfs(u) dfs(4)dfs(2)dfs(1) dfs(v) dfs(1) dfs(3) dfs(5) U

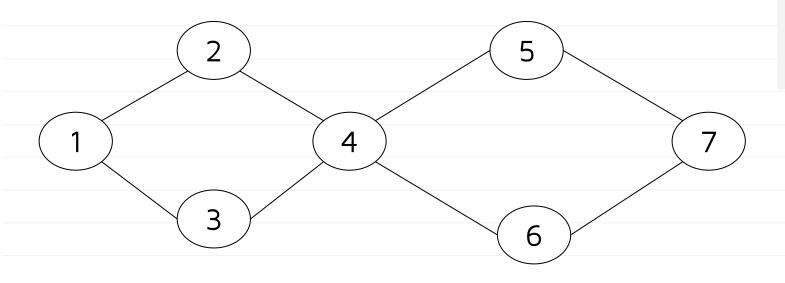
And now we can see that it is **False**.

True or **False**: if v is *reachable* from u and v is **undiscovered** when dfs(u) is called, then dfs(v) must be called during dfs(u). dfs(4)dfs(u) dfs(4)dfs(2)dfs(v) dfs(1) dfs(3) dfs(5) U And now we can see that it is False.

False!

- Suppose dfs(4) is the root call.
- When dfs(1) is called, node 5 is undiscovered
- But dfs(5) is **not** called during dfs(1).

This intuition is correct if there is a path of **undiscovered** nodes from u to v when dfs(u) is called.

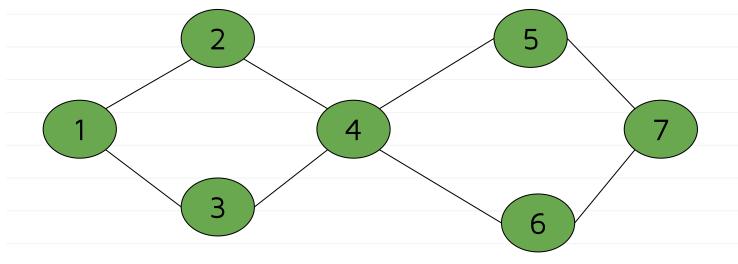


dfs(u)

...

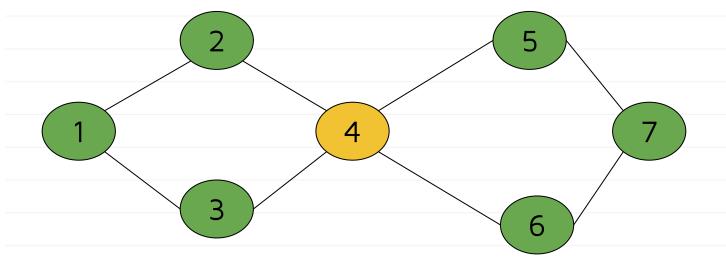
dfs(v)

This intuition is correct if there is a path of **undiscovered** nodes from u to v when dfs(u) is called.

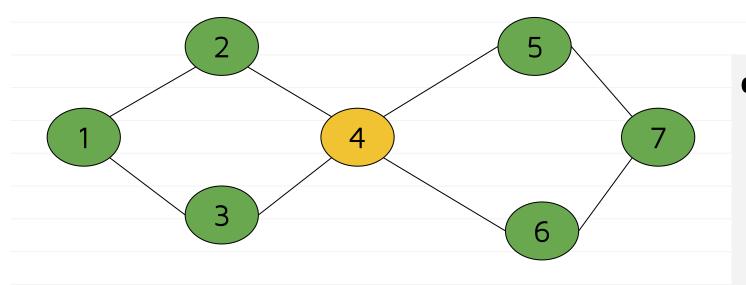


This intuition is correct if there is a path of **undiscovered** nodes from u to v when dfs(u) is called.

dfs(4)



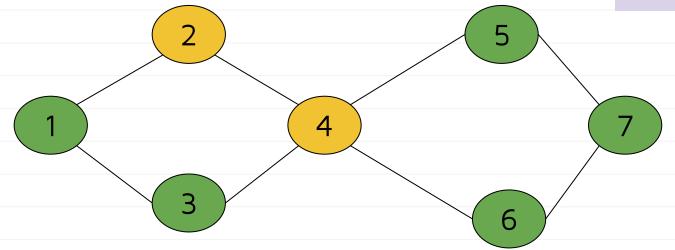
This intuition is correct if there is a path of **undiscovered** nodes from u to v when dfs(u) is called.



This intuition is correct if there is a path of undiscovered nodes

from u to v when dfs(u) is called.

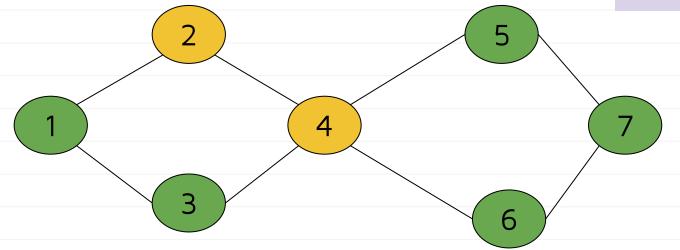
What calls are nested within the dfs(2)?



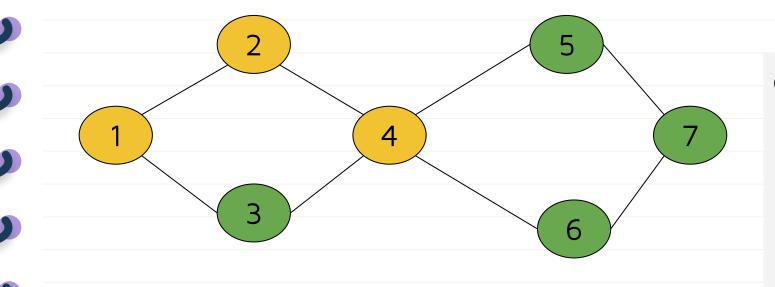
This intuition is correct if there is a path of undiscovered nodes

from u to v when dfs(u) is called.

What calls are nested within the dfs(2)?



This intuition is correct if there is a path of **undiscovered** nodes from u to v when dfs(u) is called.



Key Property of DFS (Informal)

- If at the time dfs(u) is called...
 - 1. v is **undiscovered**; and
 - 2. there is a path of **undiscovered** nodes from u to v,
- ...then dfs(v) will **start and finish** during the call to dfs(u).

Exercise #2

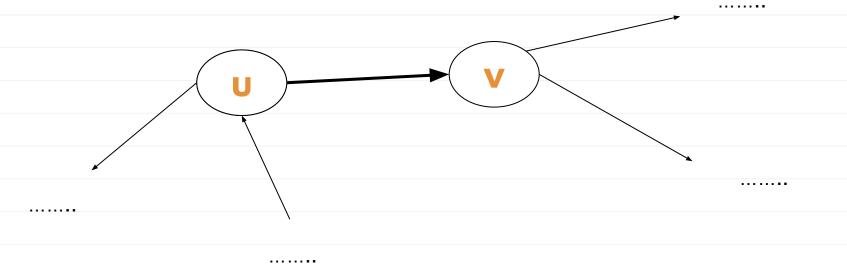
Suppose while calling dfs on node u, we see that neighbor v is **pending**. **True** or **False**: there is a path from v to u.

