93333390

0OSC 408
Lecture 22 : Depth
First Search
T

T ———
..............................

Visiting the Next Node

e \Which node do we process next in a search?
e BFS: the oldest pending node.

e DFS (today): the newest pending node.
o Naturally recursive.
o Useful for solving different problems.

11113999

T ————
.............................

T R ————
-ttt

T R ————
-ttt

T R ————
-ttt

T R ————
-ttt

T R ————
-ttt

T R ————
-ttt

T R ————
-ttt

T R ————
-ttt

T R ————
-ttt

T R ————
-ttt

T ———
..............................

T ———
..............................

T ———
..............................

T ———
..............................

T ———
..............................

==llllllllllllllllllllllll=l=
.-

=I,_,- Example (DFS)

def dfs(graph, u, status = None):
»"Start a DFS at "u .”””
initialize status if it was not passed
if status is None:
status = {node: 'undiscovered' for node in graph.nodes}

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

. if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=ll

rite the nested function calls for a DFS on the graph
below.

C

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
.p What node becomes v? for v in graph.neighbors(u): # explore edge (u, v)
. if status[v] == 'undiscovered':
dfs(graph, v, status)
status[u] = 'visited'
T ——————

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph

below. dfs(a)
dfs(b)
dfs(d)
dfsfe)

dfste)

dfsthy
dfs(i)

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph

below. dfs(a)
dfs(b)
dfs(d)
dfsfe)

dfste)

dfsthy
dfs(i)

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph

below. dfs(a)
dfs(b)
dfs(d)
dfsfe)

dfste)

dfsthy
dfs(i)

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

gfs{e)
dfsfe)
sty
dfsth)
#fs{i)

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

gfs{e)
dfsfe)
sty
dfsth)
#fs{i)

def dfs(graph, u, status = None):
»"PStart a DFS at "u .”””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below. dfs(a)

dfs{by
dfs{dy
dFs{e)
aFstar
.E E
dfs{1)
def dfs(graph, u, status = Nongfs(c)

»P¥Start a DFS at "u .?””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below. dfs(a)

dfs{by
dfs{dy
dFs{e)
aFstar
.E E
dfs{1)
def dfs(graph, u, status = Nongfs(c)

»P¥Start a DFS at "u .?””

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below. dfs(a)

dfs{by
dfs{dy
dFs{e)
aFstar
L€ E.; ;
fs(c)
def dfs raph, u, status = None S(C
é%ari a DFS at "u .””” q de(f)

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below. dfs(a)

dfs{by
dfs{dy
dFs{e)
aFstar
L€ E.; ;
fs(c)
def dfs raph, u, status = None S(C
é%ari a DFS at "u .””” q de(f)

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below. dfs(a)

dfs{by
dfs{dy
dFs{e)
aFstar
L€ E.; ;
fs(c)
def dfs raph, u, status = None S(C
é%ari a DFS at "u .””” q de(f)

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below. dfs(a)

dfs{by
dfs{dy
dFs{e)
aFstar
.E E
dfs{1)
def dfs(graph, u, status = Nongfs(c)

”””Start a DFS at ‘u‘.””” 'd_-ﬁs-FH-

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below. dfs(a)

dfs{by
dfs{dy
dFs{e)
aFstar
.E E
dfs{1)
def dfs(graph, u, status = Nongfs(c)

”””Start a DFS at ‘u‘.””” 'd_-ﬁs-FH-

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = Nonek: E a
”””Start a DFS at ‘u‘.””” d;FS-FH-

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = Nonek: E a
”””Start a DFS at ‘u‘.””” d;FS-FH-

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

rite the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = Nonek: E a
”””Start a DFS at ‘u‘.””” d;FS-FH-

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)
= status[u] = 'visited'

B ————T
.............................

I lllllllllllllllllllllll=l=
.-

Differences

In BFS, we “finish” 3 node u before moving on to the next.

e In DFS, we go to many other nodes, but "come back” to u.

We'll see that the nested structure of the recursive
function calls gives us useful new information about the
graph’s structure.

="’ =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

.I,_,. Full OFS

e dfs(u) will visit all nodes reachable from u.
o But not all nodes may be reachable from u!
e To visit all nodes in graph, need full DFS.

def full_dfs(graph):
status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:

. if status[node] == 'undiscovered'’
dfs(graph, node, status)

< =8

B ————T
e

N A A
——— =aEE
.

def full_dfs(graph):
status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:
if status[node] == 'undiscovered'
dfs(graph, node, status)

def dfs(graph, u, status=None):
wwrstart a DES at "u """
initialize status if it was not passed
if status is None:
status = {node: 'undiscovered' for node in graph.nodes}

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)
if status[v] == 'undiscovered':
dfs(graph, v, status)
status[u] = 'visited'

"l'f‘l"!"f'!"!."!'

