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Visiting the Next Node

●  Which node do we process next in a search?

●  BFS: the oldest pending node.

●  DFS (today): the newest pending node.
○ Naturally recursive.
○ Useful for solving different problems.
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Example (DFS)
def dfs(graph, u, status = None):

”””Start a DFS at `u`.”””
# initialize status if it was not passed
if status is None:

status = {node: 'undiscovered' for node in graph.nodes}

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
  dfs(b)



❖

Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
  dfs(b)
    dfs(d)
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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    dfs(d)
      dfs(e)
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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      dfs(e)
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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      dfs(e)
        dfs(g)
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)



❖

Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)

What node becomes v?
A:  e
B:  h
C:  i
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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        dfs(g)
        dfs(h)
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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        dfs(h)
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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        dfs(g)
        dfs(h)
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)
        dfs(h)
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)
        dfs(h)
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
  dfs(b)
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      dfs(e)
        dfs(g)
        dfs(h)
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)
        dfs(h)
      dfs(i)
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)
        dfs(h)
      dfs(i)
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)
        dfs(h)
      dfs(i)
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)
        dfs(h)
      dfs(i)
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)
        dfs(h)
      dfs(i)
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'
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dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)
        dfs(h)
      dfs(i)
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)
        dfs(h)
      dfs(i)
  dfs(c) 
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a
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c
f

d
i

e

g

h

dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)
        dfs(h)
      dfs(i)
  dfs(c) 
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)
        dfs(h)
      dfs(i)
  dfs(c)
    dfs(f) 
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)
        dfs(h)
      dfs(i)
  dfs(c)
    dfs(f) 
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)
        dfs(h)
      dfs(i)
  dfs(c)
    dfs(f) 
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)
        dfs(h)
      dfs(i)
  dfs(c)
    dfs(f) 
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)
        dfs(h)
      dfs(i)
  dfs(c)
    dfs(f) 
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Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)
        dfs(h)
      dfs(i)
  dfs(c)
    dfs(f) 



❖

Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)
        dfs(h)
      dfs(i)
  dfs(c)
    dfs(f) 



❖

Write the nested function calls for a DFS on the graph 
below.

def dfs(graph, u, status = None):
”””Start a DFS at `u`.”””
. . .

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

a

b

c
f

d
i

e

g

h

dfs(a)
  dfs(b)
    dfs(d)
      dfs(e)
        dfs(g)
        dfs(h)
      dfs(i)
  dfs(c)
    dfs(f) 



❖

Differences

● In BFS, we “finish” a node 𝑢 before moving on to the next.

● In DFS, we go to many other nodes, but “come back” to 𝑢.

● We’ll see that the nested structure of the recursive 
function calls gives us useful new information about the 
graph’s structure.



❖

Full DFS
●  dfs(u) will visit all nodes reachable from 𝑢.

○ But not all nodes may be reachable from 𝑢!
●  To visit all nodes in graph, need full DFS.

def full_dfs(graph):
status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:
if status[node] == 'undiscovered'

dfs(graph, node, status)



❖



❖

Time Complexity

●  In a full DFS:
○ dfs called on each node exactly once.
○ Similar to BFS, each edge is explored exactly:

■  once if directed
■ twice if undirected

●  Time: Θ(𝑉 + 𝐸), just like BFS.



❖

BFS vs DFS Check
BFS (1): What do 
you expect to see 
first?

A:  Level (2, 7, 8)

B: Level (3, 6, 9, 12)

C: Branch (4, 3, 2, 1)

D: Branch (12, 8 , 1)

E: Something else
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BFS(1)
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BFS(1)
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BFS(1)
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BFS(1)
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DFS(1)
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DFS(1)
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DFS(1)
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DFS(1)
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Nesting Properties of DFS



❖

Motivation



❖

Is there a cycle?



❖

Why do we care?

● In computer programs (dependency graphs):
○ If you have tasks that depend on each other, a cycle means a 

circular dependency — task A depends on B, and B depends 
on A — so you can’t complete any of them. Detecting the 
cycle helps prevent deadlocks or infinite loops.