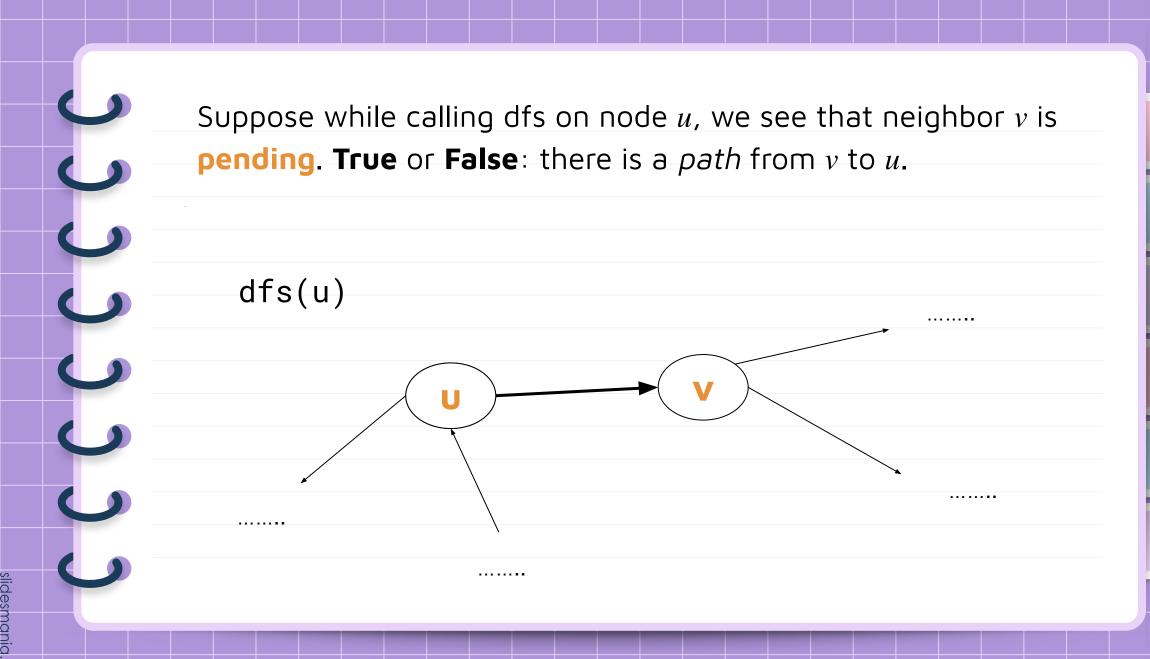
Exercise

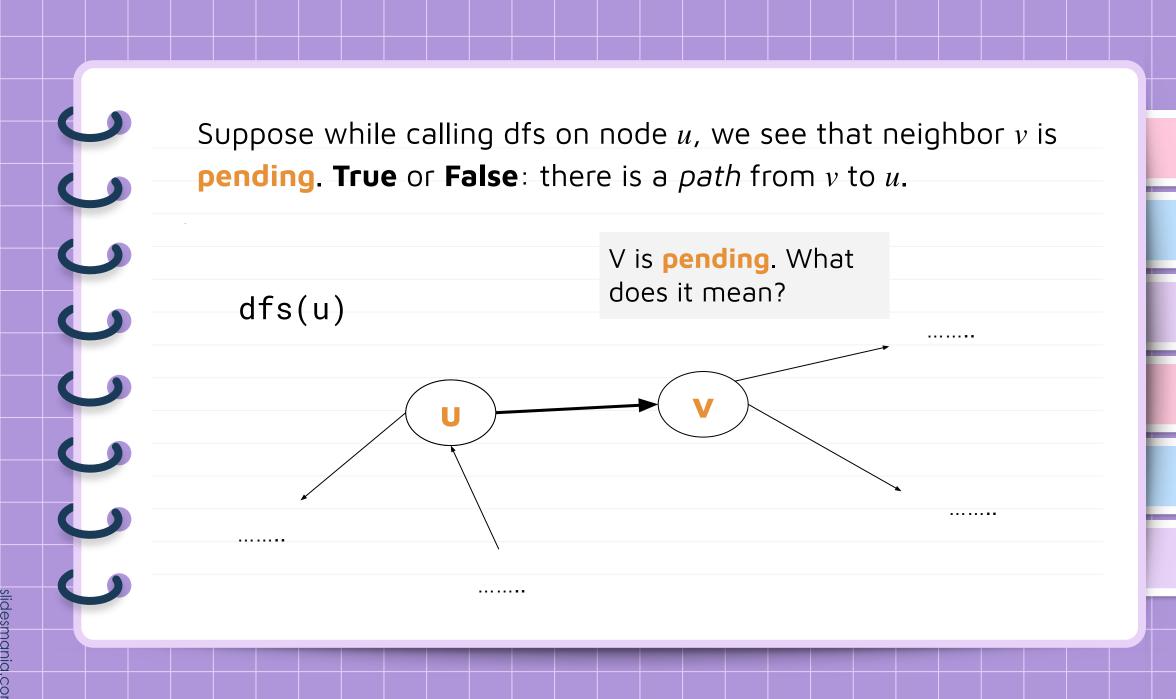
Suppose while calling dfs on node u, we see that neighbor v is **pending**. **True** or **False**: there is a path from v to u.