T ————
.............................

Time Complexity

e In a full DFS:
o dfs called on each node exactly once.
o Similar to BFS, each edge is explored exactly:
m once if directed
m twice if undirected

e Time: O(V + E), just like BFS.

11113999

T ————
.............................

==llllllllllllllllllllllll=l=
.-

=I,_) BFS vs DFS Check
BFS (1): What do

you expect to see
o first?

A: Level (2, 7, 8)

9 e B: Level (3, 6, 9, 12)

C: Branch (4, 3, 2, 1)

e 6 g m D: Branch (12, 8, 1)
gl

E: Something else
= T T ——————
.............................

==llllIIIIIIIIIIIIIIIIIIIIEI

mnd I

12

i

NN
-

T ————
e

ll lllllllllllllllllllllll=ll

.I,_,- BFS(1)

c

Eii
.ir" 10) (11

T ———
.............................

ll lllllllllllllllllllllll=ll

.I,_,- BFS(1)

//
:
L
e .
:

.-
O

T ————
e

==llllIIIIIIIIIIIIIIIIIIIIEI

mnd I

==llllIIIIIIIIIIIIIIIIIIIIEI

mnd I

==llllIIIIIIIIIIIIIIIIIIIIEI

mnd I

ll lllllllllllllllllllllll=ll

.I,_,- DFS(1)

&

of0)0
ll*" 2
o g

I"' 10) (11
= T - —————
e

93322290

Nesting Properties of DFS
Tt rrrrrrrrrrrrrrrrrrrrrrrrr

==llllllllllllllllllllllll==ll

T ———
..............................

T R ———
e

='
=I"'. Why do we care?

~ e In computer programs (dependency graphs):
o If you have tasks that depend on each other, a cycle means a
circular dependency — task A depends on B, and B depends

on A — so you can’t complete any of them. Detecting the
cycle helps prevent deadlocks or infinite loops.

. e In scheduling or planning:
. o When building a project schedule or course prerequisite list, a

cycle means it's impossible to order the tasks — e.qg., "CS101
I requires C5201, and CS201 requires CS101.” You can’t take

= either first.
T T ——————

=Ip. s I

=Ip. s I

=Ip. s I

—
=
=
—
=
=
=
=
=
=
—
=
=
=
=
=
=
|
L
O
O

B
II'-’
La
st
time
s DF.
S
1|

=I~—'

==llllllllllllllllllllllll=ll

II.__.
. Last time: DFS

==-—' mnd I

==llllllllllllllllllllllll=ll

II.__.
. Last time: DFS

==-—' mnd I

==llllllllllllllllllllllll=ll

II.__.
. Last time: DFS

o
< =8

B ————T
e

==llllllllllllllllllllllll=ll

II.__.
. Last time: DFS

o
< =8

B ————T
e

==llllllllllllllllllllllll=ll

II.__.
. Last time: DFS

o
< =8

B ————T
e

==llllllllllllllllllllllll=ll

II.__.
. Last time: DFS

o
< =8

B ————T
e

==llllllllllllllllllllllll=l=
.-

=I.-—' Exercise #1

True or False: if v is reachable from u and v is undiscovered when
dfs(u) is called, then dfs(v) must be called during dfs(u) .

= =
OO ())
© O

- =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

.I.-—' Exercise

True or False: if v is reachable from u and v is undiscovered when
dfs(u) is called, then dfs(v) must be called during dfs(u).

dfs(u)

dfs(v)

o
< =8

B ————T
e

True or False: if v is reachable from u and v is undiscovered when .
dfs(u) is called, then dfs(v) must be called during dfs(u) .

dfs(u) dfs(4)

....dfs(v)

AN

T ————
.............................

llllllllllllllllllllllllllllll
.I_’ True or False: if v is reachable from u and v is undiscovered when -..
. dfs(u) is called, then dfs(v) must be called during dfs(u) . .
o |
L dfs(u) dfs(4) B
=dfs(v) o) =
- -
II » |
B L
H"’i ' -
L

T ————
-ttt

True or False: if v is reachable from u and v is undiscovered when .
dfs(u) is called, then dfs(v) must be called during dfs(u) .