● In scheduling or planning:
○ When building a project schedule or course prerequisite list, a 

cycle means it’s impossible to order the tasks — e.g., “CS101 
requires CS201, and CS201 requires CS101.” You can’t take 
either first.
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Last time: DFS mic
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Last time: DFS
dfs(1)
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Last time: DFS
dfs(1)

1

2

3

4



❖

Last time: DFS
dfs(1)

   dfs(2)
1

2

3

4



❖

Last time: DFS
dfs(1)
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Last time: DFS
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3

4
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Last time: DFS
dfs(1)

   dfs(2)

     dfs(3)

     dfs(4)

1

2

3

4
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Last time: DFS
dfs(1)

   dfs(2)

     dfs(3)

     dfs(4)

1

2

3

4
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Last time: DFS
dfs(1)

   dfs(2)

     dfs(3)

     dfs(4)

1

2

3

4
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Last time: DFS
dfs(1)

   dfs(2)

     dfs(3)

     dfs(4)

1

2

3

4



❖

Exercise #1
True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when 
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
     dfs(v)
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Exercise
True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when 
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
     dfs(v)



❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when 
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
     dfs(v)

dfs(4)

  u



❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when 
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
     dfs(v)

dfs(4)
  ….
     dfs(1)

  u  v
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True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when 
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
     dfs(v)

dfs(4)
  ….
     dfs(1)

  u  v

dfs(4)



❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when 
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
     dfs(v)

dfs(4)
  ….
     dfs(1)

  u  v

dfs(4)
    dfs(2)
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True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when 
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
     dfs(v)

dfs(4)
  ….
     dfs(1)

  u  v

dfs(4)
    dfs(2)
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True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when 
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
     dfs(v)

dfs(4)
  ….
     dfs(1)

  u  v

dfs(4)
     dfs(2)
          dfs(1)
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True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when 
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
     dfs(v)

dfs(4)
  ….
     dfs(1)

  u  v

dfs(4)
     dfs(2)
          dfs(1)

So far it works out



❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when 
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
     dfs(v)

dfs(4)
  ….
     dfs(1)

  u  v

dfs(4)
     dfs(2)
          dfs(1)
             dfs(3)



❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when 
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
     dfs(v)

dfs(4)
  ….
     dfs(1)

  u  v

dfs(4)
     dfs(2)
          dfs(1)
             dfs(3)



❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when 
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
     dfs(v)

dfs(4)
  ….
     dfs(1)

  u  v

dfs(4)
     dfs(2)
          dfs(1)
             dfs(3)
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True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when 
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
     dfs(v)

dfs(4)
  ….
     dfs(1)

  u  v

dfs(4)
     dfs(2)
          dfs(1)
             dfs(3)



❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when 
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
     dfs(v)

dfs(4)
  ….
     dfs(1)

  u  v

dfs(4)
     dfs(2)
          dfs(1)
             dfs(3)
     dfs(5)

And now we can see that it 
is False.



❖

True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is undiscovered when 
dfs(u) is called, then dfs(v) must be called during dfs(u).

1

2

3

4

5

6

7

dfs(u)
 ….
     dfs(v)

dfs(4)
  ….
     dfs(1)

  u  v

dfs(4)
     dfs(2)
          dfs(1)
             dfs(3)
     dfs(5)

And now we can see that it 
is False.



❖

False!

● Suppose dfs(4) is the root call.
● When dfs(1) is called, node 5 is undiscovered
● But dfs(5) is not called during dfs(1).



❖

However..
This intuition is correct if there is a path of undiscovered nodes 
from 𝑢 to 𝑣 when dfs(u) is called.

1

2

3

4

5

6

7

dfs(u)
 ….
     dfs(v)
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However..
This intuition is correct if there is a path of undiscovered nodes 
from 𝑢 to 𝑣 when dfs(u) is called.

1

2

3

4

5

6

7
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However..
This intuition is correct if there is a path of undiscovered nodes 
from 𝑢 to 𝑣 when dfs(u) is called.

1

2

3

4

5

6

7

dfs(4)



❖

However..
This intuition is correct if there is a path of undiscovered nodes 
from 𝑢 to 𝑣 when dfs(u) is called.

1

2

3

4

5

6

7

dfs(4)
     dfs(2)
          dfs(1)
             dfs(3)
     dfs(5)
          dfs(7)
              dfs(6)
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However..
This intuition is correct if there is a path of undiscovered nodes 
from 𝑢 to 𝑣 when dfs(u) is called.

1

2

3

4

5

6

7

dfs(4)
     dfs(2)
          dfs(1)
             dfs(3)
    dfs(5)
          dfs(7)
              dfs(6)

What calls are nested within 
the dfs(2)?
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However..
This intuition is correct if there is a path of undiscovered nodes 
from 𝑢 to 𝑣 when dfs(u) is called.

