
❖

DSC 40B
Lecture 19 : BFS

❖

Graph Search Strategies

❖

How do we:

● determine if there is a path between two nodes?

● check if graph is connected?

● count connected components?

❖

Search Strategies

● A search strategy is a procedure for exploring a graph.

● Different strategies are useful in different situations.

❖

Node Statuses

● At any point during a search, a node is in exactly one of three
states:
○ visited
○ pending (discovered, but not yet visited)
○ undiscovered

❖

Rules

● At every step, next visited node chosen from among
pending nodes.

● When a node is marked as visited, all of its neighbors have
been marked as pending.

❖

Choosing the next Node

● How to choose among pending nodes?
○ Idea 1: Visit newest pending (depth-first search).
○ Idea 2: Visit oldest pending (breadth-first search).

❖

Main Idea

● Depth-first search (DFS) and breadth-first search (BFS)
each discover different properties of the graph.

● For example, we’ll see that BFS is useful for finding
shortest paths (DFS in general is not).

❖

Breadth-First Search

❖

Breadth-First Search

● At every step:
○ Visit oldest pending node.
○ Mark its undiscovered neighbors as pending.

● Convention: in this class, neighbors produced in sorted order.
○ In general, the order in which a node’s neighbors produced

is arbitrary.

❖

Example

❖

Example

pending = [1]

1

Before iterating.

❖

Example

pending = [1, 2, 4]

1

❖

Example

pending = [1, 2, 4]

1

2

4

❖

Example

pending = [2, 4]

1

2

4

After 1st iteration.

❖

Example

pending = [2, 4, 3]

1

2

4

3

❖

Example

pending = [2, 4, 3, 5]

1

2

4

3

5

❖

Example

pending = [2, 4, 3, 5, 6]

1

2

4

3

5

6

❖

Example

pending = [4, 3, 5, 6]

1

2

4

After 2nd iteration.

3

5

6

❖

Example

pending = [4, 3, 5, 6, ?]

1

2

4

3

5

6

❖

Example

pending = [4, 3, 5, 6, 7]

1

2

4

3

5

6

7

❖

Example

pending = [3, 5, 6, 7]

1

2

4

After 3rd iteration

3

5

6

7

❖

Example

pending = [3, 5, 6, 7, ?]

1

2

4

3

5

6

7

❖

Example

pending = [5, 6, 7]

1

2

4

After 4th iteration

3

5

6

7

❖

Example

pending = [5, 6, 7, ?]

1

2

4

3

5

6

7

❖

Example

pending = [5, 6, 7, 9]

1

2

4

3

5

6

7

9

❖

Example

pending = [6, 7, 9]

1

2

4

3

5

6

7

9

After 5th iteration

❖

Example

pending = [6, 7, 9, ?]

1

2

4

3

5

6

7

9

❖

Example

pending = [6, 7, 9]

1

2

4

3

5

6

7

9

❖

Example

pending = [7, 9]

1

2

4

3

5

6

7

9

After 6th iteration

❖

Example

pending = [7, 9, ?]

1

2

4

3

5

6

7

9

❖

Example

pending = [7, 9, 8]

1

2

4

3

5

6

7

9

8

❖

Example

pending = [9, 8]

1

2

4

3

5

6

7

9

After 7th iteration

8

❖

Example

pending = [8]

1

2

4

3

5

6

7

9

After 8th iteration

8

❖

Example

pending = []

1

2

4

3

5

6

7

9

After 9th iteration

8

❖

Implementation

● To store pending nodes, use a FIFO queue.
○ FIFO = “First in, first out”.

● While queue is not empty:
○ Pop a node, u. (remove from the front)
○ Add undiscovered neighbors to queue. (to the back)

❖

Queues in Python

● Want Θ(1) time pops/appends on either side.

● from collections import deque (“deck”).
○ .popleft() and.pop()
○ list doesn’t have right time complexity!
○ import queue isn’t what you want!

● Keep track of node status attribute using dictionary.

❖

from collections import deque

def bfs(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

while there are still pending nodes
while pending:

 # EXERCISE: fill this in...

❖

from collections import deque

def bfs(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

while there are still pending nodes
while pending:

 # EXERCISE: fill this in...

❖

from collections import deque

def bfs(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

while there are still pending nodes
while pending:

 u = pending.popleft() #remove the first elem

❖

from collections import deque

def bfs(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

while there are still pending nodes
while pending:

 u = pending.popleft() #remove the first elem
 for v in graph.neighbors(u):

❖

from collections import deque

def bfs(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

while there are still pending nodes
while pending:

 u = pending.popleft() #remove the first elem
 for v in graph.neighbors(u):
 if status[v] == 'undiscovered':

❖

from collections import deque

def bfs(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

while there are still pending nodes
while pending:

 u = pending.popleft() #remove the first elem
 for v in graph.neighbors(u):
 if status[v] == 'undiscovered':

status[v] = 'pending'

❖

from collections import deque

def bfs(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

while there are still pending nodes
while pending:

 u = pending.popleft() #remove the first elem
 for v in graph.neighbors(u):
 if status[v] == 'undiscovered':

status[v] = 'pending'
pending.append(v)

❖

from collections import deque

def bfs(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

while there are still pending nodes
while pending:

 u = pending.popleft() #remove the first elem
 for v in graph.neighbors(u):
 if status[v] == 'undiscovered':

status[v] = 'pending'
pending.append(v)

 status[u] == 'visited'

❖

BFS

❖

Notes

● What does this code actually return?

