
❖

DSC 40B
Lecture 22 : Depth

First Search

❖

Depth First Search

❖

Visiting the Next Node

● Which node do we process next in a search?

● BFS: the oldest pending node.

● DFS (today): the newest pending node.
○ Naturally recursive.
○ Useful for solving different problems.

❖

Example (BFS)

u

❖

Example (BFS)

u

❖

Example (BFS)

u

❖

Example (BFS)

u

❖

Example (BFS)

u

❖

Example (DFS)

u

❖

Example (DFS)

u

❖

Example (DFS)

u

❖

Example (DFS)

u

❖

Example (DFS)

u

❖

Example (DFS)

u

❖

Example (DFS)

u

❖

Example (DFS)

u

❖

Example (DFS)

u

❖

Example (DFS)

u

❖

Example (DFS)
def dfs(graph, u, status = None):

”””Start a DFS at `u`.”””
initialize status if it was not passed
if status is None:

status = {node: 'undiscovered' for node in graph.nodes}

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)

What node becomes v?
A: e
B: h
C: i

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)
 dfs(i)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)
 dfs(i)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)
 dfs(i)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)
 dfs(i)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)
 dfs(i)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)
 dfs(i)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)
 dfs(i)
 dfs(c)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)
 dfs(i)
 dfs(c)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)
 dfs(i)
 dfs(c)
 dfs(f)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)
 dfs(i)
 dfs(c)
 dfs(f)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)
 dfs(i)
 dfs(c)
 dfs(f)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)
 dfs(i)
 dfs(c)
 dfs(f)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)
 dfs(i)
 dfs(c)
 dfs(f)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)
 dfs(i)
 dfs(c)
 dfs(f)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)
 dfs(i)
 dfs(c)
 dfs(f)

❖

Write the nested function calls for a DFS on the graph
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)
 dfs(g)
 dfs(h)
 dfs(i)
 dfs(c)
 dfs(f)

❖

Differences

● In BFS, we “finish” a node 𝑢 before moving on to the next.

● In DFS, we go to many other nodes, but “come back” to 𝑢.

● We’ll see that the nested structure of the recursive
function calls gives us useful new information about the
graph’s structure.

❖

Full DFS
● dfs(u) will visit all nodes reachable from 𝑢.

○ But not all nodes may be reachable from 𝑢!
● To visit all nodes in graph, need full DFS.

def full_dfs(graph):
status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:
if status[node] == 'undiscovered'

dfs(graph, node, status)

❖

❖

Time Complexity

● In a full DFS:
○ dfs called on each node exactly once.
○ Similar to BFS, each edge is explored exactly:

■ once if directed
■ twice if undirected

● Time: Θ(𝑉 + 𝐸), just like BFS.

❖

BFS vs DFS Check
BFS (1): What do
you expect to see
first?

A: Level (2, 7, 8)

B: Level (3, 6, 9, 12)

C: Branch (4, 3, 2, 1)

D: Branch (12, 8 , 1)

E: Something else

❖

BFS(1)

❖

BFS(1)

❖

BFS(1)

❖

BFS(1)

❖

DFS(1)

❖

DFS(1)

❖

DFS(1)

❖

DFS(1)

❖

Nesting Properties of DFS

❖

Motivation

❖

Is there a cycle?

❖

Why do we care?

● In computer programs (dependency graphs):
○ If you have tasks that depend on each other, a cycle means a

circular dependency — task A depends on B, and B depends
on A — so you can’t complete any of them. Detecting the
cycle helps prevent deadlocks or infinite loops.

● In scheduling or planning:
○ When building a project schedule or course prerequisite list, a

cycle means it’s impossible to order the tasks — e.g., “CS101
requires CS201, and CS201 requires CS101.” You can’t take
either first.