1

2

3

4

5

6

7

dfs(4)
     dfs(2)
          dfs(1)
             dfs(3)
    dfs(5)
          dfs(7)
              dfs(6)

What calls are nested within 
the dfs(2)?
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However..
This intuition is correct if there is a path of undiscovered nodes 
from 𝑢 to 𝑣 when dfs(u) is called.

1

2

3

4

5

6

7

dfs(4)
     dfs(2)
          dfs(1)
             dfs(3)
    dfs(5)
          dfs(7)
              dfs(6)
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Key Property of DFS (Informal)

● If at the time dfs(u) is called…
1. 𝑣 is undiscovered; and
2. there is a path of undiscovered nodes from 𝑢 to 𝑣,

●  ...then dfs(v) will start and finish during the call to dfs(u).



❖

Exercise #2

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is 
pending. True or False: there is a path from 𝑣 to 𝑢.



❖

Exercise

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is 
pending. True or False: there is a path from 𝑣 to 𝑢.

u



❖

Exercise

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is 
pending. True or False: there is a path from 𝑣 to 𝑢.

u v
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Exercise

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is 
pending. True or False: there is a path from 𝑣 to 𝑢.

u v

    ……..

u

    ……..

    ……..

    ……..
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Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is 
pending. True or False: there is a path from 𝑣 to 𝑢.

u v

    ……..

u

    ……..

    ……..

    ……..

dfs(u)



❖

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is 
pending. True or False: there is a path from 𝑣 to 𝑢.

u v

    ……..

u

    ……..

    ……..

    ……..

dfs(u)

V is pending. What 
does it mean?



❖

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is 
pending. True or False: there is a path from 𝑣 to 𝑢.

u v

    ……..

u

    ……..

    ……..

    ……..

dfs(u)

There was a call to dfs(v) 
already,before dfs(u) 



❖

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is 
pending. True or False: there is a path from 𝑣 to 𝑢.

u v

    ……..

u

    ……..

    ……..

    ……..

dfs(v)
  ….
  dfs(u)

Are they nested? 



❖

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is 
pending. True or False: there is a path from 𝑣 to 𝑢.

u v

    ……..

u

    ……..

    ……..

    ……..

dfs(v)
  ….
  dfs(u)

Yes! Because v is not 
finished yet, it is not red. 



❖

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is 
pending. True or False: there is a path from 𝑣 to 𝑢.

u v

    ……..

u

    ……..

    ……..

dfs(v)
  ….
  dfs(u)

There is a path from v to u, 
from our key property. 

If at the time dfs(p) is called…
1. d is undiscovered; and
2. there is a path of undiscovered nodes from 

p to d,

 ...then dfs(d) will start and finish during the call 
to dfs(p).back



❖

Suppose while calling dfs on node 𝑢, we see that neighbor 𝑣 is 
pending. True or False: there is a path from 𝑣 to 𝑢.

u v

    ……..

u

    ……..

    ……..

dfs(v)
  ….
  dfs(u)

There is a path from u to v, 
(v is a neighbor). 



❖

Start and Finish Times

● Keep a running clock (an integer).

●  For each node, record
○ Start time: time when marked pending
○ Finish time: time when marked visited

●  Increment clock whenever node is marked pending/visited.
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a

b

c
f

d
i

e

g

h

Clock:
   0
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a

b

c
f

d
i

e

g

h

Clock:
   1

1/

dfs(a) 
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a

b

c
f

d
i

e

g

h

Clock:
   2

1/

dfs(a) 
  dfs(b)

2/
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a

b

c
f

d
i

e

g

h

Clock:
   3

1/

dfs(a) 
  dfs(b)
    dfs(d)

2/

3/
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a

b

c
f

d
i

e

g

h

Clock:
   4

1/

dfs(a) 
  dfs(b)
    dfs(d)
      dfs(e)

2/

3/

4/
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a

b

c
f

d
i

e

g

h

Clock:
   5

1/

dfs(a) 
  dfs(b)
    dfs(d)
      dfs(e)

  dfs(g)

2/

3/

4/

5/
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a

b

c
f

d
i

e

g

h

Clock:
   6

1/

dfs(a) 
  dfs(b)
    dfs(d)
      dfs(e)

  dfs(g)

