DSC 40B Lecture 19: BFS

Graph Search Strategies

How do we:

- determine if there is a path between two nodes?
- check if graph is connected?
- count connected components?

Search Strategies

- A **search strategy** is a procedure for *exploring* a graph.
- Different strategies are useful in different situations.

Node Statuses

- At any point during a search, a node is in exactly one of three states:
 - visited
 - pending (discovered, but not yet visited)
 - undiscovered

Rules

- At every step, next visited node chosen from among pending nodes.
- When a node is marked as visited, all of its neighbors have been marked as pending.

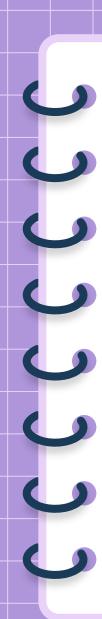
Choosing the next Node

- How to choose among pending nodes?
 - Idea 1: Visit newest pending (depth-first search).
 - Idea 2: Visit oldest pending (breadth-first search).

Main Idea

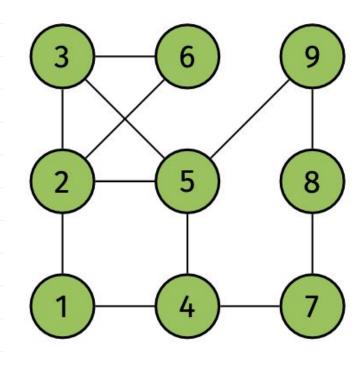
- Depth-first search (DFS) and breadth-first search (BFS)
 each discover different properties of the graph.
- For example, we'll see that BFS is useful for finding shortest paths (DFS in general is not).

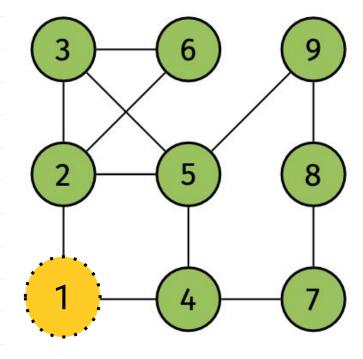
Breadth-First Search



Breadth-First Search

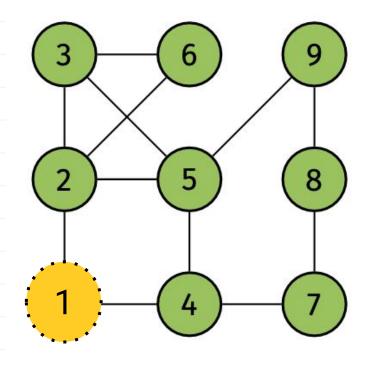
- At every step:
 - Visit oldest pending node.
 - Mark its undiscovered neighbors as pending.
- Convention: in this class, neighbors produced in sorted order.
 - In general, the order in which a node's neighbors produced is arbitrary.



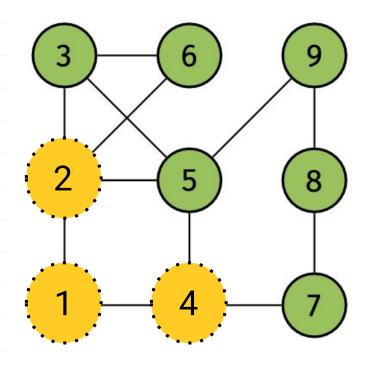


pending = [1]

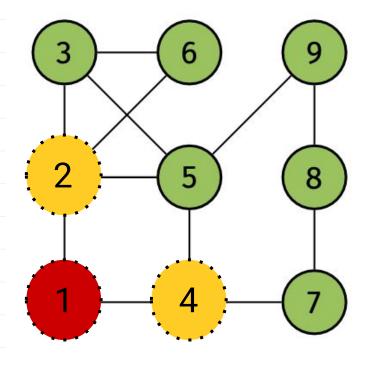
Before iterating.



pending = [1, 2, 4]



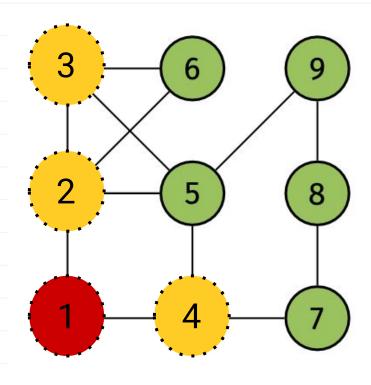
pending = [1, 2, 4]