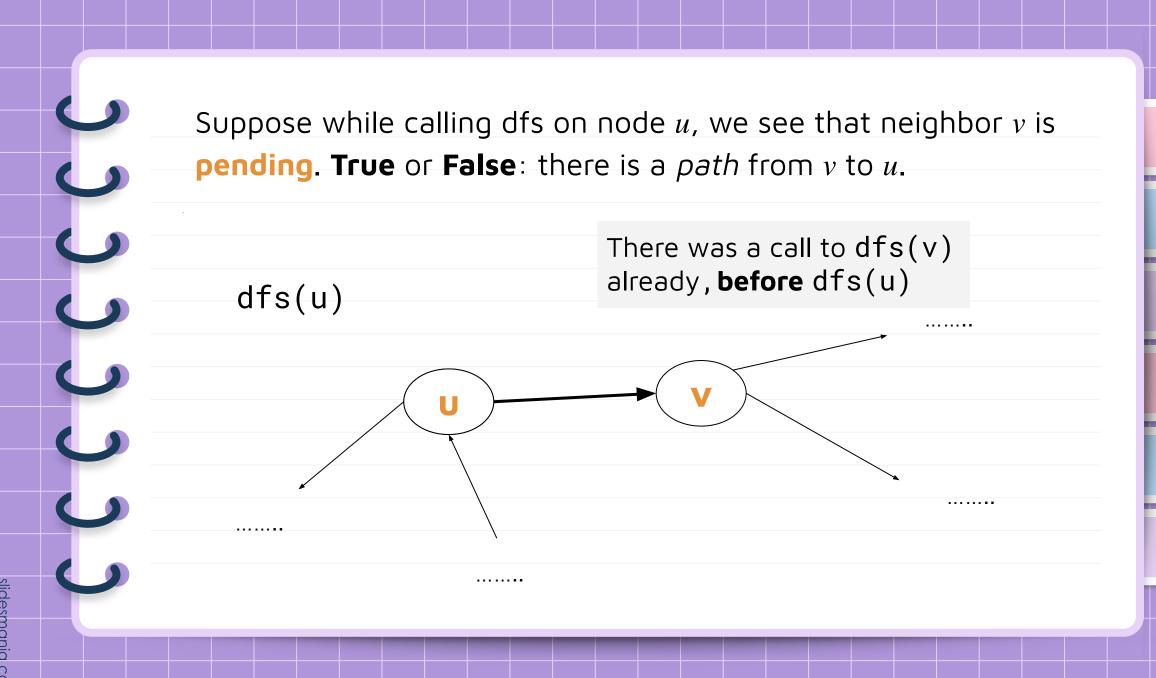
Exercise

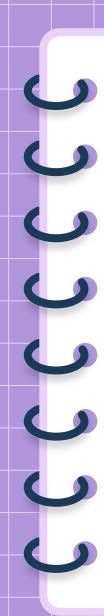
Exercise

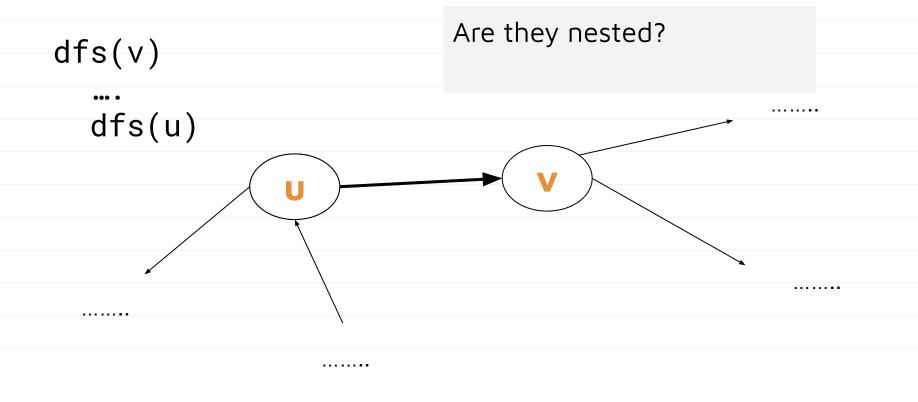


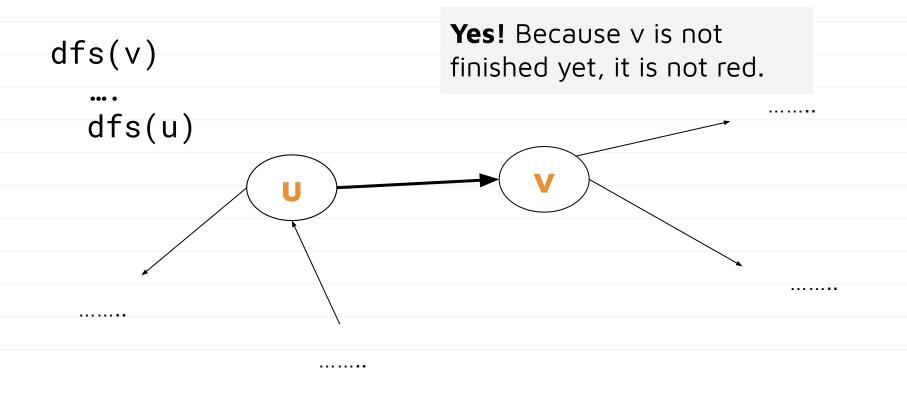


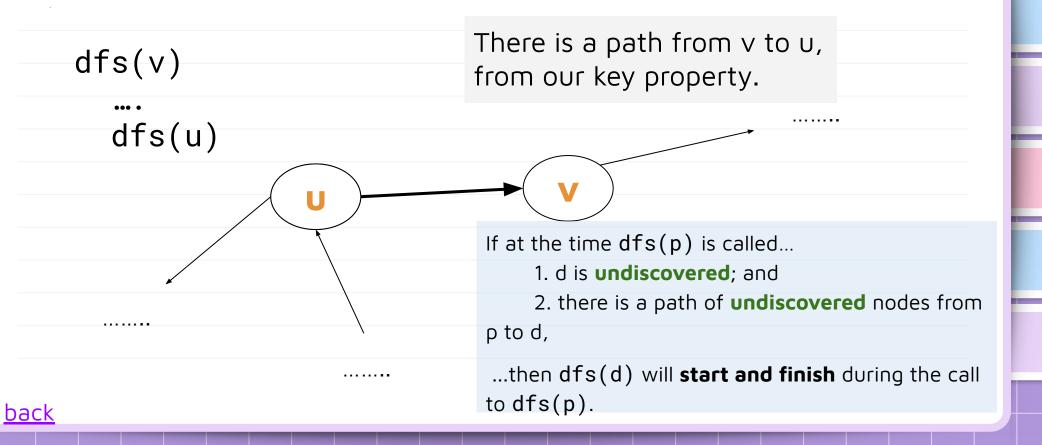


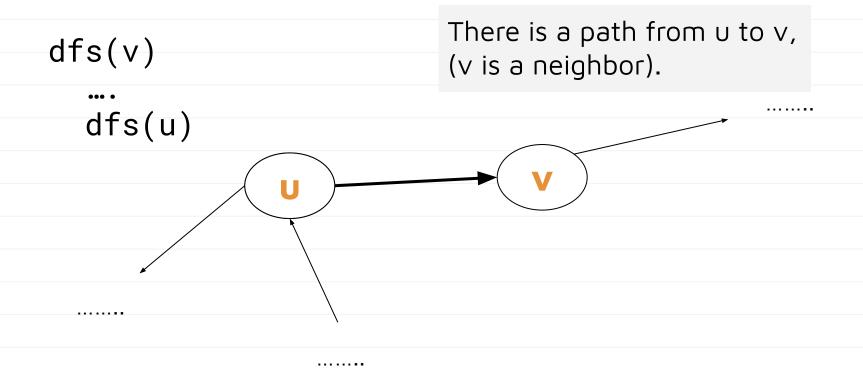






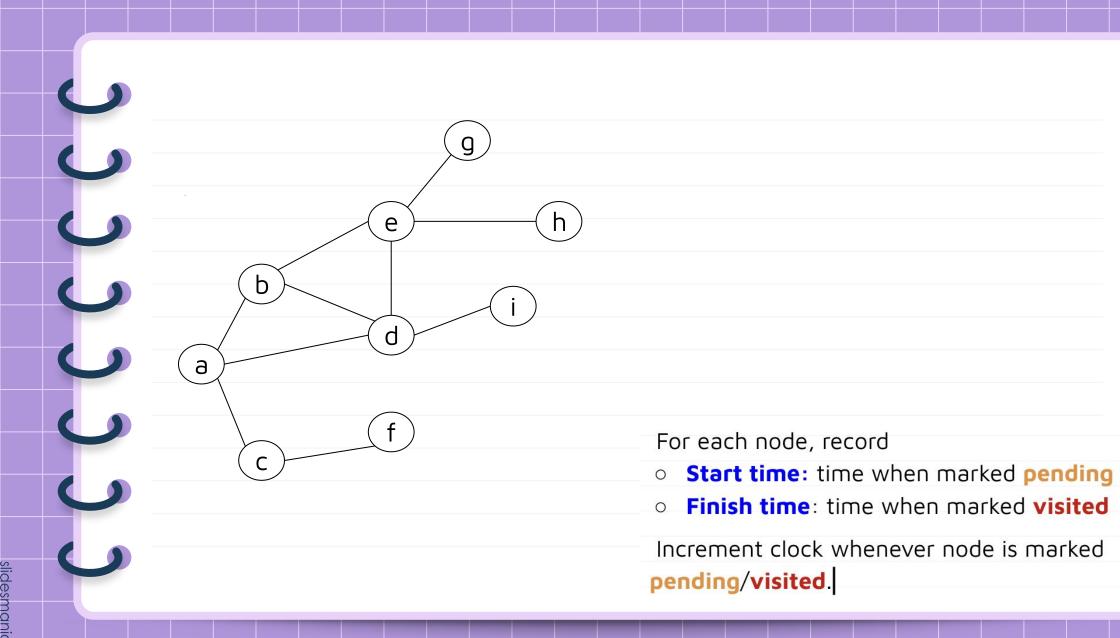


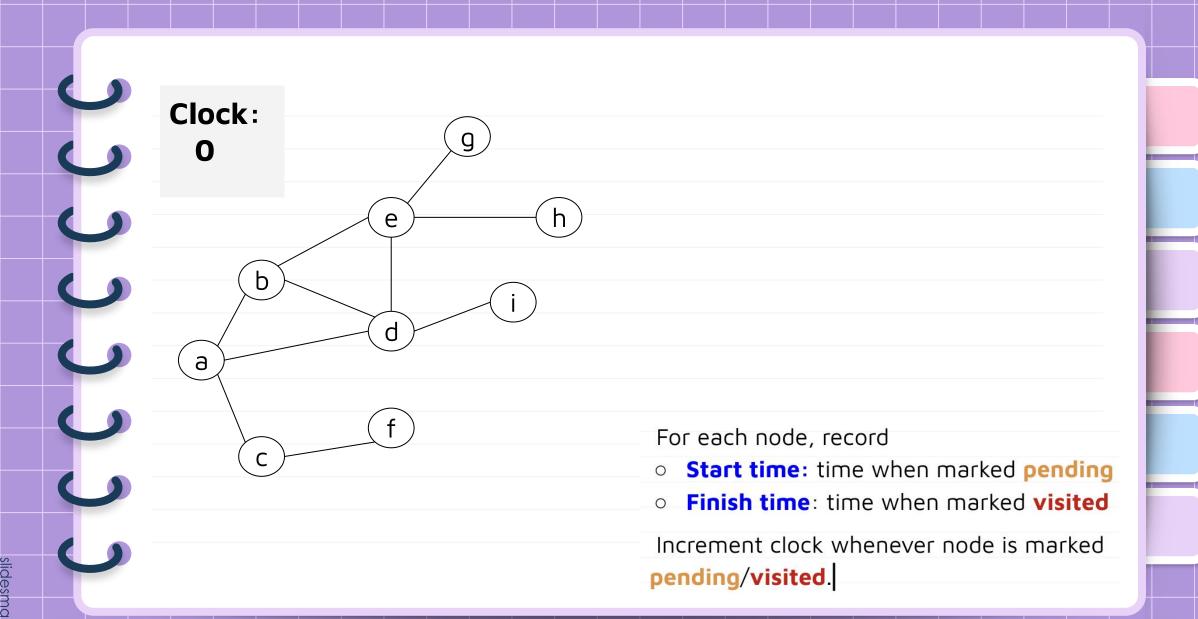


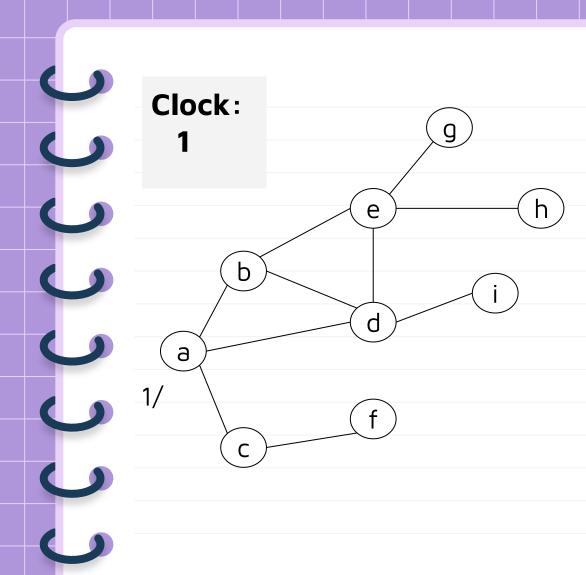


Start and Finish Times

- Keep a running clock (an integer).
- For each node, record
 - Start time: time when marked pending
 - Finish time: time when marked visited
- Increment clock whenever node is marked pending/visited.