❖

Last time: DFS mic

1

2

3

4

❖

Last time: DFS
dfs(1)

1

2

3

4

❖

Last time: DFS
dfs(1)

1

2

3

4

❖

Last time: DFS
dfs(1)

 dfs(2)
1

2

3

4

❖

Last time: DFS
dfs(1)

 dfs(2)

 dfs(3)1

2

3

4

❖

Last time: DFS
dfs(1)

 dfs(2)

 dfs(3)1

2

3

4

❖

Last time: DFS
dfs(1)

 dfs(2)

 dfs(3)

 dfs(4)

1

2

3

4

❖

Last time: DFS
dfs(1)

 dfs(2)

 dfs(3)

 dfs(4)

1

2

3

4

❖

Last time: DFS
dfs(1)

 dfs(2)

 dfs(3)

 dfs(4)

1

2

3

4

❖

Last time: DFS
dfs(1)

 dfs(2)

 dfs(3)

 dfs(4)

1

2

3

4

❖

Exercise #1
True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
 dfs(v)

❖

Exercise
True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
 dfs(v)

❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
 dfs(v)

dfs(4)

 u

❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
 dfs(v)

dfs(4)
 ….
 dfs(1)

 u v

❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
 dfs(v)

dfs(4)
 ….
 dfs(1)

 u v

dfs(4)

❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
 dfs(v)

dfs(4)
 ….
 dfs(1)

 u v

dfs(4)
 dfs(2)

❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
 dfs(v)

dfs(4)
 ….
 dfs(1)

 u v

dfs(4)
 dfs(2)

❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
 dfs(v)

dfs(4)
 ….
 dfs(1)

 u v

dfs(4)
 dfs(2)
 dfs(1)

❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
 dfs(v)

dfs(4)
 ….
 dfs(1)

 u v

dfs(4)
 dfs(2)
 dfs(1)

So far it works out

❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
 dfs(v)

dfs(4)
 ….
 dfs(1)

 u v

dfs(4)
 dfs(2)
 dfs(1)
 dfs(3)

❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
 dfs(v)

dfs(4)
 ….
 dfs(1)

 u v

dfs(4)
 dfs(2)
 dfs(1)
 dfs(3)

❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
 dfs(v)

dfs(4)
 ….
 dfs(1)

 u v

dfs(4)
 dfs(2)
 dfs(1)
 dfs(3)

❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
 dfs(v)

dfs(4)
 ….
 dfs(1)

 u v

dfs(4)
 dfs(2)
 dfs(1)
 dfs(3)

❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
 dfs(v)

dfs(4)
 ….
 dfs(1)

 u v

dfs(4)
 dfs(2)
 dfs(1)
 dfs(3)
 dfs(5)

And now we can see that it
is False.

❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
 dfs(v)

dfs(4)
 ….
 dfs(1)

 u v

dfs(4)
 dfs(2)
 dfs(1)
 dfs(3)
 dfs(5)

And now we can see that it
is False.

❖

False!

● Suppose dfs(4) is the root call.
● When dfs(1) is called, node 5 is undiscovered
● But dfs(5) is not called during dfs(1).

❖

However..
This intuition is correct if there is a path of undiscovered nodes
from 𝑢 to 𝑣 when dfs(u) is called.

1

2

3

4

5

6

7

dfs(u)
 ….
 dfs(v)

❖

However..
This intuition is correct if there is a path of undiscovered nodes
from 𝑢 to 𝑣 when dfs(u) is called.

1

2

3

4

5

6

7

❖

However..
This intuition is correct if there is a path of undiscovered nodes
from 𝑢 to 𝑣 when dfs(u) is called.

1

2

3

4

5

6

7

dfs(4)

❖

However..
This intuition is correct if there is a path of undiscovered nodes
from 𝑢 to 𝑣 when dfs(u) is called.

1

2

3

4

5

6

7

dfs(4)
 dfs(2)
 dfs(1)
 dfs(3)
 dfs(5)
 dfs(7)
 dfs(6)

❖

However..
This intuition is correct if there is a path of undiscovered nodes
from 𝑢 to 𝑣 when dfs(u) is called.

1

2

3

4

5

6

7

dfs(4)
 dfs(2)
 dfs(1)
 dfs(3)
 dfs(5)
 dfs(7)
 dfs(6)

What calls are nested within
the dfs(2)?