2/

3/

4/

5/ 6 
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a

b

c
f

d
i

e

g

h

Clock:
   7

1/

dfs(a) 
  dfs(b)
    dfs(d)
      dfs(e)

  dfs(g)
  dfs(h) 

2/

3/

4/

5/ 6 

7/
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a
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c
f

d
i

e

g

h

Clock:
   8

1/

dfs(a) 
  dfs(b)
    dfs(d)
      dfs(e)

  dfs(g)
  dfs(h) 

2/

3/

4/

5/ 6 

7/ 8
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a

b

c
f

d
i

e

g

h

Clock:
   9

1/

dfs(a) 
  dfs(b)
    dfs(d)
      dfs(e)

  dfs(g)
  dfs(h) 

2/

3/

4/ 9

5/ 6 

7/ 8



❖

a

b

c
f

d
i

e

g

h

Clock:
   10

1/

dfs(a) 
  dfs(b)
    dfs(d)
      dfs(e)

  dfs(g)
  dfs(h)
dfs(i) 2/

3/

4/ 9

5/ 6 

7/ 8

10/
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a

b

c
f

d
i

e

g

h

Clock:
   11

1/

dfs(a) 
  dfs(b)
    dfs(d)
      dfs(e)

  dfs(g)
  dfs(h)
dfs(i) 2/

3/

4/ 9

5/ 6 

7/ 8

10/11
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a

b

c
f

d
i

e

g

h

Clock:
   12

1/

dfs(a) 
  dfs(b)
    dfs(d)
      dfs(e)

  dfs(g)
  dfs(h)
dfs(i) 2/

3/12

4/ 9

5/ 6 

7/ 8

10/11
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a

b

c
f

d
i

e

g

h

Clock:
   13

1/

dfs(a) 
  dfs(b)
    dfs(d)
      dfs(e)

  dfs(g)
  dfs(h)
dfs(i) 2/13

3/12

4/ 9

5/ 6 

7/ 8

10/11
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a

b

c
f

d
i

e

g

h

Clock:
   14

1/

dfs(a) 
  dfs(b)
    dfs(d)
      dfs(e)

  dfs(g)
  dfs(h)
dfs(i) 

dfs(c)
 

2/13

3/12

4/ 9

5/ 6 

7/ 8

10/11

14/
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c
f

d
i

e

g

h

Clock:
   15

1/

dfs(a) 
  dfs(b)
    dfs(d)
      dfs(e)

  dfs(g)
  dfs(h)
dfs(i) 

dfs(c)
 dfs(f)

2/13

3/12

4/ 9

5/ 6 

7/ 8

10/11

14/ 15/
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a

b

c
f

d
i

e

g

h

Clock:
   16

1/

dfs(a) 
  dfs(b)
    dfs(d)
      dfs(e)

  dfs(g)
  dfs(h)
dfs(i) 

dfs(c)
 dfs(f)

2/13

3/12

4/ 9

5/ 6 

7/ 8

10/11

14/ 15/16
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a

b

c
f

d
i

e

g

h

Clock:
   17

1/

dfs(a) 
  dfs(b)
    dfs(d)
      dfs(e)

  dfs(g)
  dfs(h)
dfs(i) 

dfs(c)
 dfs(f)

2/13

3/12

4/ 9

5/ 6 

7/ 8

10/11

14/17 15/16
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a

b

c
f

d
i

e

g

h

Clock:
   18

1/18

dfs(a) 
  dfs(b)
    dfs(d)
      dfs(e)

  dfs(g)
  dfs(h)
dfs(i) 

dfs(c)
 dfs(f)

2/13

3/12

4/ 9

5/ 6 

7/ 8

10/11

14/17 15/16



❖

a

b

c
f

d
i

e

g

h

Clock:
   18

1/18

dfs(a) 
  dfs(b)
    dfs(d)
      dfs(e)

  dfs(g)
  dfs(h)
dfs(i) 

dfs(c)
 dfs(f)

2/13

3/12

4/ 9

5/ 6 

7/ 8

10/11

14/17 15/16

Note:
- Intervals are either fully contained 

inside each other (i.e. d and e)
- Or completely separate. (i.e. i and f)
- No overlaps
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❖



❖
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Key Property of DFS

● Suppose dfs(u) is called before dfs(v).

● If when dfs(u) is called there is a path of undiscovered 
nodes from 𝑢 to 𝑣, then:

start[u] < start[v] < finish[v] < finish[u].