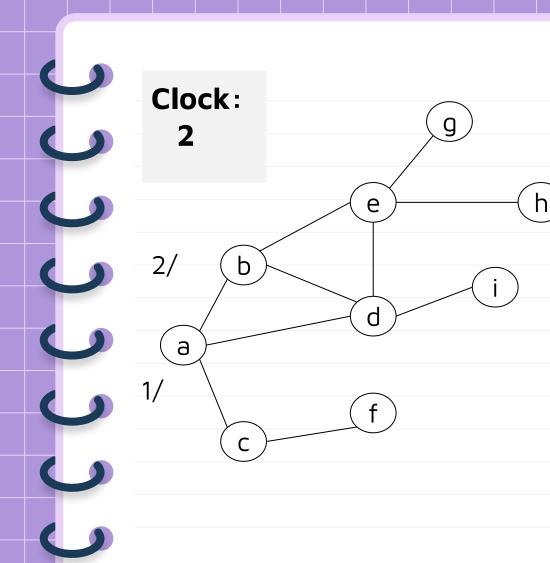




dfs(a)

For each node, record

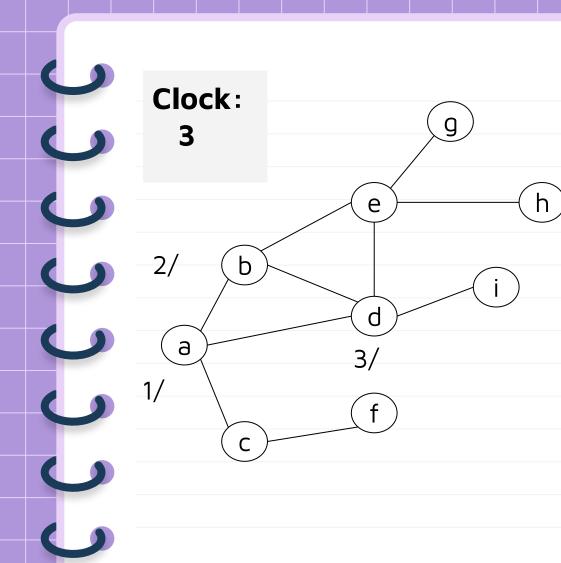
- Start time: time when marked pending
- Finish time: time when marked visited



dfs(a)
 dfs(b)

For each node, record

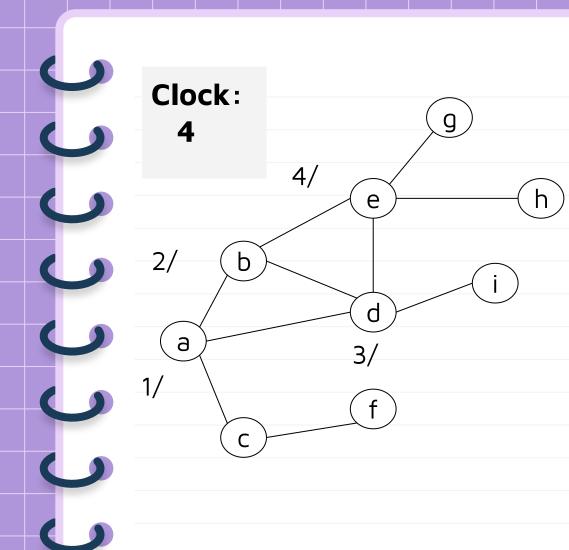
- Start time: time when marked pending
- Finish time: time when marked visited



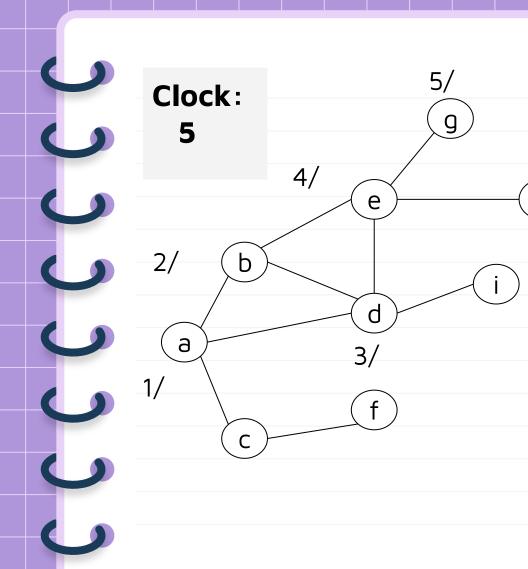
dfs(a) dfs(b) dfs(d)

For each node, record

- Start time: time when marked pending
- Finish time: time when marked visited

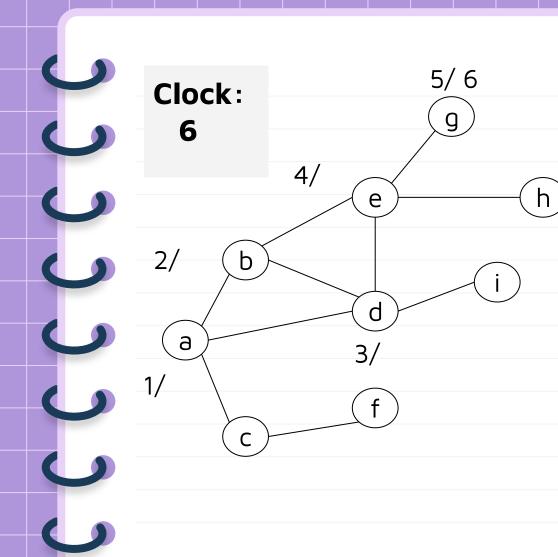


- Start time: time when marked pending
- Finish time: time when marked visited



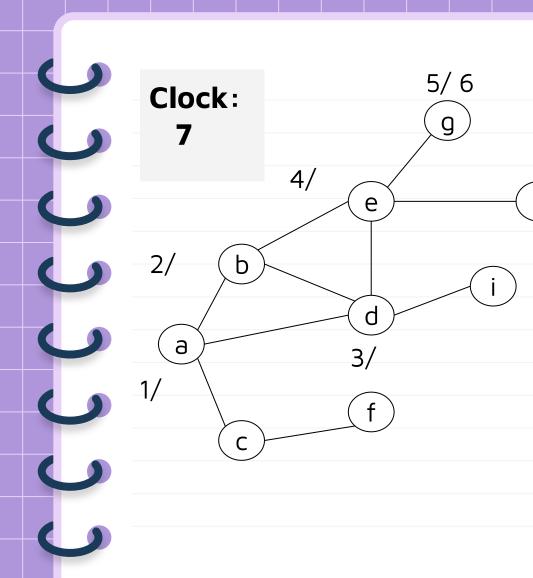
```
dfs(a)
  dfs(b)
  dfs(d)
  dfs(e)
  dfs(g)
```

- Start time: time when marked pending
- Finish time: time when marked visited



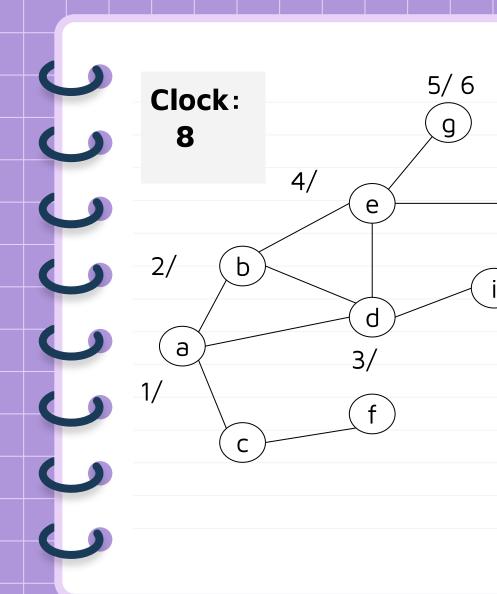
```
dfs(a)
  dfs(b)
  dfs(d)
  dfs(e)
  <del>dfs(g)</del>
```

- Start time: time when marked pending
- Finish time: time when marked visited



```
dfs(a)
  dfs(b)
  dfs(d)
  dfs(e)
  dfs(g)
  dfs(h)
```