dfs(u) dfs(4) dfs(4)

....dfs(v)dfsm

AN

T ————
.............................

llllllllllllllllllllllllllllll
.I_’ True or False: if v is reachable from u and v is undiscovered when -..
= dfs(u) is called, then dfs(v) must be called during dfs(u) . =
. dfs(u) dfs(4) dfs(4) |
. dfs(2) .
. dfs(v) dfs(1) .
- -
o :
B L
K :
L

T ————
-ttt

True or False: if v is reachable from u and v is undiscovered when .
dfs(u) is called, then dfs(v) must be called during dfs(u) .

dfs(u) dfs(4) dfs(4)
dfs(2)
dfs(v) dfs(1)

AN

T ————
.............................

True or False: if v is reachable from u and v is undiscovered when .
dfs(u) is called, then dfs(v) must be called during dfs(u) .

dfs(u) dfs(4) dfs(4)
dfs(2)
dfs(v) dfs(1) dfs(1)

AN

T ————
.............................

True or False: if v is reachable from u and v is undiscovered when .
dfs(u) is called, then dfs(v) must be called during dfs(u) .

dfs(u) dfs(4) dfs(4)
dfs(2)
dfs(v) dfs(1) dfs(1)

So far it works out

AN

T ————
.............................

True or False: if v is reachable from u and v is undiscovered when .
dfs(u) is called, then dfs(v) must be called during dfs(u) .

dfs(u) dfs(4) dfs(4)
dfs(2)
dfs(v) dfs(1) dfs(1)
dfs(3)

AN

T ————
.............................

llllllllllllllllllllllllllllll
.I_’ True or False: if v is reachable from u and v is undiscovered when -..
= dfs(u) is called, then dfs(v) must be called during dfs(u) . =
.i: dfs(u) dfs(4) dfs(4) |
dfs(2)
= dfs(v) dfs(1) dfs(1) =
dfs(3)

- -
II » |
B L
K :
L

T ————
-ttt

llllllllllllllllllllllllllllll
.I_’ True or False: if v is reachable from u and v is undiscovered when -..
= dfs(u) is called, then dfs(v) must be called during dfs(u) . =
.i dfs(u) dfs(4) dfs(4) |
dfs(2)
= dfs(v) dfs(1) dfs(1) =
dfs(3)

- -
II » L
B L
K :
L

T ————
-ttt

True or False: if v is reachable from u and v is undiscovered when .
dfs(u) is called, then dfs(v) must be called during dfs(u) .

dfs(u) dfs(4) dfs(4)
dfs(v) dfs(1) gfsth
afs{t3}

”
C
C
o

C

c

T ————
.............................

True or False: if v is reachable from u and v is undiscovered when .
dfs(u) is called, then dfs(v) must be called during dfs(u) .

dfs(u) dfs(4) dfs(4)
dfs(v) dfs(1) gfsth
afs{t3}

99999 %

'E

And now we can see that it
= is False.

B ————T
.............................

True or False: if v is reachable from u and v is undiscovered when .
dfs(u) is called, then dfs(v) must be called during dfs(u) .

dfs(u) dfs(4) dfs(4)
dfs(v) dfs(1) dfs(h
afst37

99999 %

'E

And now we can see that it
= is False.

B ————T
.............................

Falsel

e Suppose dfs(4) is the root call.
e When dfs(1) is called, node 5 is undiscovered
e But dfs(5) is not called during dfs(1).

11113999

T ————
.............................

I lllllllllllllllllllllll=l=
.-

.I..) However..

This intuition is correct if there is a path of undiscovered nodes
from u to v when dfs(u) is called.

dfs(u)

(2 (5) dfs(v)

- =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

.I..) However..

This intuition is correct if there is a path of undiscovered nodes
from u to v when dfs(u) is called.

o
< =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

.I..) However..

This intuition is correct if there is a path of undiscovered nodes
from u to v when dfs(u) is called. dfs(4)

o
< =8

B ————T
e

I lllllllllllllllllllllll=ll

.I..) However..

his intuition is correct if there is a path of undiscovered nodes
from u to v when dfs(u) is called.

dfs(4)
dfs(2)

. dfs(1)
dfs(3)
dfs(5)

dfs(7)
I.) dfs(6)
= o

B ————T
.............................

I lllllllllllllllllllllll=l=
.-

.I..) However..

his intuition is correct if there is a path of undiscovered nodes
from u to v when dfs(u) is called. o
What calls are nested within
the dfs(2)?

dfs(4)
dfs(2)

. dfs(1)
dfs(3)
dfs(5)

dfs(7)
I..) dfs(6)
= o

B ————T
.............................