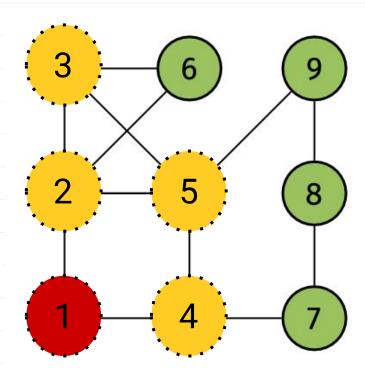
After 1st iteration.

pending =
$$[2, 4]$$

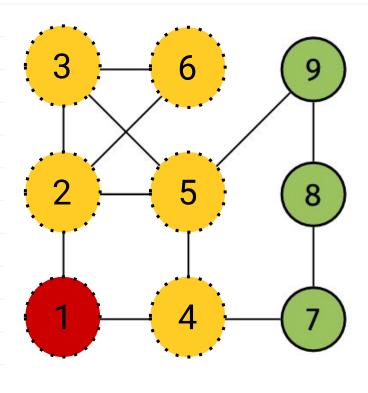
- visited
- pending (discovered, but not yet visited)
- undiscovered



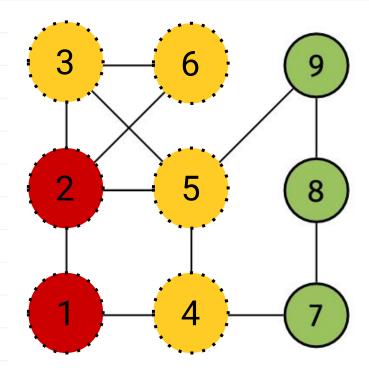
pending = [2, 4, 3]



pending = [2, 4, 3, 5]

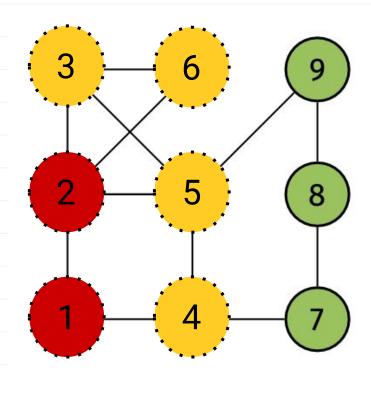


pending = [2, 4, 3, 5, 6]

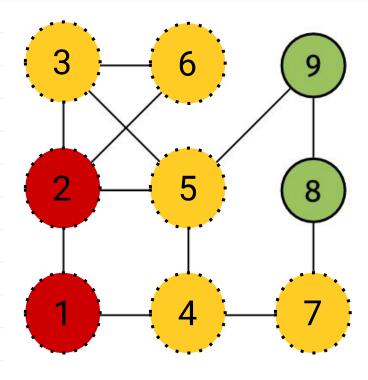


pending = [4, 3, 5, 6]

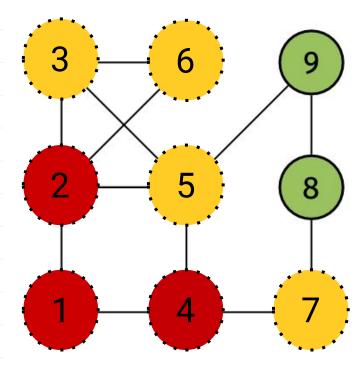
After 2nd iteration.



pending = [4, 3, 5, 6, ?]