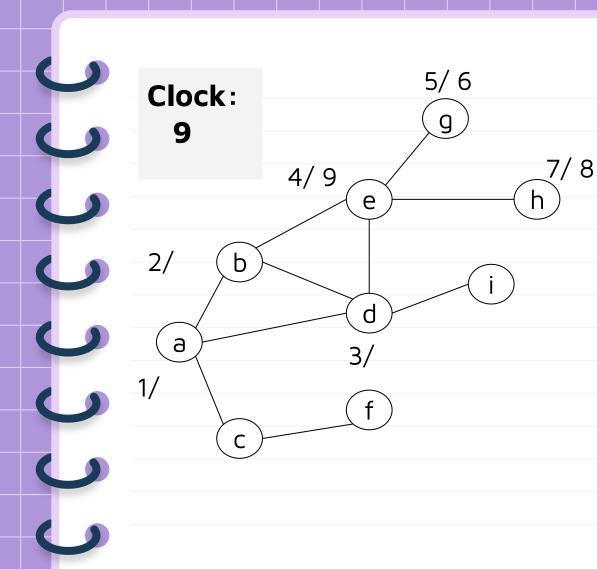
- Start time: time when marked pending
- Finish time: time when marked visited



```
dfs(a)
  dfs(b)
  dfs(d)
  dfs(e)
  <del>dfs(g)</del>
  <del>dfs(h)</del>
```

7/8

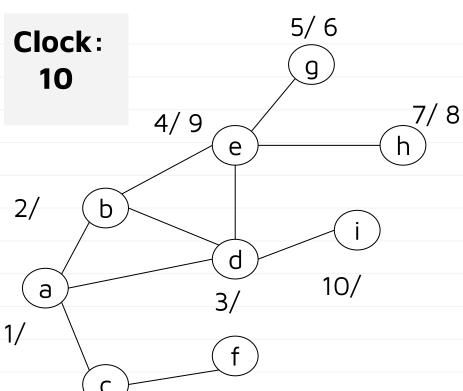
- Start time: time when marked pending
- Finish time: time when marked visited



```
dfs(a)
dfs(b)
dfs(d)

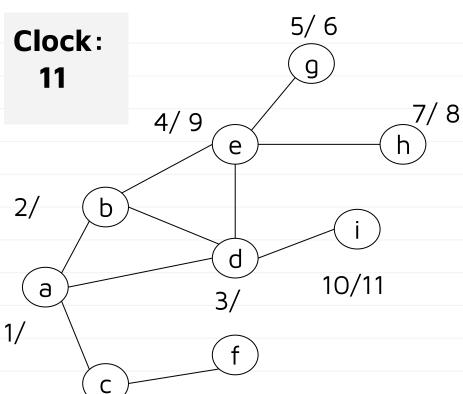
<del>dfs(e)</del>
<del>dfs(g)</del>
<del>dfs(h)</del>
```

- Start time: time when marked pending
- Finish time: time when marked visited



```
dfs(a)
  dfs(b)
  dfs(d)
  <del>dfs(e)</del>
  <del>dfs(g)</del>
  dfs(h)
  dfs(i)
```

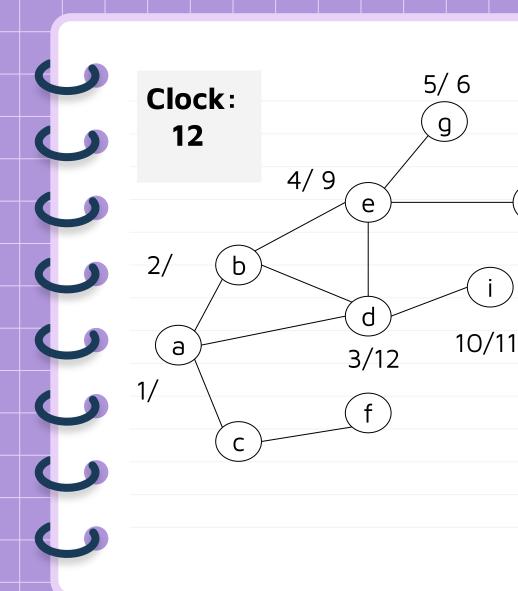
- Start time: time when marked pending
- Finish time: time when marked visited



```
dfs(a)
dfs(b)
dfs(d)

<del>dfs(e)</del>
<del>dfs(g)</del>
<del>dfs(h)</del>
```

- Start time: time when marked pending
- Finish time: time when marked visited



```
dfs(a)
dfs(b)

dfs(d)

dfs(e)

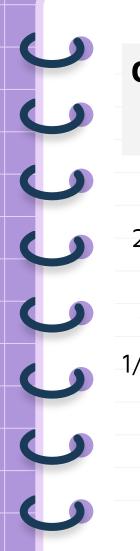
dfs(g)

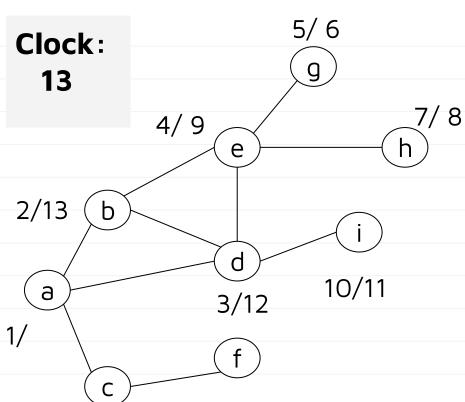
dfs(h)

dfs(i)
```

7/8

- Start time: time when marked pending
- Finish time: time when marked visited





```
dfs(a)

dfs(b)

dfs(d)

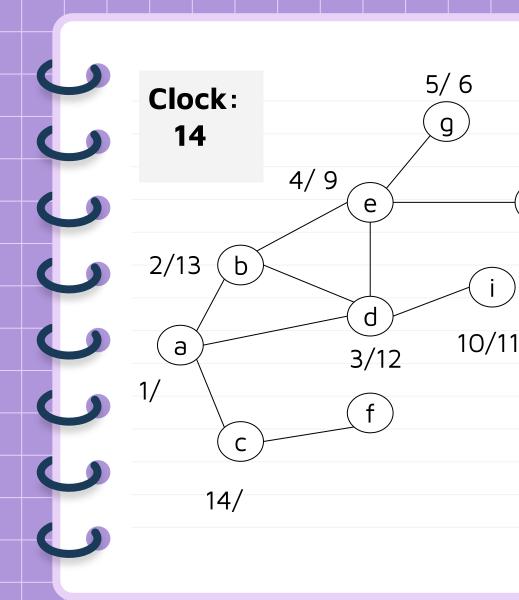
dfs(e)

dfs(g)

dfs(h)

dfs(i)
```

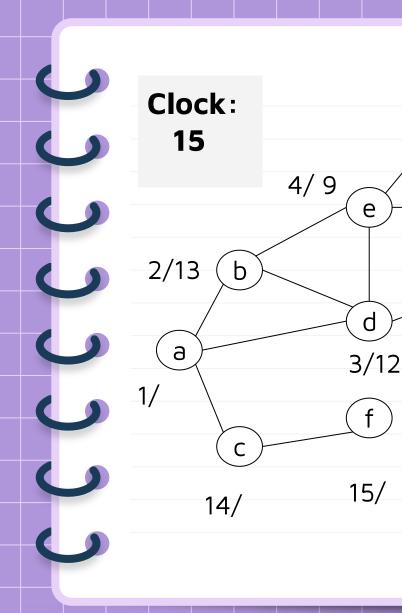
- Start time: time when marked pending
- Finish time: time when marked visited



```
dfs(a)
    dfs(b)
    dfs(d)
    dfs(e)
    dfs(g)
    dfs(h)
    dfs(i)
    dfs(c)
```

7/8

- Start time: time when marked pending
- Finish time: time when marked visited



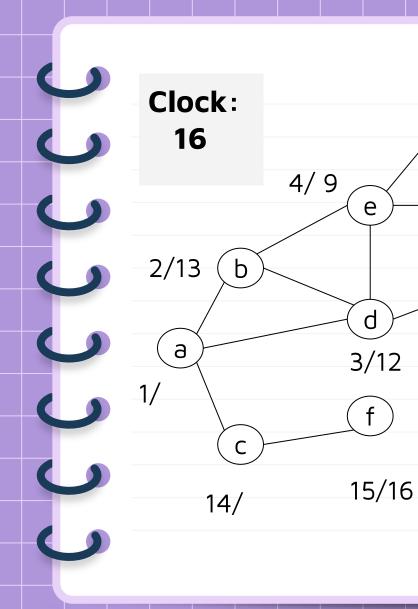
е

d

```
dfs(a)
5/6
        7/8
                           dfs(h)
                        dfs(c)
                         dfs(f)
  10/11
```