●  Otherwise:

start[u] < finish[u] < start[v] < finish[v]



❖

Key Property

● Take any two nodes 𝑢 and 𝑣 (𝑢 ≠ 𝑣).
● Assume for simplicity that start[u] < start[v].

● Exactly one of these is true:
○ start[u] < start[v] < finish[v] < finish[u]
○ start[u] < finish[u] < start[v] < finish[v]



❖

Cycles



❖

Cycles

● A cycle in a directed graph is a path that starts and ends 
at the same node.



❖

Cycle

● Alternatively: there is a cycle if 𝑢 is reachable from 𝑣 and 𝑣 
is reachable from 𝑢, for some 𝑢 ≠ 𝑣.



❖

DAG

● A directed acyclic graph (DAG) is a directed graph with no 
cycles.



❖

Cyclic Graphs

●  A graph is cyclic even if it has only one cycle.
○ It doesn’t have to be the whole graph.



❖

Detecting Cycles                                   Link

● We check for cycles by looking for back edges in a full DFS.

●  (𝑢, 𝑣) is a back edge if while visiting node 𝑢, we see that 𝑣 is 
pending.

u v



❖

Detecting Cycles

● We check for cycles by looking for back edges in a full DFS.
●  (𝑢, 𝑣) is a back edge if while visiting node 𝑢, we see that 𝑣 is 

pending.
...
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

elif status[v] == 'pending':
# back edge (u, v) found!

...

u v
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Example

1 2

3
4
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Example
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Example
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Example

1 2
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4
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Example

1 2

3
4
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Example

1 2

3
4

Back edge
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Theorem

A directed graph has a cycle if (and only if) a full DFS finds a 
back edge.
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Why?

● If a back edge (𝑢, 𝑣) is found, then a cycle exists.

○ Suppose 𝑣 is pending when we visit 𝑢.
○ This means that there is a path from 𝑣 to 𝑢.
○ There is also a path from 𝑢 to 𝑣.
○ So there is a cycle.



❖

Why?

●  If a cycle exists, then there is a back edge.

○ Suppose there is a cycle 𝑣1 → 𝑣2 → ⋯ → 𝑣𝑘 → 𝑣1.

○ Without loss of generality, assume 𝑣1 is the first node in 
the cycle that is visited by the full DFS.

○ At the moment of dfs(𝑣1), there is a path of undiscovered 
nodes between 𝑣1 and 𝑣𝑘.

○ Therefore dfs(𝑣𝑘) will be called during dfs(𝑣1).

○ During dfs(𝑣𝑘), we’ll see the back edge.

■ 𝑣1 will be pending.



❖

Question

● Suppose 𝑣 is reachable from 𝑢 in a DAG. 

True or False: after a full DFS, finish[v] < finish[u].



❖

Question

● Suppose 𝑣 is reachable from 𝑢 in a DAG. 

True or False: after a full DFS, finish[v] < finish[u].

u a b v
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Question

● Suppose 𝑣 is reachable from 𝑢 in a DAG. 

True or False: after a full DFS, finish[v] < finish[u].

u a b v

A: True

B: False

C: Not sure, need time to process 
the algorithm.
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Question

● Suppose 𝑣 is reachable from 𝑢 in a DAG. 

True or False: after a full DFS, finish[v] < finish[u].

u a b v

Case 1: Start DFS(u) -> True

Case 2: Start somewhere else, say, 
DFS(v), then restart the DFS. -> True



❖

Claim

●  If 𝑣 is reachable from 𝑢 in a DAG, then:

            finish[v] < finish[u]



❖

Topological Sort



❖

Applications of DFS

●  Is node 𝑣 reachable from node 𝑢? DFS, BFS

●  Is the graph connected? DFS, BFS

●  How many connected components? DFS, BFS

●  Find the shortest path between 𝑢 and 𝑣. DFS, BFS

●  Does the graph have a cycle? DFS, BFS



❖

Prerequisite Graphs

Goal: find order in which classes should be taken in order to 
satisfy the prerequisites of DSC 100.



❖

Note

● Prerequisite graphs are (Or they should be, at least!) DAGs.



❖

Topological Sorts

●  Given: a DAG, 𝐺 = (𝑉 , 𝐸).

●  Compute: an ordering of 𝑉 such that if (𝑢, 𝑣) ∈ 𝐸, then 𝑢 
comes before 𝑣 in the ordering.

●  This is called a topological sort of 𝐺.