I lllllllllllllllllllllll=l=
.-

.I..) However..

his intuition is correct if there is a path of undiscovered nodes
from u to v when dfs(u) is called. o
What calls are nested within
the dfs(2)?

dfs(4)
dfs(2)

. dfs(1)
dfs(3)
dfs(5)

dfs(7)
I..) dfs(6)
= o

B ————T
.............................

I lllllllllllllllllllllll=ll

.I..) However..

his intuition is correct if there is a path of undiscovered nodes
from u to v when dfs(u) is called.

dfs(4)
dfs(2)

. dfs(1)
dfs(3)
dfs(5)

dfs(7)
I.) dfs(6)
= o

B ————T
.............................

Key Property of DFS (Informal)

o If at the time dfs(u) is called...
1. v is undiscovered; and
2. there is a path of undiscovered nodes from u to v,

..then dfs(v) will start and finish during the call to dfs(u).

11113999

T ————
.............................

==llllllllllllllllllllllll=l=
.-

.I._’
B Exercise #2

Suppose while calling dfs on node u, we see that neighbor v is
pending. True or False: there is a path from v to u.

o
< =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

II.__,
Exercise

“Suppose while calling dfs on node u, we see that neighbor v is
pending. True or False: there is a path from v to u.

IP <
< =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

II.__,
Exercise

“Suppose while calling dfs on node u, we see that neighbor v is
pending. True or False: there is a path from v to u.

(O—

o
< =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

II.__,
Exercise

“Suppose while calling dfs on node u, we see that neighbor v is
pending. True or False: there is a path from v to u.

T ————
e

N A A
- =aEE
.

Suppose while calling dfs on node u, we see that neighbor v is
pending. True or False: there is a path from v to u.

dfs(u)

CCCCCCece

T ————
.............................

N A A
- =aEE
.

Suppose while calling dfs on node u, we see that neighbor v is
pending. True or False: there is a path from v to u.

V is pending. What
i ?
dfs(u) does it mean-

CCCCCCece

T ————
.............................

N A A
- =aEE
.

Suppose while calling dfs on node u, we see that neighbor v is
pending. True or False: there is a path from v to u.

There was a call to dfs(v)
dfs(u) already, before dfs(u)

CCCCCCece

T ————
.............................

N A A
- =aEE
.

Suppose while calling dfs on node u, we see that neighbor v is
pending. True or False: there is a path from v to u.

Are they nested?
dfs(v) Y

dfs(u)

CCCCCCece

T ————
.............................

N A A
- =aEE
.

Suppose while calling dfs on node u, we see that neighbor v is
pending. True or False: there is a path from v to u.

df Yes! Because v is not
s(v) finished yet, it is not red.

dfs(u)

CCCCCCece

T ————
.............................

N A A
- =aEE
.

Suppose while calling dfs on node u, we see that neighbor v is
pending. True or False: there is a path from v to u.

There is a path from v to u,
from our key property.

dfs(v)

dfs(u)

If at the time dfs(p) is called...

1. d is undiscovered; and

2. there is a path of undiscovered nodes from
ptod,

-------- ...then dfs(d) will start and finish during the call
todfs(p).

39999944

|O'

e —————
Lttt

N A A
- =aEE
.

Suppose while calling dfs on node u, we see that neighbor v is
pending. True or False: there is a path from v to u.

There is a path from u to v,
(v is a neighbor).

dfs(v)

dfs(u)

CCCCCCece

T ————
.............................

!llllllllllllllllllllll=l=
.-

Start and Finish Times

e Keep a running clock (an integer).

e For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

e Increment clock whenever node is marked pending/visited.

"l'f‘l"!"f'!"!."!'

T ————
.............................

199999949

----_----d
R e e I R R

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
pending/visited |

“‘l‘tﬂ"ﬂ'ﬂ'

N A A
——— =aEE
.

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
pending/visited |

T ————
.............................

“‘l‘tﬂ"ﬂ'ﬂ'

N A A
——— =aEE
.

[N N N v v v v
dfs(a)

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
pending/visited |

T ————
.............................

“‘l‘tﬂ"ﬂ'ﬂ'

N A A
——— =aEE
.

dfs(a)
dfs(b)

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
pending/visited |

T ————
.............................

“‘l‘tﬂ"ﬂ'ﬂ'

N A A
——— =aEE
.

dfs(a)
dfs(b)
dfs(d)

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
pending/visited |

T ————
.............................