For each node, record

- Start time: time when marked pending
- Finish time: time when marked visited



5/6

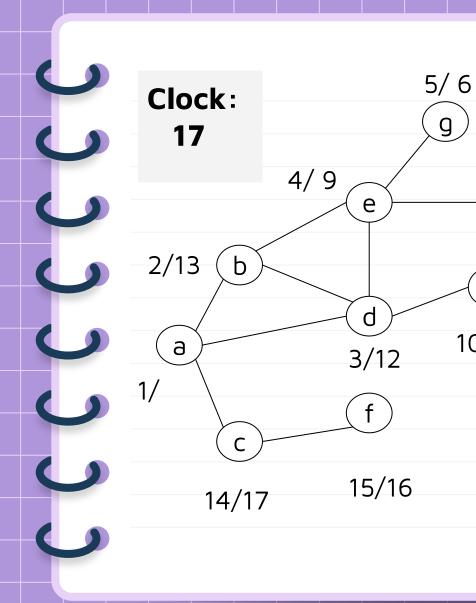
10/11

7/8

```
dfs(a)
    dfs(b)
    dfs(d)
    dfs(e)
    dfs(g)
    dfs(h)
    dfs(i)
    dfs(c)
    dfs(f)
```

For each node, record

- Start time: time when marked pending
- Finish time: time when marked visited



```
dfs(a)

dfs(b)

dfs(d)

dfs(e)

dfs(g)

dfs(h)

dfs(i)

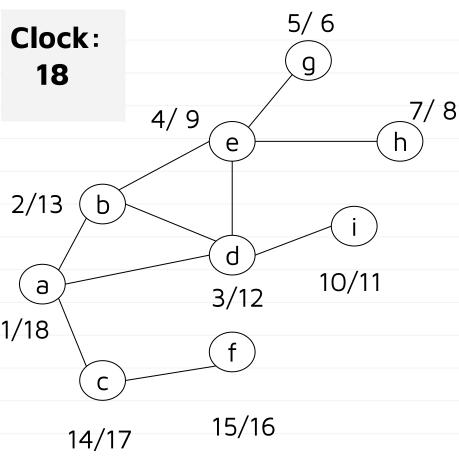
dfs(c)

dfs(f)
```

7/8

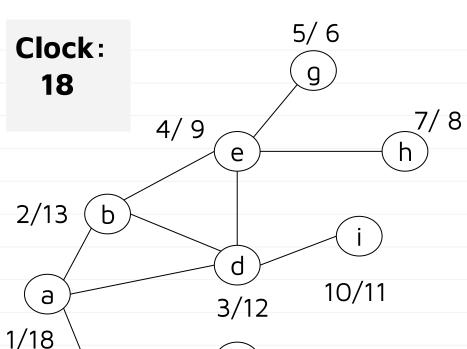
10/11

- Start time: time when marked pending
- Finish time: time when marked visited



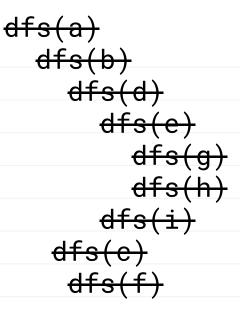
```
dfs(a)
dfs(d)
dfs(e)
dfs(e)
dfs(g)
dfs(h)
dfs(i)
dfs(e)
dfs(f)
```

- Start time: time when marked pending
- Finish time: time when marked visited



15/16

14/17



Note:

- Intervals are either fully contained inside each other (i.e. d and e)
- Or completely separate. (i.e. i and f)
- No overlaps

from dataclasses import dataclass

@dataclass

class Times:

clock: int

start: dict

finish: dict

```
from dataclasses import dataclass
           adataclass
           class Times:
               clock: int
               start: dict
               finish: dict
def full_dfs_times(graph):
    status = {node: 'undiscovered' for node in graph.nodes}
    predecessor = {node: None for node in graph.nodes}
    times = Times(clock=0, start={}, finish={})
    for u in graph.nodes:
        if status[u] == 'undiscovered':
            dfs_times(graph, u, status, times)
    return times, predecessor
```

```
from dataclasses import dataclass
adataclass
class Times:
    clock: int
    start: dict
    finish: dict
def full_dfs_times(graph):
    status = {node: 'undiscovered' for node in graph.nodes}
    predecessor = {node: None for node in graph.nodes}
    times = Times(clock=0, start={}, finish={})
    for u in graph.nodes:
        if status[u] == 'undiscovered':
            dfs_times(graph, u, status, times)
    return times, predecessor
def dfs_times(graph, u, status, predecessor, times):
    times.clock += 1
    times.start[u] = times.clock
    status[u] = 'pending'
    for v in graph.neighbors(u): # explore edge (u, v)
        if status[v] == 'undiscovered':
            predecessor[v] = u
            dfs_times(graph, v, status, times)
    status[u] = 'visited'
    times.clock += 1
    times.finish[u] = times.clock
```

Key Property of DFS

- Suppose dfs(u) is called before dfs(v).
- If when dfs(u) is called there is a path of **undiscovered** nodes from u to v, then:

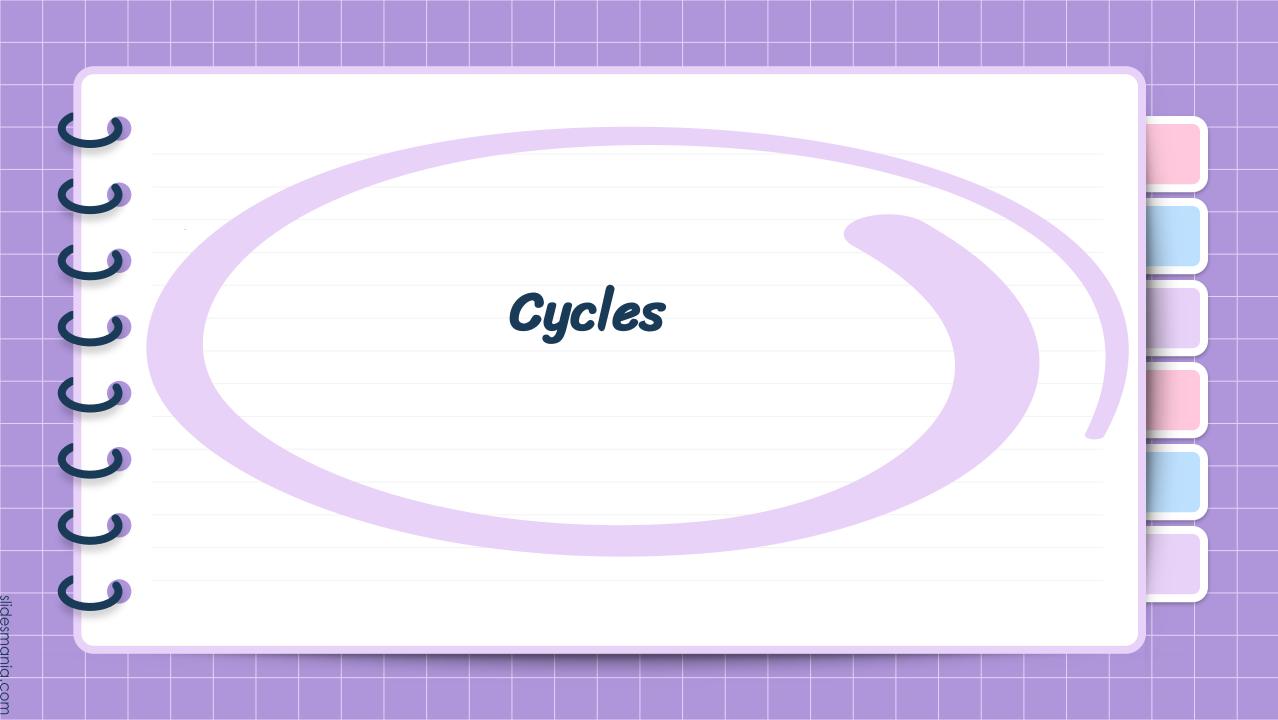
```
start[u] < start[v] < finish[v] < finish[u].</pre>
```

Otherwise:

```
start[u] < finish[u] < start[v] < finish[v]</pre>
```

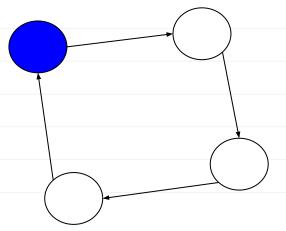
Key Property

- Take any two nodes u and v ($u \neq v$).
- Assume for simplicity that start[v] < start[v].
- Exactly one of these is true:
 - o start[u] < start[v] < finish[v] < finish[u]</pre>
 - o start[u] < finish[u] < start[v] < finish[v]</pre>



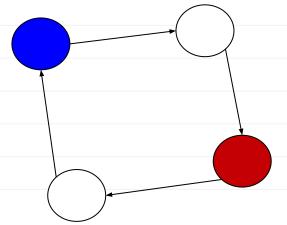
Cycles

• A cycle in a directed graph is a path that starts and ends at the same node.