❖

Example

MATH 18, DSC 10, DSC 40A, DSC 20, DSC 40B, DSC 30, DSC 80, DSC 100



❖

Note

● There can be many valid topological sorts!



❖

Computing a Topological Sort

● How do we compute a topological sort, algorithmically?

● Observation: if 𝑣 is reachable from 𝑢, 𝑣 must come after 𝑢 
in the topological sort.



❖

Recall

●  Take any two nodes 𝑢 and 𝑣 (𝑢 ≠ 𝑣).
●  Assume the graph is a DAG, run DFS.

●  If 𝑣 is reachable from 𝑢, then finish[v] < finish[u].



❖

Putting it together...

●  Observation: If 𝑣 is reachable from 𝑢, then 𝑣 must come after 𝑢 in the 
topological sort.

●  Recall: If 𝑣 is reachable from 𝑢, then finish[v] < finish[u].



❖

Compute start and finish times using DSC 10 
as the source.
 

   1/



❖

Compute start and finish times using DSC 10 
as the source.
 

   1/

   2/



❖

Compute start and finish times using DSC 10 
as the source.
 

   1/

   2/    3/



❖

Compute start and finish times using DSC 10 
as the source.
 

   1/

   2/    3/4



❖

Compute start and finish times using DSC 10 
as the source.
 

   1/

   2/5    3/4



❖

Compute start and finish times using DSC 10 
as the source.
   

   1/

   2/5    3/4

   6/    



❖

Compute start and finish times using DSC 10 
as the source.
   

   1/

   2/5    3/4

   6/    7/



❖

Compute start and finish times using DSC 10 
as the source.
   

   1/

   2/5    3/4

   6/    7/8



❖

Compute start and finish times using DSC 10 
as the source.
   

   1/

   2/5    3/4

   6/9    7/8



❖

Compute start and finish times using DSC 10 
as the source.
   

   1/10

   2/5    3/4

   6/9    7/8



❖

Compute start and finish times using DSC 10 
as the source.
   

   1/10

   2/5    3/4

   6/9    7/8   11/



❖

Compute start and finish times using DSC 10 
as the source.
   

   1/10

   2/5    3/4

   6/9    7/8   11/

   12/



❖

Compute start and finish times using DSC 10 
as the source.
   

   1/10

   2/5    3/4

   6/9    7/8   11/

   12/13



❖

Compute start and finish times using DSC 10 
as the source.
   

   1/10

   2/5    3/4

   6/9    7/8   11/14

   12/13



❖

Compute start and finish times using DSC 10 
as the source.
   

   1/10

   2/5    3/4

   6/9    7/8   11/14

   12/13   15/



❖

Compute start and finish times using DSC 10 
as the source.
   

   1/10

   2/5    3/4

   6/9    7/8   11/14

   12/13   15/16

What is next?



❖

Compute start and finish times using DSC 10 
as the source.
   

   1/10

   2/5    3/4

   6/9    7/8   11/14

   12/13   15/16

16, 14, 13, 10, 9, 8, 5, 4



❖

Compute start and finish times using DSC 10 
as the source.
   

   1/10

   2/5    3/4

   6/9    7/8   11/14

   12/13   15/16

M18, D10, D40A, D20, D30, D80, D40B, D100.



❖

Idea

● Observation: If 𝑣 is reachable from 𝑢, then 𝑣 must come 
after 𝑢 in the topological sort.

●  Recall: If 𝑣 is reachable from 𝑢, then finish[v] < 
finish[u].

●  Therefore: if finish[v] < finish[u], then 𝑣 must come 
after 𝑢 in the topological sort.

●  Idea: sort nodes in descending order by finish time



❖

Algorithm

● To find a topological sort (if it exists):
○ Compute times with Full DFS.
○ Sort in descending order by finish time.

● Time complexity:



❖

Algorithm

● To find a topological sort (if it exists):
○ Compute times with Full DFS.
○ Sort in descending order by finish time.

● Time complexity: V + E  (what else?)



❖

Algorithm

● To find a topological sort (if it exists):
○ Compute times with Full DFS.
○ Sort in descending order by finish time.

● Time complexity: V + E + V logV



❖

Algorithm

● To find a topological sort (if it exists):
○ Compute times with Full DFS.
○ Sort in descending order by finish time.

● Time complexity: Θ(E + V logV)



❖

Do you have any questions?

Thank you!

CampusWire!