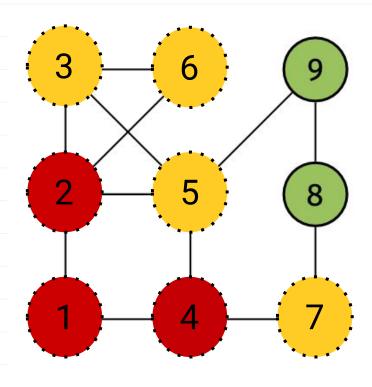


pending = [4, 3, 5, 6, 7]

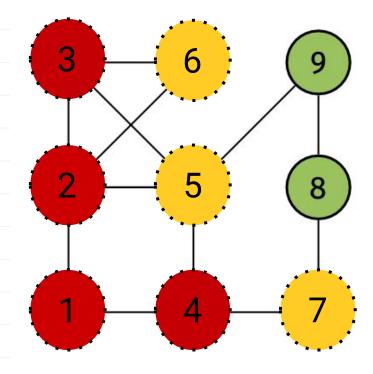


pending = [3, 5, 6, 7]

After 3rd iteration

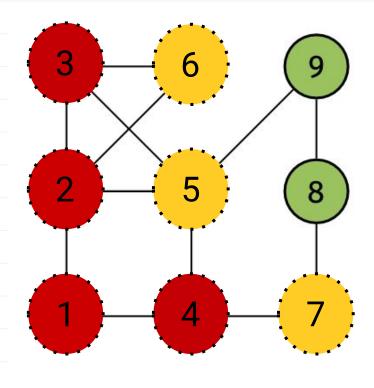


pending = [3, 5, 6, 7, ?]

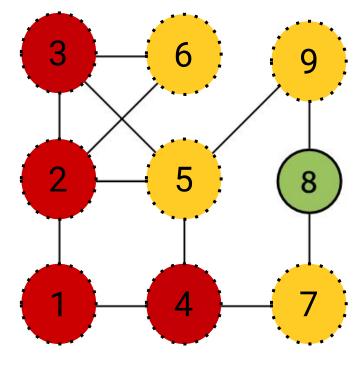


pending = [5, 6, 7]

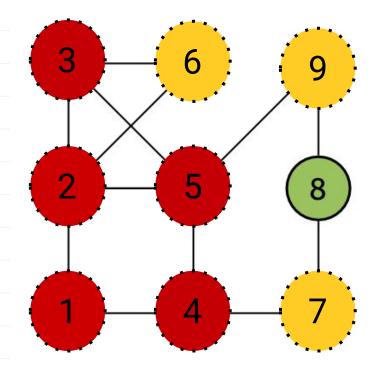
After 4th iteration



pending = [5, 6, 7, ?]

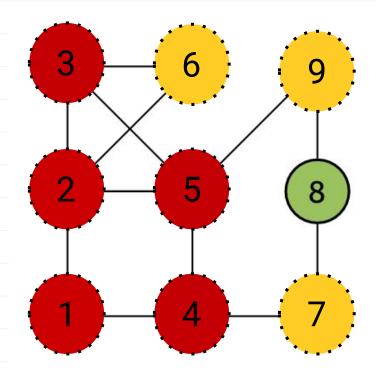


pending = [5, 6, 7, 9]

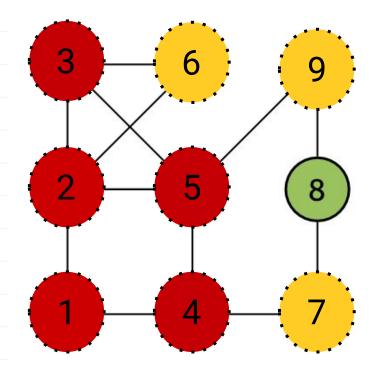


pending = [6, 7, 9]

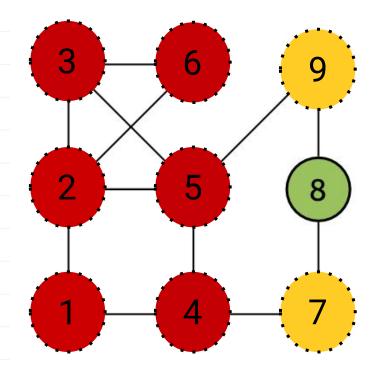
After 5th iteration



pending = [6, 7, 9, ?]