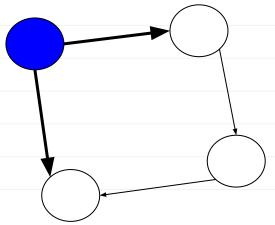
Cycle

• Alternatively: there is a **cycle** if u is reachable from v and v is reachable from u, for some $u \neq v$.



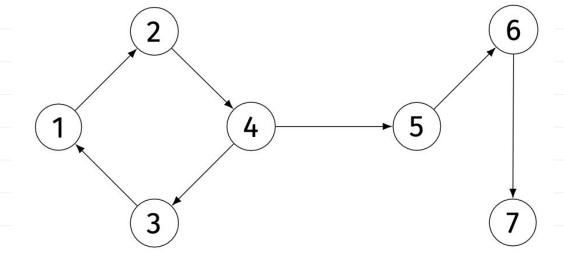
DAG

A directed acyclic graph (DAG) is a directed graph with no cycles.

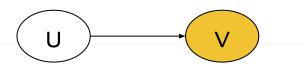


Cyclic Graphs

- A graph is cyclic even if it has only one cycle.
 - It doesn't have to be the whole graph.



Detecting Cycles



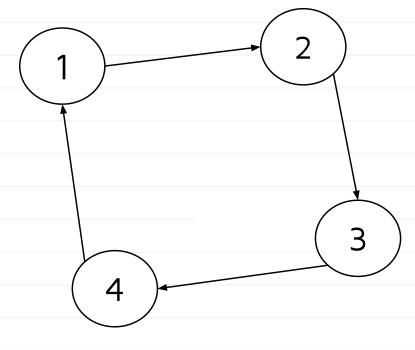
<u>Link</u>

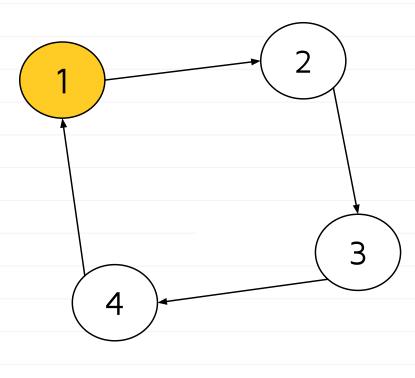
- We check for cycles by looking for back edges in a full DFS.
- (u, v) is a back edge if while visiting node u, we see that v is pending.

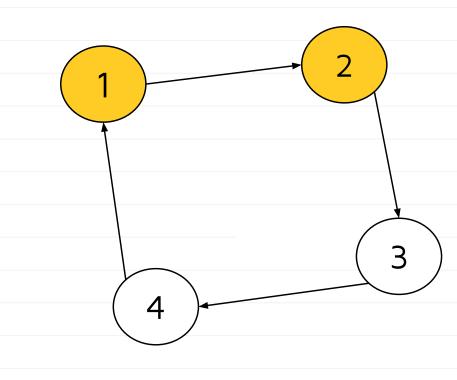
Detecting Cycles

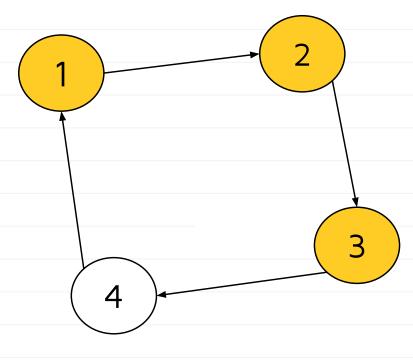
- We check for cycles by looking for back edges in a full DFS.
- (u, v) is a back edge if while visiting node u, we see that v is pending.

```
for v in graph.neighbors(u): # explore edge (u, v)
  if status[v] == 'undiscovered':
    dfs(graph, v, status)
  elif status[v] == 'pending':
    # back edge (u, v) found!
```

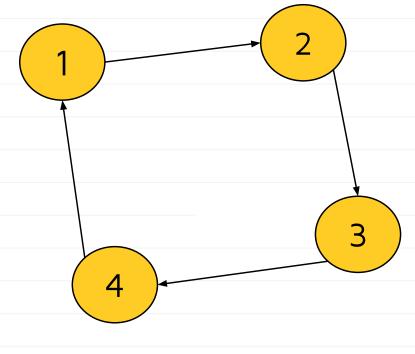








Example (



Example Back edge

Theorem

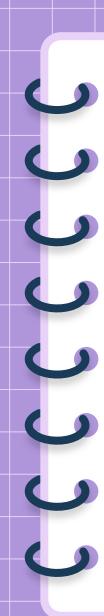
A directed graph has a cycle **if (and only if)** a full DFS finds a back edge.

Why?

- If a back edge (u, v) is found, then a cycle exists.
 - \circ Suppose v is pending when we visit u.
 - \circ This means that there is a path from v to u.
 - \circ There is also a path from u to v.
 - So there is a cycle.

Why?

- If a cycle exists, then there is a back edge.
 - Suppose there is a cycle $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k \rightarrow v_1$.
 - \circ Without loss of generality, assume v_1 is the first node in the cycle that is visited by the full DFS.
 - At the moment of $dfs(v_1)$, there is a path of **undiscovered** nodes between v_1 and v_k .
 - Therefore $dfs(v_k)$ will be called during $dfs(v_1)$.
 - \circ During dfs(v_k), we'll see the back edge.
 - \mathbf{v}_1 will be **pending**.



• Suppose v is reachable from u in a DAG.

• Suppose v is reachable from u in a DAG.

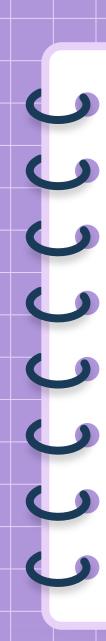
A: True

B: False

C: Not sure, need time to process

the algorithm.

• Suppose v is reachable from u in a DAG.



Case 1: Start DFS(u) -> True

Case 2: Start somewhere else, say, DFS(v), then restart the DFS. -> True

• Suppose v is reachable from u in a DAG.

Claim

• If v is reachable from u in a DAG, then:

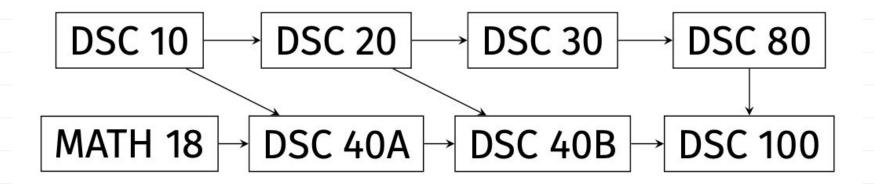
finish[v] < finish[u]</pre>

Topological Sort

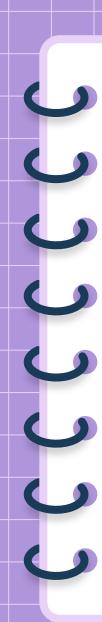
Applications of DFS

- Is node v reachable from node u? **DFS**, **BFS**
- Is the graph connected? **DFS**, **BFS**
- How many connected components? DFS, BFS
- Find the shortest path between u and v. **DFS**, **BFS**
- Does the graph have a cycle? DFS, BFS

Prerequisite Graphs



Goal: find order in which classes should be taken in order to satisfy the prerequisites of DSC 100.

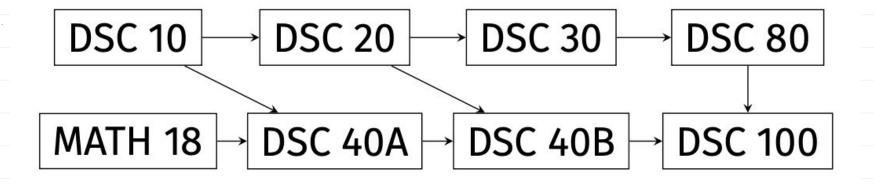


Note

• Prerequisite graphs are (Or they should be, at least!) DAGs.

