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DSC 40B
Lecture 19 : BFS
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Graph Search Strategies
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How do we:

●  determine if there is a path between two nodes?

●  check if graph is connected?

●  count connected components?
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Search Strategies

●  A search strategy is a procedure for exploring a graph.

●  Different strategies are useful in different situations.
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Node Statuses

● At any point during a search, a node is in exactly one of three 
states:
○ visited
○ pending (discovered, but not yet visited)
○ undiscovered



❖

Rules

●  At every step, next visited node chosen from among 
pending nodes.

●  When a node is marked as visited, all of its neighbors have 
been marked as pending.
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Choosing the next Node

● How to choose among pending nodes?
○ Idea 1: Visit newest pending (depth-first search). 
○ Idea 2: Visit oldest pending (breadth-first search).
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Main Idea

● Depth-first search (DFS) and breadth-first search (BFS) 
each discover different properties of the graph.

● For example, we’ll see that BFS is useful for finding 
shortest paths (DFS in general is not).
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Breadth-First Search
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Breadth-First Search

●  At every step:
○ Visit oldest pending node.
○ Mark its undiscovered neighbors as pending.

●  Convention: in this class, neighbors produced in sorted order.
○ In general, the order in which a node’s neighbors produced 

is arbitrary.
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Example
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Example

pending = [ 1 ]

1

Before iterating.
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Example

pending = [ 1, 2, 4 ]

1
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Example

pending = [ 1, 2, 4 ]
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4
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Example

pending = [ 2, 4 ]
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After 1st iteration.
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Example

pending = [ 2, 4, 3 ]
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Example

pending = [ 2, 4, 3, 5 ]
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Example

pending = [ 2, 4, 3, 5, 6 ]
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Example

pending = [ 4, 3, 5, 6 ]
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After 2nd iteration.
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Example

pending = [ 4, 3, 5, 6, ? ]
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Example

pending = [ 4, 3, 5, 6, 7 ]
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Example

pending = [ 3, 5, 6, 7 ]
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After 3rd iteration
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Example

pending = [ 3, 5, 6, 7, ? ]
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Example

pending = [ 5, 6, 7]
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After 4th iteration
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Example

pending = [ 5, 6, 7, ?]
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Example

pending = [ 5, 6, 7, 9]
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Example

pending = [ 6, 7, 9]
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After 5th iteration
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Example

pending = [ 6, 7, 9, ?]
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Example

pending = [ 6, 7, 9]
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Example

pending = [ 7, 9]
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After 6th iteration
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Example

pending = [ 7, 9, ?]
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Example

pending = [ 7, 9, 8]
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Example

pending = [ 9, 8]
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After 7th iteration
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Example

pending = [8]
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After 8th iteration
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Example

pending = []
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After 9th iteration
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Implementation

●  To store pending nodes, use a FIFO queue.
○ FIFO = “First in, first out”.

●  While queue is not empty:
○ Pop a node, u.  (remove from the front)
○ Add undiscovered neighbors to queue. (to the back)



❖

Queues in Python

●  Want Θ(1) time pops/appends on either side.

●  from collections import deque (“deck”).
○ .popleft() and.pop()
○ list doesn’t have right time complexity!
○ import queue isn’t what you want!

●  Keep track of node status attribute using dictionary.
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from collections import deque

def bfs(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

# while there are still pending nodes
while pending:

      # EXERCISE: fill this in...
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from collections import deque

def bfs(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

# while there are still pending nodes
while pending:

      # EXERCISE: fill this in...
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from collections import deque

def bfs(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

# while there are still pending nodes
while pending:

      u = pending.popleft() #remove the first elem
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from collections import deque

def bfs(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

# while there are still pending nodes
while pending:

      u = pending.popleft() #remove the first elem
  for v in graph.neighbors(u):
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from collections import deque

def bfs(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

# while there are still pending nodes
while pending:

      u = pending.popleft() #remove the first elem
  for v in graph.neighbors(u):
  if status[v] == 'undiscovered':  
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from collections import deque

def bfs(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

# while there are still pending nodes
while pending:

      u = pending.popleft() #remove the first elem
  for v in graph.neighbors(u):
  if status[v] == 'undiscovered':

status[v] = 'pending'
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from collections import deque

def bfs(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

# while there are still pending nodes
while pending:

      u = pending.popleft() #remove the first elem
  for v in graph.neighbors(u):
  if status[v] == 'undiscovered':

status[v] = 'pending'
pending.append(v)
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from collections import deque

def bfs(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

# while there are still pending nodes
while pending:

      u = pending.popleft() #remove the first elem
  for v in graph.neighbors(u):
  if status[v] == 'undiscovered':

status[v] = 'pending'
pending.append(v)

  status[u] == 'visited'
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BFS
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Notes

● What does this code actually return?