❖

However..
This intuition is correct if there is a path of undiscovered nodes
from 𝑢 to 𝑣 when dfs(u) is called.

1

2

3

4

5

6

7

dfs(4)
 dfs(2)
 dfs(1)
 dfs(3)
 dfs(5)
 dfs(7)
 dfs(6)

What calls are nested within
the dfs(2)?

❖

However..
This intuition is correct if there is a path of undiscovered nodes
from 𝑢 to 𝑣 when dfs(u) is called.

1

2

3

4

5

6

7

dfs(4)
 dfs(2)
 dfs(1)
 dfs(3)
 dfs(5)
 dfs(7)
 dfs(6)

❖

Key Property of DFS (Informal)

● If at the time dfs(u) is called…
1. 𝑣 is undiscovered; and
2. there is a path of undiscovered nodes from 𝑢 to 𝑣,

● ...then dfs(v) will start and finish during the call to dfs(u).

❖

Exercise #2

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is
pending. True or False: there is a path from 𝑣 to 𝑢.

❖

Exercise

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is
pending. True or False: there is a path from 𝑣 to 𝑢.

u

❖

Exercise

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is
pending. True or False: there is a path from 𝑣 to 𝑢.

u v

❖

Exercise

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is
pending. True or False: there is a path from 𝑣 to 𝑢.

u v

 ……..

u

 ……..

 ……..

 ……..

❖

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is
pending. True or False: there is a path from 𝑣 to 𝑢.

u v

 ……..

u

 ……..

 ……..

 ……..

dfs(u)

❖

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is
pending. True or False: there is a path from 𝑣 to 𝑢.

u v

 ……..

u

 ……..

 ……..

 ……..

dfs(u)

V is pending. What
does it mean?

❖

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is
pending. True or False: there is a path from 𝑣 to 𝑢.

u v

 ……..

u

 ……..

 ……..

 ……..

dfs(u)

There was a call to dfs(v)
already,before dfs(u)

❖

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is
pending. True or False: there is a path from 𝑣 to 𝑢.

u v

 ……..

u

 ……..

 ……..

 ……..

dfs(v)
 ….
 dfs(u)

Are they nested?

❖

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is
pending. True or False: there is a path from 𝑣 to 𝑢.

u v

 ……..

u

 ……..

 ……..

 ……..

dfs(v)
 ….
 dfs(u)

Yes! Because v is not
finished yet, it is not red.

❖

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is
pending. True or False: there is a path from 𝑣 to 𝑢.

u v

 ……..

u

 ……..

 ……..

dfs(v)
 ….
 dfs(u)

There is a path from v to u,
from our key property.

If at the time dfs(p) is called…
1. d is undiscovered; and
2. there is a path of undiscovered nodes from

p to d,

 ...then dfs(d) will start and finish during the call
to dfs(p).back

❖

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is
pending. True or False: there is a path from 𝑣 to 𝑢.

u v

 ……..

u

 ……..

 ……..

dfs(v)
 ….
 dfs(u)

There is a path from u to v,
(v is a neighbor).

❖

Start and Finish Times

● Keep a running clock (an integer).

● For each node, record
○ Start time: time when marked pending
○ Finish time: time when marked visited

● Increment clock whenever node is marked pending/visited.

❖

a

b

c
f

d
i

e

g

h

❖

a

b

c
f

d
i

e

g

h

Clock:
 0

❖

a

b

c
f

d
i

e

g

h

Clock:
 1

1/

dfs(a)

❖

a

b

c
f

d
i

e

g

h

Clock:
 2

1/

dfs(a)
 dfs(b)

2/

❖

a

b

c
f

d
i

e

g

h

Clock:
 3

1/

dfs(a)
 dfs(b)
 dfs(d)

2/

3/

❖

a

b

c
f

d
i

e

g

h

Clock:
 4

1/

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)

2/

3/

4/

❖

a

b

c
f

d
i

e

g

h

Clock:
 5

1/

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)

 dfs(g)

2/

3/

4/

5/

❖

a

b

c
f

d
i

e

g

h

Clock:
 6

1/

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)

 dfs(g)