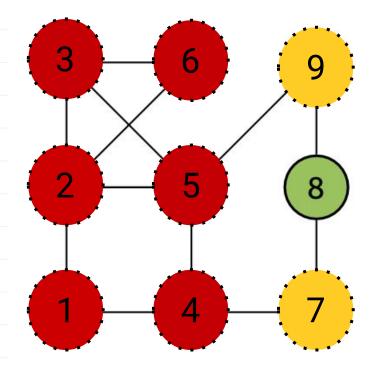


pending = [6, 7, 9]

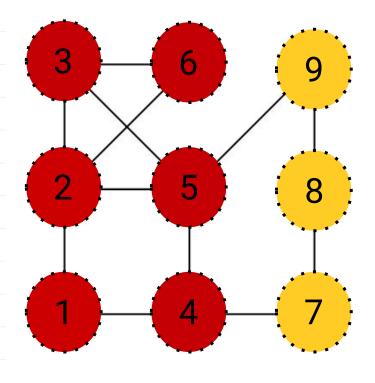


pending = [7, 9]

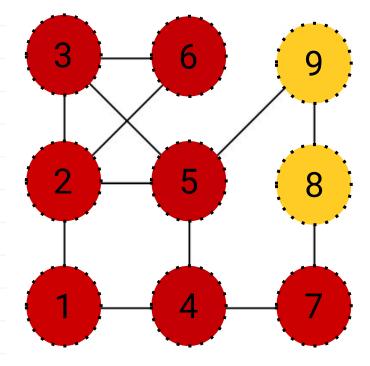
After 6th iteration



pending = [7, 9, ?]

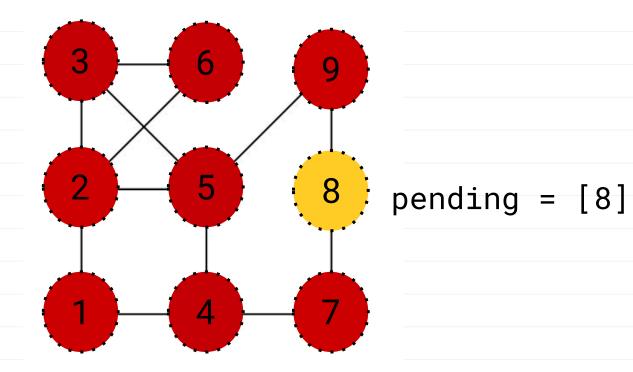


pending = [7, 9, 8]

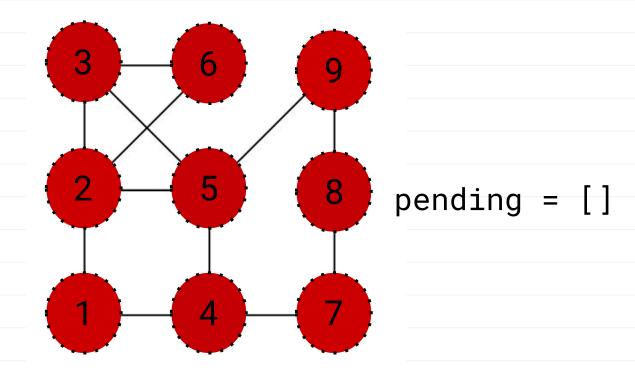


pending = [9, 8]

After 7th iteration



After 8th iteration



After 9th iteration

Implementation

- To store pending nodes, use a FIFO queue.
 - FIFO = "First in, first out".
- While queue is not empty:
 - Pop a node, u. (remove from the front)
 - Add undiscovered neighbors to queue. (to the back)

