
DSC 40B
Lecture 19 : BFS

T ———
..............................

93333390

Graph Search Strategies
T T 1T Tt Tt rrr T TP T TP i rrr i1

How do we:

e determine if there is a path between two nodes?

e check if graph is connected?

e count connected components?

11113999

T ————
.............................

Search Strategies

e A search strategy is a procedure for exploring a graph.

e Different strategies are useful in different situations.

11113999

T ————
.............................

Node Statuses

e At any point during a search, a node is in exactly one of three
states:
o visited
o pending (discovered, but not yet visited)
o undiscovered

11113999

T ————
.............................

Rules

e At every step, next visited node chosen from among
pending nodes.

e When a node is marked as visited, all of its neighbors have
been marked as pending.

11113999

T ————
.............................

ceeecece

Choosing the next Node

e How to choose among pending nodes?
o ldea 1: Visit newest pending (depth-first search).
o ldea 2: Visit oldest pending (breadth-first search).

T ————
.............................

Main Idea

e Depth-first search (DFS) and breadth-first search (BFS)
each discover different properties of the graph.

e For example, we’ll see that BFS is useful for finding
shortest paths (DFS in general is not).

11113999

T ————
.............................

T ———
..............................

HE L
|, L
o :
= Breadth-First Search =
=t e At every step: =
. o Visit oldest pending node. .
.t o Mark its undiscovered neighbors as pending. .
. e Convention: in this class, neighbors produced in sorted order. .
.P o In general, the order in which a node’s neighbors produced .
= is arbitrary. =
o :
= .

T ————
-ttt

==llllllllllllllllllllllll==ll

T R ————
-ttt

.I"‘. Example _

pending = [1]
o
o

Before iterating.

T ————
e

I N) D D IIHIIll“llll“llll“l‘ll“lllll

.I"‘. Example _

pending = [1, 2, 4]

T ————
e

I N) D D IIHIIll“llll“llll“l‘ll“lllll

.I"‘. Example _

pending = [1, 2, 4]

T ————
e

I lllllllllllllllllllllll=ll

.I.__. Example

pending = [2, 4]
.I
P = yisited
After 1st iteration. o pending (discovered, but not yet visited)
o undiscovered
= T T ——————
.............................

.I"‘. Example _

pending = [2, 4, 3]

T ————
e

ll lllllllllllllllllllllll=ll

.I__p Example

pending = [2, 4, 3, 5]

T ————
e

ll lllllllllllllllllllllll=ll

.I__p Example

pending = [2, 4, 3, 5, 6]

T ————
e

I lllllllllllllllllllllll=ll

.I.__. Example

pending = [4, 3, 5, 6]
=P After 2nd iteration.

B ————T
e

I lllllllllllllllllllllll=ll

.I.__. Example

pending = [4, 3, 5, 6, ?]

==-—' mnd I

ll lllllllllllllllllllllll=ll

.I__p Example

pending = [4, 3, 5, 6, 7]

T ————
e

I lllllllllllllllllllllll=ll

.I.__. Example

pending = [3, 5, 6, 7]
=l—. After 3rd iteration

B ————T
e

I lllllllllllllllllllllll=ll

.I.__. Example

pending = [3, 5, 6, 7, ?]

==-—' mnd I

.I.__. Example

I lllllllllllllllllllllll=ll

pending = [5, 6, 7]
=P After 4th iteration

B ————T
e

I lllllllllllllllllllllll=ll

.I.__. Example

pending = [5, 6, 7, ?]

==-—' mnd I

I lllllllllllllllllllllll=ll

.I.__. Example

pending = [5, 6, 7, 9]

==-—' mnd I

.I.__. Example

I lllllllllllllllllllllll=ll

pending = [6, 7, 9]
=P After 5th iteration

B ————T
e

I lllllllllllllllllllllll=ll

.I.__. Example

pending = [6, 7, 9, ?]

=IF, mnd I

I lllllllllllllllllllllll=ll

.I.__. Example

pending = [6, 7, 9]

=IF, mnd I

I lllllllllllllllllllllll=ll

.I.__. Example

pending = [7, 9]

=i.—. After 6th iteration
L

B ————T
e

I N) D D IIHIIll“llll“llll“l‘ll“lllll

.I.__. Example —_

pending = [7, 9, ?]