2/

3/

4/

5/ 6

❖

a

b

c
f

d
i

e

g

h

Clock:
 7

1/

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)

 dfs(g)
 dfs(h)

2/

3/

4/

5/ 6

7/

❖

a

b

c
f

d
i

e

g

h

Clock:
 8

1/

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)

 dfs(g)
 dfs(h)

2/

3/

4/

5/ 6

7/ 8

❖

a

b

c
f

d
i

e

g

h

Clock:
 9

1/

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)

 dfs(g)
 dfs(h)

2/

3/

4/ 9

5/ 6

7/ 8

❖

a

b

c
f

d
i

e

g

h

Clock:
 10

1/

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)

 dfs(g)
 dfs(h)
dfs(i) 2/

3/

4/ 9

5/ 6

7/ 8

10/

❖

a

b

c
f

d
i

e

g

h

Clock:
 11

1/

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)

 dfs(g)
 dfs(h)
dfs(i) 2/

3/

4/ 9

5/ 6

7/ 8

10/11

❖

a

b

c
f

d
i

e

g

h

Clock:
 12

1/

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)

 dfs(g)
 dfs(h)
dfs(i) 2/

3/12

4/ 9

5/ 6

7/ 8

10/11

❖

a

b

c
f

d
i

e

g

h

Clock:
 13

1/

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)

 dfs(g)
 dfs(h)
dfs(i) 2/13

3/12

4/ 9

5/ 6

7/ 8

10/11

❖

a

b

c
f

d
i

e

g

h

Clock:
 14

1/

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)

 dfs(g)
 dfs(h)
dfs(i)

dfs(c)

2/13

3/12

4/ 9

5/ 6

7/ 8

10/11

14/

❖

a

b

c
f

d
i

e

g

h

Clock:
 15

1/

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)

 dfs(g)
 dfs(h)
dfs(i)

dfs(c)
 dfs(f)

2/13

3/12

4/ 9

5/ 6

7/ 8

10/11

14/ 15/

❖

a

b

c
f

d
i

e

g

h

Clock:
 16

1/

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)

 dfs(g)
 dfs(h)
dfs(i)

dfs(c)
 dfs(f)

2/13

3/12

4/ 9

5/ 6

7/ 8

10/11

14/ 15/16

❖

a

b

c
f

d
i

e

g

h

Clock:
 17

1/

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)

 dfs(g)
 dfs(h)
dfs(i)

dfs(c)
 dfs(f)

2/13

3/12

4/ 9

5/ 6

7/ 8

10/11

14/17 15/16

❖

a

b

c
f

d
i

e

g

h

Clock:
 18

1/18

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)

 dfs(g)
 dfs(h)
dfs(i)

dfs(c)
 dfs(f)

2/13

3/12

4/ 9

5/ 6

7/ 8

10/11

14/17 15/16

❖

a

b

c
f

d
i

e

g

h

Clock:
 18

1/18

dfs(a)
 dfs(b)
 dfs(d)
 dfs(e)

 dfs(g)
 dfs(h)
dfs(i)

dfs(c)
 dfs(f)

2/13

3/12

4/ 9

5/ 6

7/ 8

10/11

14/17 15/16

Note:
- Intervals are either fully contained

inside each other (i.e. d and e)
- Or completely separate. (i.e. i and f)
- No overlaps

❖

❖

❖

❖

Key Property of DFS

● Suppose dfs(u) is called before dfs(v).

● If when dfs(u) is called there is a path of undiscovered
nodes from 𝑢 to 𝑣, then:

start[u] < start[v] < finish[v] < finish[u].

● Otherwise:

start[u] < finish[u] < start[v] < finish[v]

❖

Key Property

● Take any two nodes 𝑢 and 𝑣 (𝑢 ≠ 𝑣).
● Assume for simplicity that start[u] < start[v].

● Exactly one of these is true:
○ start[u] < start[v] < finish[v] < finish[u]
○ start[u] < finish[u] < start[v] < finish[v]

❖

Cycles

❖

Cycles

● A cycle in a directed graph is a path that starts and ends
at the same node.