"'l't'!.'t"ﬂ'ﬂ'

N A A
——— =aEE
.

dfs(a)
dfs(b)
dfs(d)
dfs(e)

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
pending/visited |

T ————
.............................

"'l't'!.'t"ﬂ'ﬂ'

N A A
——— =aEE
.

dfs(a)
dfs(b)
dfs(d)
dfs(e)
dfs(g)

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
pending/visited |

T ————
.............................

"'l't'!.'t"ﬂ'ﬂ'

N A A
——— =aEE
.

dfs(a)
dfs(b)
dfs(d)
dfs(e)
dFster

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
pending/visited |

T ————
.............................

"'l't'!.'t"ﬂ'ﬂ'

N A A
——— =aEE
.

dfs(a)
dfs(b)
dfs(d)
dfs(e)
aFs{er
dfs(h)

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
pending/visited |

T ————
.............................

"'l't'!.'t"ﬂ'ﬂ'

N A A
——— =aEE
.

dfs(a)
dfs(b)
dfs(d)
dfs(e)
dFster
dfsthy

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
pending/visited |

T ————
.............................

"'l't'!.'t"ﬂ'ﬂ'

N A A
——— =aEE
.

dfs(a)
dfs(b)
dfs(d)
dfs{ey
dFster
dfsthy

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
pending/visited |

T ————
.............................

"'l't'!.'t"ﬂ'ﬂ'

N A A
——— =aEE
.

dfs(a)
dfs(b)
dfs(d)
dfs{ey
dFster

eFsthy
dfs(i)

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
pending/visited |

T ————
.............................

"'l't'!.'t"ﬂ'ﬂ'

N A A
——— =aEE
.

dfs(a)
dfs(b)
dfs(d)
dfs{ey
dFster
eFsthy
dfs{iy

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
pending/visited |

T ————
.............................

"'l't'!.'t"ﬂ'ﬂ'

N A A
——— =aEE
.

dfs(a)
dfs(b)
dfs{ey
dfs{ey
dFster
eFsthy
dfs{iy

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
pending/visited |

T ————
.............................

ceeecece

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
pending/visited |

T ————
.............................

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
= pending/visited |

B ————T
.............................

dfs(f)

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
= pending/visited |

B ————T
.............................

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
= pending/visited |

B ————T
.............................

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
= pending/visited |

B ————T
.............................

For each node, record
o Start time: time when marked pending
o Finish time: time when marked visited

Increment clock whenever node is marked
= pending/visited |

B ————T
.............................

EEEEEEEEEEEEEEEEEEE. L
o :
B L
B L
B B
B L
B L
B B
. 10/11 .
B L
L Note: B
- Intervals are either fully contained
=p inside each other (i.e. d and e) =
P - Or completely separate. (i.e. i and f)

= - No overlaps .
T ——— T ———

N

!lIlllllllllllllllllllll=ll

from dataclasses import dataclass .

adataclass

class Times:
clock: int
start: dict
finish: dict

-"l'f'!.'f"f'!"!."!'

T ————
.........................i...

!lIlllllllllllllllllllll=ll

from dataclasses import dataclass .

adataclass

class Times:
clock: int
start: dict
finish: dict

def full_dfs_times(graph):
status = {node: 'undiscovered' for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}
times = Times(clock=0, start={}, finish={})
for u in graph.nodes:
if status[u] == 'undiscovered':

dfs_times(graph, u, status, times)

return times, predecessor

"l'f'!.'f"f'!"!."!'

T ————
.............................

ceecccce

from dataclasses import dataclass

@dataclass
class Times:

def

def

clock: int
start: dict
finish: dict

full_dfs_times(graph):
status = {node: 'undiscovered' for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}
times = Times(clock=0, start={}, finish={})
for u in graph.nodes:
if status[u] == 'undiscovered':

dfs_times(graph, u, status, times)

return times, predecessor

dfs_times(graph, u, status, predecessor, times):
times.clock += 1
times.start[u] = times.clock
status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)
if status[v] == 'undiscovered':
predecessor[v] = u
dfs_times(graph, v, status, times)
status[u] = 'visited'
times.clock += 1
times.finish[u] = times.clock

———
I

Key Property of DFS

e Suppose dfs(u) is called before dfs(v).

e |f when dfs(u) is called there is a path of undiscovered
nodes from u to v, then:

start[u] < start[v] < finish[v] < finish[u].

e Otherwise:

start[u] < finish[u] < start[v] < finish[Vv]

e

T ————
.............................