="’ =8

B ————T
e

I lllllllllllllllllllllll=ll

.I.__. Example

9

4 I.“

Q’B‘f pending = [7, 9, 8]
|
/

="’ =8

B ————T
e

I lllllllllllllllllllllll=ll

.I.__. Example

! pending = [9, 8]

=i.—. After 7th iteration
L

B ————T
e

.I___. Example —_

. 8 ! pending = [8]

=i.—. After 8th iteration
L

B ————T
e

.I___. Example —_

pending = []

P After 9th iteration
= mud N

Implementation

e To store pending nodes, use a FIFO queuve.
o FIFO = “First in, first out”.

e While queue is not empty:
o Pop a node, u. (remove from the front)
o Add undiscovered neighbors to queue. (to the back)

11113999

T ————
.............................

K.
c
"

Queues in Python

e Want O(1) time pops/appends on either side.

e from collections import deque (“deck?).
o .popleft() and.pop()
o Llist doesn’t have right time complexity!
o 1mport queue isn’t what you want!

e Keep track of node status attribute using dictionary.

EI.) L

B ————T
e

N A A
——— =aEE
.

from collections import deque

def bfs(graph, source):
'""Start a BFS at “source’.”"”
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending’
pending = deque([source])

while there are still pending nodes
while pending:
EXERCISE: fill this in...

"l'f‘l'f"f'!"!."!'

T ————
.............................

!!lllllllllllllllllllll=ll

from collections import deque fl EVEry BIED: : .
o Visit oldest pending node

o Mark its undiscovered neighbors as pending.

def bfs(graph, source):
'""Start a BFS at “source’.”"”
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending’
pending = deque([source])

while there are still pending nodes
while pending:
EXERCISE: fill this in...

"l'f‘l'f"f'!"!."!'

T ————
.............................

!!lllllllllllllllllllll=ll

from collections import deque fl EVEry BIED: : .
o Visit oldest pending node

o Mark its undiscovered neighbors as pending.

def bfs(graph, source):
'""Start a BFS at “source’.”"”
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending’
pending = deque([source])

while there are still pending nodes
while pending:
u = pending.popleft() #remove the first elem

"l'f‘l"!"f'!"!."!'

T ————
.............................

!!lllllllllllllllllllll=ll

from collections import deque fl EVEry BIED: : .
o Visit oldest pending node

o Mark its undiscovered neighbors as pending.

def bfs(graph, source):
'""Start a BFS at “source’.”"”
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending’
pending = deque([source])

while there are still pending nodes

while pending:
u = pending.popleft() #remove the first elem
for v in graph.neighbors(u):

"l'f‘l"!"f'!"!."!'

T ————
.............................

!!lllllllllllllllllllll=ll

from collections import deque fl EVEry BIED: : .
o Visit oldest pending node

o Mark its undiscovered neighbors as pending.

def bfs(graph, source):
'""Start a BFS at “source’.”"”
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending’
pending = deque([source])

while there are still pending nodes
while pending:
u = pending.popleft() #remove the first elem
for v in graph.neighbors(u):
if status[v] == 'undiscovered':

"l'f‘l"!"f'!"!."!'

T ————
.............................

!!lllllllllllllllllllll=ll

from collections import deque fl EVEry BIED: : .
o Visit oldest pending node

o Mark its undiscovered neighbors as pending.

def bfs(graph, source):
'""Start a BFS at “source’.”"”
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending’
pending = deque([source])

while there are still pending nodes
while pending:
u = pending.popleft() #remove the first elem
for v in graph.neighbors(u):
if status[v] == 'undiscovered':
status[v] = 'pending’

"l'f‘l"!"f'!"!."!'

T ————
.............................

!!lllllllllllllllllllll=ll

from collections import deque fl EVEry BIED: : .
o Visit oldest pending node

o Mark its undiscovered neighbors as pending.

def bfs(graph, source):
'""Start a BFS at “source’.”"”
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending’
pending = deque([source])

while there are still pending nodes
while pending:
u = pending.popleft() #remove the first elem
for v in graph.neighbors(u):
if status[v] == 'undiscovered':
status[v] = 'pending’
pending.append(v)

"l'f‘l"!"f'!"!."!'

T ————
.............................

!!lllllllllllllllllllll=ll

from collections import deque fl EVEry BIED: : .
o Visit oldest pending node

o Mark its undiscovered neighbors as pending.

def bfs(graph, source):
'""Start a BFS at “source’.”"”
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending’
pending = deque([source])

while there are still pending nodes
while pending:
u = pending.popleft() #remove the first elem
for v in graph.neighbors(u):
if status[v] == 'undiscovered':
status[v] = 'pending’
pending.append(v)
status[u] == 'visited' .