❖

Cycle

● Alternatively: there is a cycle if 𝑢 is reachable from 𝑣 and 𝑣
is reachable from 𝑢, for some 𝑢 ≠ 𝑣.

❖

DAG

● A directed acyclic graph (DAG) is a directed graph with no
cycles.

❖

Cyclic Graphs

● A graph is cyclic even if it has only one cycle.
○ It doesn’t have to be the whole graph.

❖

Detecting Cycles Link

● We check for cycles by looking for back edges in a full DFS.

● (𝑢, 𝑣) is a back edge if while visiting node 𝑢, we see that 𝑣 is
pending.

u v

❖

Detecting Cycles

● We check for cycles by looking for back edges in a full DFS.
● (𝑢, 𝑣) is a back edge if while visiting node 𝑢, we see that 𝑣 is

pending.
...
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

elif status[v] == 'pending':
back edge (u, v) found!

...

u v

❖

Example

1 2

3
4

❖

Example

1 2

3
4

❖

Example

1 2

3
4

❖

Example

1 2

3
4

❖

Example

1 2

3
4

❖

Example

1 2

3
4

Back edge

❖

Theorem

A directed graph has a cycle if (and only if) a full DFS finds a
back edge.

❖

Why?

● If a back edge (𝑢, 𝑣) is found, then a cycle exists.

○ Suppose 𝑣 is pending when we visit 𝑢.
○ This means that there is a path from 𝑣 to 𝑢.
○ There is also a path from 𝑢 to 𝑣.
○ So there is a cycle.

❖

Why?

● If a cycle exists, then there is a back edge.

○ Suppose there is a cycle 𝑣1 → 𝑣2 → ⋯ → 𝑣𝑘 → 𝑣1.

○ Without loss of generality, assume 𝑣1 is the first node in
the cycle that is visited by the full DFS.

○ At the moment of dfs(𝑣1), there is a path of undiscovered
nodes between 𝑣1 and 𝑣𝑘.

○ Therefore dfs(𝑣𝑘) will be called during dfs(𝑣1).

○ During dfs(𝑣𝑘), we’ll see the back edge.

■ 𝑣1 will be pending.

❖

Question

● Suppose 𝑣 is reachable from 𝑢 in a DAG.

True or False: after a full DFS, finish[v] < finish[u].

❖

Question

● Suppose 𝑣 is reachable from 𝑢 in a DAG.

True or False: after a full DFS, finish[v] < finish[u].

u a b v

❖

Question

● Suppose 𝑣 is reachable from 𝑢 in a DAG.

True or False: after a full DFS, finish[v] < finish[u].

u a b v

A: True

B: False

C: Not sure, need time to process
the algorithm.

❖

Question

● Suppose 𝑣 is reachable from 𝑢 in a DAG.

True or False: after a full DFS, finish[v] < finish[u].

u a b v

Case 1: Start DFS(u) -> True

Case 2: Start somewhere else, say,
DFS(v), then restart the DFS. -> True

❖

Claim

● If 𝑣 is reachable from 𝑢 in a DAG, then:

 finish[v] < finish[u]

❖

Topological Sort

❖

Applications of DFS

● Is node 𝑣 reachable from node 𝑢? DFS, BFS

● Is the graph connected? DFS, BFS

● How many connected components? DFS, BFS

● Find the shortest path between 𝑢 and 𝑣. DFS, BFS

● Does the graph have a cycle? DFS, BFS

❖

Prerequisite Graphs

Goal: find order in which classes should be taken in order to
satisfy the prerequisites of DSC 100.

❖

Note

● Prerequisite graphs are (Or they should be, at least!) DAGs.

❖

Topological Sorts

● Given: a DAG, 𝐺 = (𝑉 , 𝐸).

● Compute: an ordering of 𝑉 such that if (𝑢, 𝑣) ∈ 𝐸, then 𝑢
comes before 𝑣 in the ordering.

● This is called a topological sort of 𝐺.

❖

Example

MATH 18, DSC 10, DSC 40A, DSC 20, DSC 40B, DSC 30, DSC 80, DSC 100

❖

Note

● There can be many valid topological sorts!