Key Property

e Take any two nodes u and v (u = v).
e Assume for simplicity that start[u] < start[v].

e Exactly one of these is true:
o start[u] < start[v] < finish[v] < finish[u]
o start[u] < finish[u] < start[v] < finish[v]

11113999

T ————
.............................

T ———
..............................

93333390

e A cycle in a directed graph is a path that starts and ends
at the same node.

Cycles

I lllllllllllllllllllllll=ll

o
.I-’ Cycle %

~ o Alternatively: there is a cycle if u is reachable from v and v
is reachable from u, for some u # v.

o
< =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

DAG

e A directed acyclic graph (DAG) is a directed graph with no
cycles.

="’ =8

B ————T
e

=Illllllllllllllllllllllll=ll

L
cee
O
S
5
$
B
3

- e A graphis cyclic even if it has only one cycle.
o It doesn’t have to be the whole graph.

T

T ————
.............................

=I..) Detecting chles

e \We check for cycles by looking for back edges in a full DFS.

e (u,v)is a back edge if while visiting node u, we see that v is

pending.
.I
= =

B ————T
.............................

P # back edge (u, v) found!

L ————
.............................

IIIlIIIIIIIIIIIIIIIIIIIIIIIIII
=I..) Detecting Cycles Co— -.=
0 O
. e \We check for cycles by looking for back edges in a full DFS. .
. e (u,v)is a back edge if while visiting node u, we see that v is .
.t pending. .
= =
. for v in graph.neighbors(u): # explore edge (u, v) .
. if status[v] == 'undiscovered': .
dfs(graph, v, status) .

elif status[v] == 'pending': .

I O
=

O

N

T R ————
-ttt

T R ————
-ttt

T R ————
-ttt

T R ————
-ttt

T R ————
-ttt

T R ————
-ttt

=l

A directed graph has a cycle if (and only if) a full DFS finds a

back edge.

CEEREREREY

Why?

e If a back edge (u, v) is found, then a cycle exists.
o Suppose v is pending when we visit u.
o This means that there is a path from v to u.
o There is also a path from u to v.

o So there is a cycle.

11113999

T ————
.............................

If a cycle exists, then there is a back edge.

o Suppose thereisacyclev, - v, —»~ —v, —v.

o Without loss of generality, assume v, is the first node in

the cycle that is visited by the full DFS.

At the moment of dfs(v.), there is a path of undiscovered
nodes between v, and v..

Therefore dfs(v)) will be called during dfs(v,).
During dfs(v,), we'll see the back edge.

m v will be pending.

T ————
.............................

I lllllllllllllllllllllll=l=
.-

II.__,
Question

e Suppose v is reachable from u in a DAG.

True or False: after a full DFS, finish[v] < finish[u].

B ————T
.............................

ll lllllllllllllllllllllll=ll

II.__,
Question

.t e Suppose vis reachable from u in a DAG.

=t True or False: after a full DFS, finish[v] < finish[u].

T ————
e

I
A True

J
Bl

-
.I_’ Question B: False .

C: Not sure, need time to process
t the algorithm.
. e Suppose vis reachable from u in a DAG.

True or False: after a full DFS, finish[v] < finish[u].

T ————
e

Case1 Start DFS() -> True

.I_’ Case 2: Start somewhere else, say, .
Question DFS(v), then restart the DFS. -> True

.i e Suppose vis reachable from u in a DAG.

J
Bl

True or False: after a full DFS, finish[v] < finish[u].

T ————
e

ll lllllllllllllllllllllll=l=
.-

.I"‘. Claim

e |Ifvis reachable from uin a DAG, then:

finish[v] < finish[u]

T ————
e

T ———
..............................

Applications of DFS

e Is node v reachable from node u? DFS, BFS

Is the graph connected? DFS, BFS

How many connected components? DFS, BFS
Find the shortest path between u and v. DFS, BFS
Does the graph have a cycle? DFS, BFS

11113999

T ————
.............................

==llllllllllllllllllllllll=ll

.I'-’ Prerequisite Graphs

DSC 10 — DSC 20 — DSC 30 — DSC 80

e ¥ e N

MATH 18 — DSC 40A — DSC 40B [— DSC 100

.I Goal: find order in which classes should be taken in order to
= satisfy the prerequisites of DSC 100.

T ————
e

=l

S

2

23333333

e Prerequisite graphs are (Or they should be, at least!) DAGs.