● Nothing, yet. It is a foundation.

● BFS works just as well for directed graphs.
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Analysis of BFS
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Exercise: What will bfs do when run on a 
disconnected graph?

A: Discover all nodes

B:  Inf. loop

C: Discover only some 
nodes.



❖

Claim

●  bfs with source 𝑢 will visit all nodes reachable from 𝑢 
(and only those nodes).

●  Useful!
○ Is there a path between 𝑢 and 𝑣?
○  Is graph connected?
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Exploring with BFS

●  BFS will visit all nodes reachable from source.

●  If disconnected, BFS will not visit all nodes.

●  We can do so with a full BFS.
○ Idea: “re-start” BFS on undiscovered node.
○ Must pass statuses between calls.
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Making Full BFS: Modify bfs to accept 
statuses

def bfs(graph, source, status=None):
”””Start a BFS at `source`.”””

if status is None:
status = {node: 'undiscovered' for node in graph.nodes}
# ...
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Making Full BFS: Call bfs multiple times

def full_bfs(graph):
status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:

if status[node] == 'undiscovered':
   bfs(graph, node, status)



❖

Example
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Example
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Example
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Observation

If there are 𝑘 connected components, bfs in line 5 is called 
exactly 𝑘 times
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Exercise
How many times is each node added to the queue in a BFS of 
the graph below?

A:  Once

B:  Twice

C:  E times

D:  V times

E: V + E times
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Exercise
How many times is each node added to the queue in a BFS of 
the graph below?

A:  Once

B:  Twice

C:  E times

D:  V times

E: V + E times
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Exercise
How many times is each edge “explored” in a BFS of the graph below?

A:  Once

B:  Twice

C:  E times

D:  V times

E: V + E times
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Exercise
How many times is each edge “explored” in a BFS of the graph below?

A:  Once

B:  Twice

C:  E times

D:  V times

E: V + E times
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Exercise
How many times is each edge “explored” in a BFS of the directed 
graph below?

A:  Once

B:  Twice

C:  E times

D:  V times

E: V + E times
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Exercise
How many times is each edge “explored” in a BFS of the directed 
graph below?

A:  Once

B:  Twice

C:  E times

D:  V times

E: V + E times
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Key Properties of full_bfs

●  Each node added to queue exactly once.

●  Each edge is explored exactly:
○ once if graph is directed.
○ twice if graph is undirected.
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Time Complexity of full_bfs

●  Analyzing full_bfs is easier than analyzing bfs.
○ full_bfs visits all nodes, no matter the graph.

●  Result will be upper bound on time complexity of bfs.

●  We’ll use an aggregate analysis.
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Exercise 4: Complexity

0 1

2 3

What is the time complexity in terms of |𝑉 | and |𝐸|?

A:  Θ (|E| + |V| )        C: Θ (|E|)

B:  Θ (|E| * |V| )        D:  Θ (|V|)
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Exercise 4: Complexity

0 1

2 3

u is 0

v=1
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Exercise 4: Complexity

0 1

2 3

u is 0       u is 1

v=1          v=0, 2
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Exercise 4: Complexity

0 1

2 3

u is 0         u is 1          u is 2

v=1          v=0, 2         v=1, 3
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Exercise 4: Complexity

0 1

2 3

u is 0         u is 1          u is 2          u is 3

v=1          v=0, 2         v=1, 3          v = 2
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Exercise 4: Complexity

0 1

2 3

u is 0         u is 1          u is 2          u is 3

v=1          v=0, 2         v=1, 3          v = 2    Total of 6 iterations
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Exercise 4: Complexity

0 1

2 3

u is 0         u is 1          u is 2          u is 3

v=1          v=0, 2         v=1, 3          v = 2    Total of 6 iterations (E)
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Exercise 5: 0 1

2 3

u is 0         u is 1          u is 2          u is 3

-               -                 -                 -    Total of 4 iterations (V)
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Do you have any questions?

Thank you!

CampusWire!