❖

Computing a Topological Sort

● How do we compute a topological sort, algorithmically?

● Observation: if 𝑣 is reachable from 𝑢, 𝑣 must come after 𝑢
in the topological sort.

❖

Recall

● Take any two nodes 𝑢 and 𝑣 (𝑢 ≠ 𝑣).
● Assume the graph is a DAG, run DFS.

● If 𝑣 is reachable from 𝑢, then finish[v] < finish[u].

❖

Putting it together...

● Observation: If 𝑣 is reachable from 𝑢, then 𝑣 must come after 𝑢 in the
topological sort.

● Recall: If 𝑣 is reachable from 𝑢, then finish[v] < finish[u].

❖

Compute start and finish times using DSC 10
as the source.

 1/

❖

Compute start and finish times using DSC 10
as the source.

 1/

 2/

❖

Compute start and finish times using DSC 10
as the source.

 1/

 2/ 3/

❖

Compute start and finish times using DSC 10
as the source.

 1/

 2/ 3/4

❖

Compute start and finish times using DSC 10
as the source.

 1/

 2/5 3/4

❖

Compute start and finish times using DSC 10
as the source.

 1/

 2/5 3/4

 6/

❖

Compute start and finish times using DSC 10
as the source.

 1/

 2/5 3/4

 6/ 7/

❖

Compute start and finish times using DSC 10
as the source.

 1/

 2/5 3/4

 6/ 7/8

❖

Compute start and finish times using DSC 10
as the source.

 1/

 2/5 3/4

 6/9 7/8

❖

Compute start and finish times using DSC 10
as the source.

 1/10

 2/5 3/4

 6/9 7/8

❖

Compute start and finish times using DSC 10
as the source.

 1/10

 2/5 3/4

 6/9 7/8 11/

❖

Compute start and finish times using DSC 10
as the source.

 1/10

 2/5 3/4

 6/9 7/8 11/

 12/

❖

Compute start and finish times using DSC 10
as the source.

 1/10

 2/5 3/4

 6/9 7/8 11/

 12/13

❖

Compute start and finish times using DSC 10
as the source.

 1/10

 2/5 3/4

 6/9 7/8 11/14

 12/13

❖

Compute start and finish times using DSC 10
as the source.

 1/10

 2/5 3/4

 6/9 7/8 11/14

 12/13 15/

❖

Compute start and finish times using DSC 10
as the source.

 1/10

 2/5 3/4

 6/9 7/8 11/14

 12/13 15/16

What is next?

❖

Compute start and finish times using DSC 10
as the source.

 1/10

 2/5 3/4

 6/9 7/8 11/14

 12/13 15/16

16, 14, 13, 10, 9, 8, 5, 4

❖

Compute start and finish times using DSC 10
as the source.

 1/10

 2/5 3/4

 6/9 7/8 11/14

 12/13 15/16

M18, D10, D40A, D20, D30, D80, D40B, D100.

❖

Idea

● Observation: If 𝑣 is reachable from 𝑢, then 𝑣 must come
after 𝑢 in the topological sort.

● Recall: If 𝑣 is reachable from 𝑢, then finish[v] <
finish[u].

● Therefore: if finish[v] < finish[u], then 𝑣 must come
after 𝑢 in the topological sort.

● Idea: sort nodes in descending order by finish time

❖

Algorithm

● To find a topological sort (if it exists):
○ Compute times with Full DFS.
○ Sort in descending order by finish time.

● Time complexity:

❖

Algorithm

● To find a topological sort (if it exists):
○ Compute times with Full DFS.
○ Sort in descending order by finish time.

● Time complexity: V + E (what else?)

❖

Algorithm

● To find a topological sort (if it exists):
○ Compute times with Full DFS.
○ Sort in descending order by finish time.

● Time complexity: V + E + V logV

❖

Algorithm

● To find a topological sort (if it exists):
○ Compute times with Full DFS.
○ Sort in descending order by finish time.

● Time complexity: Θ(E + V logV)

❖

Do you have any questions?

Thank you!

CampusWire!