Topological Sorts

e Given: a DAG, G = (V , E).

e Compute: an ordering of V such that if (u, v) € E, then u
comes before v in the ordering.

e This is called a topological sort of G.

11113999

T ————
.............................

.I.-—' Example

DSC 10 —{ DSC 20 — DSC 30 — DSC 80

i ¥ g

MATH 18 — DSC 40A — DSC 40B [— DSC 100

I lllllllllllllllllllllll=l=
.-

. MATH 18, DSC 10, DSC 40A, DSC 20, DSC 40B, DSC 30, DSC 80, DSC 100

B ————T
.............................

=l

S

0

CEEREREREY

e There can be many valid topological sorts!

==llllllllllllllllllllllll=ll

=I..) Computing a Topological Sort

.t - o How do we compute a topological sort, algorithmically?

.i e Observation: if vis reachable from u, v must come after u

in the topological sort.

T ————
e

Recall

e Take any two nodes u and v (u # v).
e Assume the graph is a DAG, run DFS.

e If visreachable from u, then finish[v] < finish[u].

11113999

T ————
.............................

Putting it together...

Observation: If v is reachable from u, then v must come afteru in t
topological sort.

Recall: If v is reachable from u, then finish[v] < finish[u].

11111999

T ————
.............................

==llllllllllllllllllllllll=l=
.-

=I-’ Compute start and finish times using DSC 10
o as the source.

1/
DSC 10 —{ DSC 20 — DSC 30 — DSC 80

e ¥ e

II_,. MATH 18 |-/ DSC 40A |-/ DSC 40B |-/ DSC 100

< =8

B ————T
e

==llllllllllllllllllllllll=l=
.-

=I-’ Compute start and finish times using DSC 10
o as the source.

1/
DSC 10 —{ DSC 20 — DSC 30 — DSC 80

e ¥ e

II_,. MATH 18 |-/ DSC 40A |-/ DSC 40B |-/ DSC 100

< 2/ =8

B ————T
e

==llllllllllllllllllllllll=l=
.-

=I-’ Compute start and finish times using DSC 10
o as the source.

1/
DSC 10 —{ DSC 20 — DSC 30 — DSC 80

e ¥ e

II_,. MATH 18 |-/ DSC 40A |-/ DSC 40B |-/ DSC 100

2/ 3/
= o

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

=I-’ Compute start and finish times using DSC 10
o as the source.

1/
DSC 10 —{ DSC 20 — DSC 30 — DSC 80

e ¥ e

II_,. MATH 18 |-/ DSC 40A |-/ DSC 40B |-/ DSC 100

2/ 3/4
= =i

B ————T
.............................

=I-’ Compute start and finish times using DSC 10
o as the source.

1/
DSC 10 —{ DSC 20 — DSC 30 — DSC 80

e ¥ e

II_,. MATH 18 |-/ DSC 40A |-/ DSC 40B |-/ DSC 100

2/5 3/4
iII =i

B ————T
||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“|||||

=I-’ Compute start and finish times using DSC 10
o as the source.

1/ 6/
DSC 10 —— DSC 20 —{ DSC 30 — DSC 80

e ¥ e

II_,. MATH 18 |-/ DSC 40A |-/ DSC 40B |-/ DSC 100

2/5 3/4
iII =i

B ————T
||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“|||||

=I-’ Compute start and finish times using DSC 10
o as the source.

1/ 6/ 7/
DSC 10 —— DSC 20 —{ DSC 30 — DSC 80

e ¥ e

II_,. MATH 18 |-/ DSC 40A |-/ DSC 40B |-/ DSC 100

2/5 3/4
iII =i

B ————T
||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“|||||

=I-’ Compute start and finish times using DSC 10
o as the source.

1/ 6/ 7/8
DSC 10 —— DSC 20 —{ DSC 30 — DSC 80

e ¥ e

II_,. MATH 18 |-/ DSC 40A |-/ DSC 40B |-/ DSC 100

2/5 3/4
iII =i

B ————T
||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“|||||

=I-’ Compute start and finish times using DSC 10
o as the source.

1/ 6/9 7/8
DSC 10 —— DSC 20 —{ DSC 30 — DSC 80

e ¥ e

II_,. MATH 18 |-/ DSC 40A |-/ DSC 40B |-/ DSC 100

2/5 3/4
iII =i

B ————T
||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“|||||

=I-’ Compute start and finish times using DSC 10
o as the source.