Topological Sorts

- **Given**: a DAG, G = (V, E).
- Compute: an *ordering* of V such that if $(u, v) \in E$, then u comes **before** v in the ordering.
- \bullet This is called a **topological sort** of G.



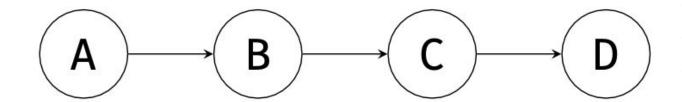
MATH 18, DSC 10, DSC 40A, DSC 20, DSC 40B, DSC 30, DSC 80, DSC 100

Note

• There can be **many** valid topological sorts!

Computing a Topological Sort

- How do we compute a topological sort, algorithmically?
- **Observation**: if v is reachable from u, v **must** come **after** u in the topological sort.



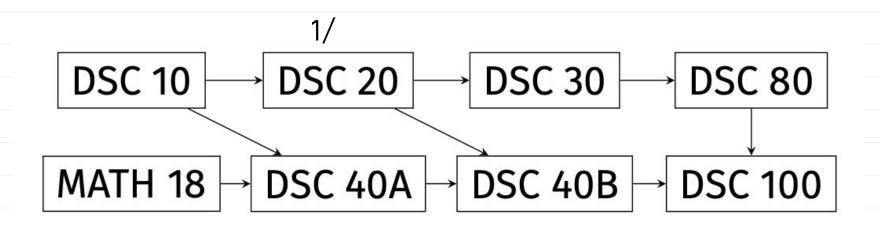
Recall

- Take any two nodes u and v ($u \neq v$).
- Assume the graph is a DAG, run DFS.
- If v is reachable from u, then finish[v] < finish[u].

Putting it together...

- **Observation**: If v is reachable from u, then v must come after u in the topological sort.
- **Recall**: If v is reachable from u, then finish[v] < finish[u].

Compute start and finish times using DSC 10 as the source.



Compute start and finish times using DSC 10 as the source. **DSC 10 DSC 20 DSC 30 DSC 80** DSC 40A **MATH 18** DSC 40B **DSC 100**

Compute start and finish times using DSC 10 as the source. **DSC 10 DSC 20 DSC 30 DSC 80** DSC 40A **MATH 18** DSC 40B **DSC 100**

Compute start and finish times using DSC 10 as the source. **DSC 10 DSC 20 DSC 30 DSC 80** DSC 40A **MATH 18** DSC 40B **DSC 100** 3/4

Compute start and finish times using DSC 10 as the source. **DSC 10 DSC 20 DSC 30 DSC 80** DSC 40A **MATH 18** DSC 40B **DSC 100** 2/5 3/4

Compute start and finish times using DSC 10 as the source. 6/ **DSC 10 DSC 20 DSC 30 DSC 80** DSC 40A **MATH 18** DSC 40B **DSC 100** 2/5 3/4

Compute start and finish times using DSC 10 as the source. **DSC 80 DSC 10 DSC 20 DSC 30** DSC 40A **MATH 18** DSC 40B **DSC 100** 2/5 3/4

Compute start and finish times using DSC 10 as the source. 7/8 **DSC 80 DSC 10 DSC 20 DSC 30** DSC 40A **MATH 18** DSC 40B **DSC 100** 2/5 3/4

Compute start and finish times using DSC 10 as the source. 6/9 7/8 **DSC 10 DSC 20 DSC 30 DSC 80** DSC 40A **MATH 18** DSC 40B **DSC 100** 2/5 3/4

Compute start and finish times using DSC 10 as the source. 6/9 1/10 7/8 **DSC 10 DSC 20 DSC 30 DSC 80** DSC 40A **MATH 18** DSC 40B **DSC 100** 2/5 3/4

Compute start and finish times using DSC 10 as the source. 6/9 1/10 7/8 **DSC 10 DSC 20 DSC 30 DSC 80** DSC 40A **MATH 18** DSC 40B **DSC 100** 2/5 3/4

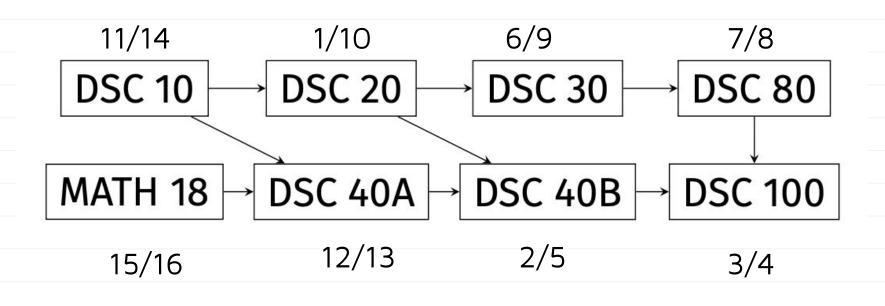
Compute start and finish times using DSC 10 as the source. 6/9 1/10 7/8 **DSC 10 DSC 20 DSC 30 DSC 80 MATH 18** DSC 40A DSC 40B **DSC 100** 2/5 12/ 3/4

Compute start and finish times using DSC 10 as the source. 6/9 1/10 7/8 11/ **DSC 10 DSC 20 DSC 30 DSC 80 MATH 18** DSC 40A DSC 40B **DSC 100** 12/13 2/5 3/4

Compute start and finish times using DSC 10 as the source. 6/9 11/14 1/10 7/8 **DSC 10 DSC 20 DSC 30 DSC 80 MATH 18** DSC 40A DSC 40B **DSC 100** 12/13 2/5 3/4

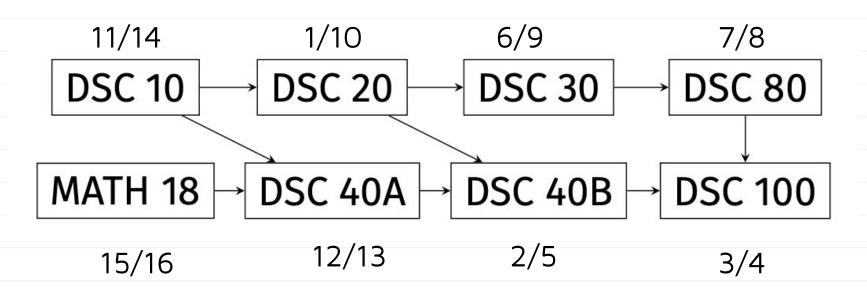
Compute start and finish times using DSC 10 as the source. 6/9 11/14 1/10 7/8 **DSC 10 DSC 20 DSC 30 DSC 80 MATH 18** DSC 40A DSC 40B **DSC 100** 12/13 2/5 15/ 3/4

Compute start and finish times using DSC 10 as the source.



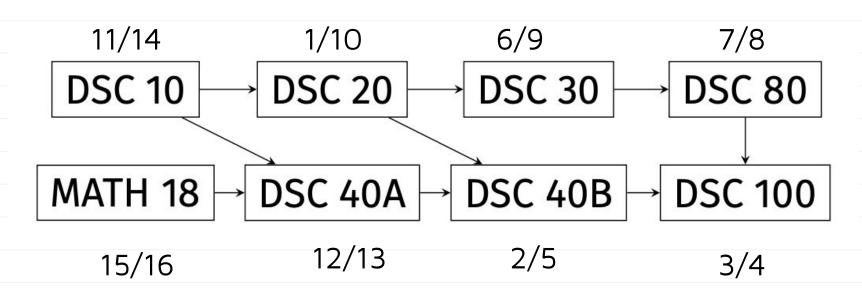
What is next?

Compute start and finish times using DSC 10 as the source.



16, 14, 13, 10, 9, 8, 5, 4

Compute start and finish times using DSC 10 as the source.



M18, D10, D40A, D20, D30, D80, D40B, D100.

Idea

- **Observation**: If v is reachable from u, then v must come after u in the topological sort.
- **Recall**: If v is reachable from u, then finish[v] < finish[u].
- **Therefore**: if finish[v] < finish[u], then v must come after u in the topological sort.
- Idea: sort nodes in descending order by finish time

- To find a topological sort (if it exists):
 - Compute times with Full DFS.
 - Sort in **descending** order by finish time.
- Time complexity:

- To find a topological sort (if it exists):
 - Compute times with Full DFS.
 - Sort in **descending** order by finish time.
- Time complexity: V + E (what else?)

- To find a topological sort (if it exists):
 - Compute times with Full DFS.
 - Sort in **descending** order by finish time.
- Time complexity: V + E + V logV

- To find a topological sort (if it exists):
 - Compute times with Full DFS.
 - Sort in **descending** order by finish time.
- Time complexity: ⊝(E + ∨ log∨)

Thank you!

Do you have any questions?

CampusWire!