T — T W ———
.............................

'!."C"C'!"L"!'

C

c

I lllllllllllllllllllllll=l=
.-

II.__, BFS

from collections import deque

def bfs(graph source):

“Start a BFS at souree ,"™°
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

while there are still pending nodes
while pending:
u = pending.popleft()
. for v in graph.neighbors(u):
explore edge (u,v)
if status[v] == 'undiscovered':

status[v] = 'pending'
append to right

pending.append(v)
= status[u] = 'visited'

B ————T
.............................

:
0

e \What does this code actually return?

e Nothing, yet. It is 3 foundation.

e BFS works just as well for directed graphs.

11113999

T ————
.............................

T ———
..............................

==llllllllllllllllllllllll=l=
.-

o Exercise: What will bfs do when run on a
disconnected graph?

A: Discover all nodes

B: Inf. loop

: C: Discover only some
.P — nodes.
= L

B ————T
.............................

I lllllllllllllllllllllll=l=
.-

Claim

e bfs with source u will visit all nodes reachable from u
(and only those nodes).

e Useful!
o |s there a path between u and v?
o Is graph connected?

="’ =8

B ————T
e

Bl L
| 4 L
o -
o L
=t: Exploring with BFS =
. e BFS will visit all nodes reachable from source. .
o L
. e |f disconnected, BFS will not visit all nodes. .
. e \We can do so with a full BFS. .
.I) o ldea: “re-start” BFS on undiscovered node. .
= o Must pass statuses between calls. =
¥ =
=- T —— T S W ——
-ttt

==llllllllllllllllllllllll=l=
.-

=I.-—' Making Full BFS: Modify bfs to accept
#l§¥a§§raph source, status=None):

"Start a BFS at “source’.”"”

if status is None:
status = {node: 'undiscovered' for node in graph.nodes}
...

o
< =8

B ————T
e

N A A
——— =aEE
.

Making Full BFS: Call bfs multiple times

~def full_bfs(graph):
status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:
if status[node] == 'undiscovered':
bfs(graph, node, status)

"l'f‘l"!"f'!"!."!'

T ————
.............................

T R ————
-ttt

l L |
Example

3

O O

Oy 8
O

2 () 5 () ~)°
B 5 \
L O

Q12

T ————
e

T ———
..............................

e]
T def full_bfs(graph): .----.

status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:
if status[node] == 'undiscovered'

3 6
“I' ‘;z:'
11

@ @0
: N\ @
@

P First call to DFS 9 ‘ 12
= L

B ————T
.............................

'!."C"C'!"L'T.'

FEEEEEEEEEEEE e EEEEreeee-
'- def full_bfs(graph): I A --.

status = {node: 'undiscovered' for node in graph.nodes}

for node in graph.nodes:
6
‘@
:1

if status[node] == 'undiscovered'
- @
\‘10
g \

i'. Second call to DFS ° ‘ 12
= =i

B ————T
.............................

ceeccce

FEEEEEEEEEEEE e EEEEreeee-
'- def full_bfs(graph): I A --.

status = {node: 'undiscovered' for node in graph.nodes}

for node in graph.nodes:
6
‘@
:1

if status[node] == 'undiscovered'
- @
\‘10
g \

i'. Third call to DFS 9 ‘ 12
= L

B ————T
.............................

T‘t"ﬂ'f'!'

==llllllllllllllllllllllll=l=
.-

II.__.
= Observation

If there are k connected components, bfs in line 5 is called
exactly k times

. def full_bfs(graph):
status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:

if status[node] == 'undiscovered':

I bfs(graph, node, status)

B ————T
.............................

I lllllllllllllllllllllll=l=
.-

.I,_) Exercise

How many times is each node added to the queue in a BFS of
“the graph below?

: Once

: Twice

.P : E times

D: V times

=i-—. E: V +E times
o

B ————T
e

I lllllllllllllllllllllll=l=
.-

.I,_) Exercise

How many times is each node added to the queue in a BFS of
“the graph below?

A: Once

B: Twice

.P C: E times

D: V times

=P E: V +E times
o

B ————T
e

I lllllllllllllllllllllll=l=
.-

.I,_) Exercise

How many times is each edge “explored” in a BFS of the graph below?