Queues in Python

- Want $\Theta(1)$ time pops/appends on either side.
- from collections import deque ("deck").
 - .popleft() and.pop()
 - o list doesn't have right time complexity!
 - o import queue isn't what you want!
- Keep track of node status attribute using dictionary.

```
from collections import deque
def bfs(graph, source):
   """Start a BFS at `source`."""
   status[source] = 'pending'
   pending = deque([source])
   while pending:
     # EXERCISE: fill this in...
```

```
status = {node: 'undiscovered' for node in graph.nodes}
# while there are still pending nodes
```

```
At every step:
from collections import deque

    Visit oldest pending node.

    Mark its undiscovered neighbors as pending.

def bfs(graph, source):
   """Start a BFS at `source`."""
   status = {node: 'undiscovered' for node in graph.nodes}
   status[source] = 'pending'
   pending = deque([source])
   # while there are still pending nodes
   while pending:
      # EXERCISE: fill this in...
```

```
At every step:
from collections import deque

    Visit oldest pending node.

    Mark its undiscovered neighbors as pending.

def bfs(graph, source):
   """Start a BFS at `source`."""
   status = {node: 'undiscovered' for node in graph.nodes}
   status[source] = 'pending'
   pending = deque([source])
   # while there are still pending nodes
   while pending:
      u = pending.popleft() #remove the first elem
```

```
At every step:
from collections import deque

    Visit oldest pending node.

    Mark its undiscovered neighbors as pending.

def bfs(graph, source):
   """Start a BFS at `source`."""
   status = {node: 'undiscovered' for node in graph.nodes}
   status[source] = 'pending'
   pending = deque([source])
   # while there are still pending nodes
   while pending:
      u = pending.popleft() #remove the first elem
      for v in graph.neighbors(u):
```

```
At every step:
from collections import deque

    Visit oldest pending node.

    Mark its undiscovered neighbors as pending.

def bfs(graph, source):
   """Start a BFS at `source`."""
   status = {node: 'undiscovered' for node in graph.nodes}
   status[source] = 'pending'
   pending = deque([source])
   # while there are still pending nodes
   while pending:
      u = pending.popleft() #remove the first elem
     for v in graph.neighbors(u):
           if status[v] == 'undiscovered':
```

```
At every step:
from collections import deque

    Visit oldest pending node.

    Mark its undiscovered neighbors as pending.

def bfs(graph, source):
   """Start a BFS at `source`."""
   status = {node: 'undiscovered' for node in graph.nodes}
   status[source] = 'pending'
   pending = deque([source])
   # while there are still pending nodes
   while pending:
      u = pending.popleft() #remove the first elem
     for v in graph.neighbors(u):
           if status[v] == 'undiscovered':
              status[v] = 'pending'
```

```
At every step:
from collections import deque

    Visit oldest pending node.

    Mark its undiscovered neighbors as pending.

def bfs(graph, source):
   """Start a BFS at `source`."""
   status = {node: 'undiscovered' for node in graph.nodes}
   status[source] = 'pending'
   pending = deque([source])
   # while there are still pending nodes
   while pending:
      u = pending.popleft() #remove the first elem
     for v in graph.neighbors(u):
           if status[v] == 'undiscovered':
              status[v] = 'pending'
              pending.append(v)
```

```
At every step:
from collections import deque

    Visit oldest pending node.

    Mark its undiscovered neighbors as pending.

def bfs(graph, source):
   """Start a BFS at `source`."""
   status = {node: 'undiscovered' for node in graph.nodes}
   status[source] = 'pending'
   pending = deque([source])
   # while there are still pending nodes
   while pending:
      u = pending.popleft() #remove the first elem
     for v in graph.neighbors(u):
           if status[v] == 'undiscovered':
              status[v] = 'pending'
              pending.append(v)
     status[u] == 'visited'
```

BFS

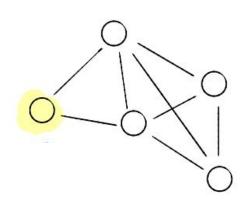
```
from collections import deque
def bfs(graph, source):
    """Start a BFS at `source`."""
status = {node: 'undiscovered' for node in graph.nodes}
    status[source] = 'pending'
    pending = deque([source])
    # while there are still pending nodes
    while pending:
         u = pending.popleft()
         for v in graph.neighbors(u):
              # explore edge (u,v)
              if status[v] == 'undiscovered':
    status[v] = 'pending'
                  # append to right
                  pending.append(v)
         status[u] = 'visited'
```

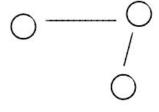

Notes

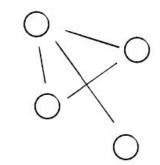
- What does this code actually return?
- Nothing, yet. It is a **foundation**.
- BFS works just as well for directed graphs.

Analysis of BFS

Exercise: What will bfs do when run on a disconnected graph?







A: Discover all nodes

B: Inf. loop

C: Discover only some nodes.