● Nothing, yet. It is a foundation.

● BFS works just as well for directed graphs.

❖

Analysis of BFS

❖

Exercise: What will bfs do when run on a
disconnected graph?

A: Discover all nodes

B: Inf. loop

C: Discover only some
nodes.

❖

Claim

● bfs with source 𝑢 will visit all nodes reachable from 𝑢
(and only those nodes).

● Useful!
○ Is there a path between 𝑢 and 𝑣?
○ Is graph connected?

❖

Exploring with BFS

● BFS will visit all nodes reachable from source.

● If disconnected, BFS will not visit all nodes.

● We can do so with a full BFS.
○ Idea: “re-start” BFS on undiscovered node.
○ Must pass statuses between calls.

❖

Making Full BFS: Modify bfs to accept
statuses

def bfs(graph, source, status=None):
”””Start a BFS at `source`.”””

if status is None:
status = {node: 'undiscovered' for node in graph.nodes}
...

❖

Making Full BFS: Call bfs multiple times

def full_bfs(graph):
status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:

if status[node] == 'undiscovered':
 bfs(graph, node, status)

❖

Example

❖

Example

1

2

3

5

4
6

7

8

9

10

11

12

❖

Example

1

2

3

5

4
6

7

8

9

10

11

12

❖

1

2

3

5

4
6

7

8

9

10

11

12First call to DFS

❖

1

2

3

5

4
6

7

8

9

10

11

12Second call to DFS

❖

1

2

3

5

4
6

7

8

9

10

11

12Third call to DFS

❖

Observation

If there are 𝑘 connected components, bfs in line 5 is called
exactly 𝑘 times

❖

Exercise
How many times is each node added to the queue in a BFS of
the graph below?

A: Once

B: Twice

C: E times

D: V times

E: V + E times

❖

Exercise
How many times is each node added to the queue in a BFS of
the graph below?

A: Once

B: Twice

C: E times

D: V times

E: V + E times

❖

Exercise
How many times is each edge “explored” in a BFS of the graph below?

A: Once

B: Twice

C: E times

D: V times

E: V + E times

❖

Exercise
How many times is each edge “explored” in a BFS of the graph below?

A: Once

B: Twice

C: E times

D: V times

E: V + E times

❖

Exercise
How many times is each edge “explored” in a BFS of the directed
graph below?

A: Once

B: Twice

C: E times

D: V times

E: V + E times

❖

Exercise
How many times is each edge “explored” in a BFS of the directed
graph below?

A: Once

B: Twice

C: E times

D: V times

E: V + E times

❖

Key Properties of full_bfs

● Each node added to queue exactly once.

● Each edge is explored exactly:
○ once if graph is directed.
○ twice if graph is undirected.

❖

Time Complexity of full_bfs

● Analyzing full_bfs is easier than analyzing bfs.
○ full_bfs visits all nodes, no matter the graph.

● Result will be upper bound on time complexity of bfs.

● We’ll use an aggregate analysis.

❖

❖

Exercise 4: Complexity

0 1

2 3

What is the time complexity in terms of |𝑉 | and |𝐸|?

A: Θ (|E| + |V|) C: Θ (|E|)

B: Θ (|E| * |V|) D: Θ (|V|)

❖

Exercise 4: Complexity

0 1

2 3

u is 0

v=1

❖

Exercise 4: Complexity

0 1

2 3

u is 0 u is 1

v=1 v=0, 2

❖

Exercise 4: Complexity

0 1

2 3

u is 0 u is 1 u is 2

v=1 v=0, 2 v=1, 3

❖

Exercise 4: Complexity

0 1

2 3

u is 0 u is 1 u is 2 u is 3

v=1 v=0, 2 v=1, 3 v = 2

❖

Exercise 4: Complexity

0 1

2 3

u is 0 u is 1 u is 2 u is 3

v=1 v=0, 2 v=1, 3 v = 2 Total of 6 iterations

❖

Exercise 4: Complexity

0 1

2 3

u is 0 u is 1 u is 2 u is 3

v=1 v=0, 2 v=1, 3 v = 2 Total of 6 iterations (E)

❖

Exercise 5: 0 1

2 3

u is 0 u is 1 u is 2 u is 3

- - - - Total of 4 iterations (V)

❖

Do you have any questions?

Thank you!

CampusWire!