: Once

: Twice

.P : E times

D: V times

=P E: V +E times
o

B ————T
e

I lllllllllllllllllllllll=l=
.-

.I,_) Exercise

How many times is each edge “explored” in a BFS of the graph below?

: Once

: Twice

.P : E times

D: V times

=P E: V +E times
o

B ————T
e

I lllllllllllllllllllllll=l=
.-

.I,_) Exercise

How many times is each edge “explored” in a BFS of the directed
~graph below?

: Once

: Twice

.P : E times

D: V times

=i-—. E: V +E times
o

B ————T
e

I lllllllllllllllllllllll=l=
.-

.I,_) Exercise

How many times is each edge “explored” in a BFS of the directed
~graph below?

A: Once

B: Twice

.P C: E times

D: V times

=i-—. E: V +E times
o

B ————T
e

Key Properties of full_bfs

e Each node added to queue exactly once.

e Each edge is explored exactly:
o once if graph is directed.
o twice if graph is undirected.

11113999

T ————
.............................

Time Complexity of full_bfs

e Analyzing full_bfs is easier than analyzing bfs.
o fTull_bfs visits all nodes, no matter the graph.

e Result will be upper bound on time complexity of bfs.

e \We’ll use an aggregate analysis.

133193149

T ————
.............................

N A A
——— =aEE
.

from collections import deque

def bfs(graph, source):

‘"Start a BES at source .
status = ?node 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

while there are still pending nodes <:>-———*<:>
while pending:
u = pending.popleft() -
for v in graph.neighbors(u):
explore edge (u,v) <:>——_—_<:>
if status[v] == 'undiscovered':
status[v] = 'pending’
append to right
pending.append(v)
status[u] = 'visited'

"l'f‘l"!"f'!"!."!'

T ————
.............................

==llllllllllllllllllllllll=ll

=I,_) Exercise 4: Complexitq
B
B

for u in range(len(adj)):

]
0, for v in adj[ul:
@ 9 2] print(f"({u}, {v})")

]
.I What is the time complexity in terms of |V | and |E|?

A: O ([E[+|V]) C:O(|E|)

I.) B: O(E|*[V]) D: @(V])
= L

B ————T
.............................

==llllllllllllllllllllllll=ll

=I,_) Exercise 4: Complexitq
B
B

(D it

[0, 2], for u in range(len(adj)):

for v in adj[u]:
(2)—(3) S print(F"({u}, tvH")
.
II' uis O
= L

B ————T
.............................

==llllllllllllllllllllllll=ll

=I,_) Exercise 4: Complexitq
B
B

(D it

[0, 2], for u in range(len(adj)):

for v in adj[u]:
(2)—(3) S print(F"({u}, tvH")
.
II' uis O Uis 1
Il v=0, 2
= L

B ————T
.............................

==llllllllllllllllllllllll=ll

=I,_) Exercise 4: Complexitq
B
B

(D it

[0, 2], for u in range(len(adj)):

for v in adj[u]:
(2)—(3) S print(F"({u}, tvH")
.
II' uis O uis 1
Il v=0, 2
= L

B ————T
.............................

==llllllllllllllllllllllll=ll

=I,_) Exercise 4: Complexitq
B
B

(D it

[0, 2], for u in range(len(adj)):

for v in adj[u]:
(2)—(3) S print(F"({u}, tvH")
.
II' uis O uis 1
Il v=0, 2
= L

B ————T
.............................

==llllllllllllllllllllllll=ll

=I,_) Exercise 4: Complexitq
B
B

(D it

[0, 2], for u in range(len(adj)):

[1. 3] for v @n adjfu]:
(23 S print(F"({u}, {vH")
II"' uisO uis i ' uis 3
I v=0, 2 , v = 2 Total of 6 iterations

B ————T
.............................

==llllllllllllllllllllllll=ll

=I,_) Exercise 4: Complexitq
B
B

(D it

[0, 2], for u in range(len(adj)):

[1. 3] for v in adj[u]:
(2)3 S print(F({u}, {vH)")
II' uisO uis i ' uis 3
I v=0, 2) v = 2 Total of 6 iterations (E)

B ————T
.............................

—
.I'-’ Exercise 5: @
(2)

adj = [

_ A
I
Al

ONON
Lt

for u in range(len(adj)):
for v in adj[ul:

pr1nt(f ({u}, {v})")

. uis O uis 1 ' uis 3

} - Total of 4 iterations (V)

B ————T
.............................

Thank you!

.I CampusWire!
=l--

)