1/10 6/9 7/8
DSC 10 DSC 20 — DSC 30 —{ DSC 80

e ¥ e

II_,. MATH 18 |-/ DSC 40A |-/ DSC 40B |-/ DSC 100

2/5 3/4
iII =i

B ————T
||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“|||||

=I-’ Compute start and finish times using DSC 10
o as the source.

11/ 1/10 6/9 7/8
DSC 10 — DSC 20 — DSC 30 — DSC 80

e ¥ e

II_,. MATH 18 |-/ DSC 40A |-/ DSC 40B |-/ DSC 100

2/5 3/4
iII =i

B ————T
||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“|||||

I N) D D ll“llIIHIIII“IIII“I'II“IIIII

=I-’ Compute start and finish times using DSC 10
o as the source.

11/ 1/10 6/9 7/8
DSC 10 — DSC 20 — DSC 30 — DSC 80

e ¥ e

II_,. MATH 18 |-/ DSC 40A |-/ DSC 40B |-/ DSC 100

12/ 2/5 3/4
= =

B ————T
.............................

=I-’ Compute start and finish times using DSC 10
o as the source.

11/ 1/10 6/9 7/8
DSC 10 — DSC 20 — DSC 30 — DSC 80

e ¥ e

II_,. MATH 18 |-/ DSC 40A |-/ DSC 40B |-/ DSC 100

12/13 2/5 3/4
= =

B ————T
.............................

=I-’ Compute start and finish times using DSC 10
o as the source.

11/14 1/10 6/9 7/8
DSC 10 — DSC 20 — DSC 30 — DSC 80

e ¥ e

II_,. MATH 18 |-/ DSC 40A |-/ DSC 40B |-/ DSC 100

12/13 2/5 3/4
= =

B ————T
.............................

=I-’ Compute start and finish times using DSC 10

B as the source.
. |
o

11/14 1/10 6/9 7/8
DSC 10 — DSC 20 — DSC 30 — DSC 80

e ¥ e

MATH 18 — DSC 40A — DSC 40B [— DSC 100

12/13 2/5 3/4

T ————
e

==llllllllllllllllllllllll=l=
.-

=I-’ Compute start and finish times using DSC 10

B as the source.
. |
o

11/14 1/10 6/9 7/8
DSC 10 — DSC 20 — DSC 30 — DSC 80

e ¥ e

MATH 18 — DSC 40A — DSC 40B [— DSC 100

15/16 12/13 2/5 3/4

What is next?

T ————
e

==llllllllllllllllllllllll=l=
.-

=I-’ Compute start and finish times using DSC 10

B as the source.
. |
o

11/14 1/10 6/9 7/8
DSC 10 — DSC 20 — DSC 30 — DSC 80

e ¥ e

MATH 18 — DSC 40A — DSC 40B [— DSC 100

15/16 12/13 2/5 3/4

16, 14, 13, 10, 9, 8, 5, 4

T ————
e

==llllllllllllllllllllllll=l=
.-

=I-’ Compute start and finish times using DSC 10

B as the source.
. |
o

b 11/14 1/10 6/9 7/8
.t DSC 10 — DSC 20 — DSC 30 — DSC 80

e ¥ e

=I,_,. MATH 18 |/ DSC 40A |-/ DSC 40B |-/ DSC 100
B
B

15/16 12/13 2/5 3/4

i.,. M18, D10, D40A, D20, D30, D80, b40B, D100.

T ————
e

ll lllllllllllllllllllllll=ll

.I"’ Idea

.t e Observation: If v is reachable from u, then v must come
after u in the topological sort.

Recall: If v is reachable from u, then finish[v] <
finish[u].

Therefore: if finish[v] < finish[u], then v must come
after u in the topological sort.

Idea: sort nodes in descending order by finish time

T ————
e

Algorithm

e To find a topological sort (if it exists):
o Compute times with Full DFS.
o Sort in descending order by finish time.

e Time complexity:

11113999

T ————
.............................

Algorithm

e To find a topological sort (if it exists):
o Compute times with Full DFS.
o Sort in descending order by finish time.

o Time complexity: . g (what else?)

11113999

T ————
.............................

Algorithm

e To find a topological sort (if it exists):
o Compute times with Full DFS.
o Sort in descending order by finish time.

e Time complexity: /., g . yvoqv

11113999

T ————
.............................

Algorithm

e To find a topological sort (if it exists):
o Compute times with Full DFS.
o Sort in descending order by finish time.

e Time complexity: g . v |oqV)

11113999

T ————
.............................

Thank you!

.I CampusWire!
=l--

)