Claim

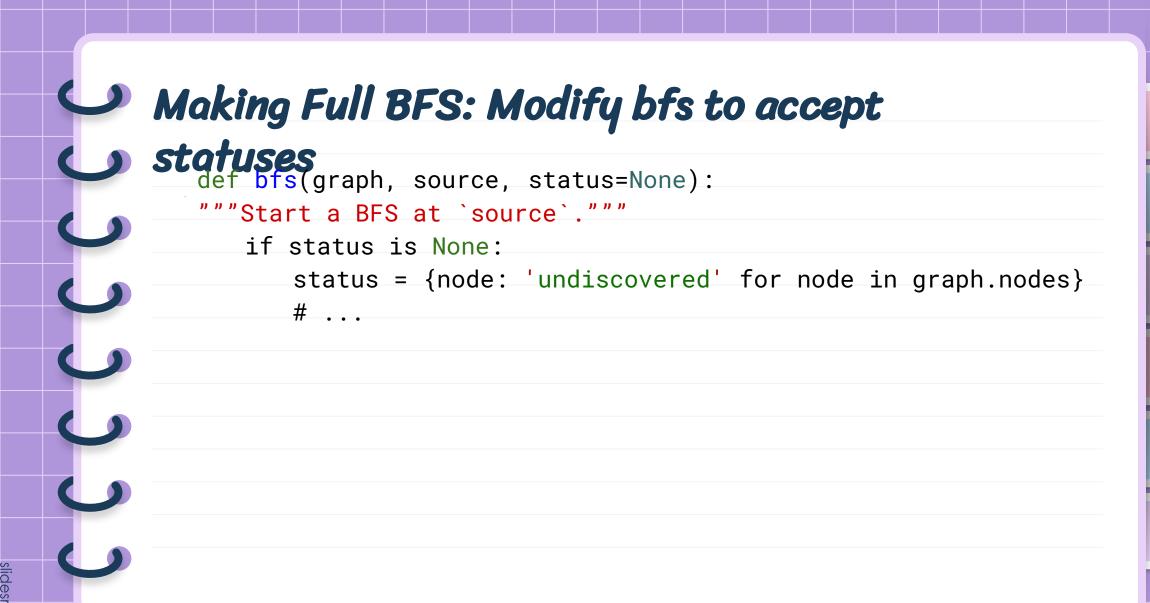
• bfs with source u will visit all nodes **reachable** from u (and only those nodes).

Useful!

- \circ Is there a path between u and v?
- Is graph connected?

Exploring with BFS

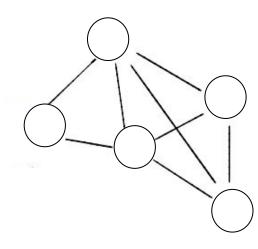
- BFS will visit all nodes **reachable** from source.
- If disconnected, BFS will not visit all nodes.
- We can do so with a full BFS.
 - o Idea: "re-start" BFS on undiscovered node.
 - Must pass statuses between calls.

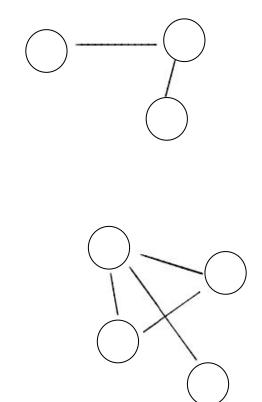


Making Full BFS: Call bfs multiple times

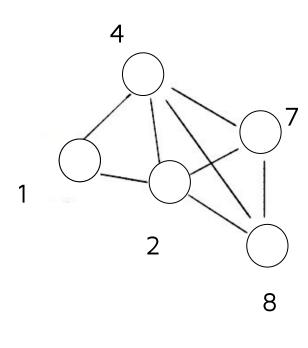
```
def full_bfs(graph):
    status = {node: 'undiscovered' for node in graph.nodes}
    for node in graph.nodes:
        if status[node] == 'undiscovered':
            bfs(graph, node, status)
```

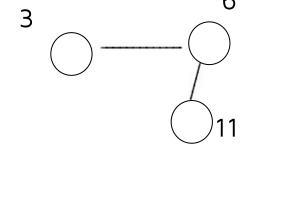
Example

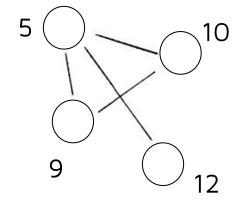




Example

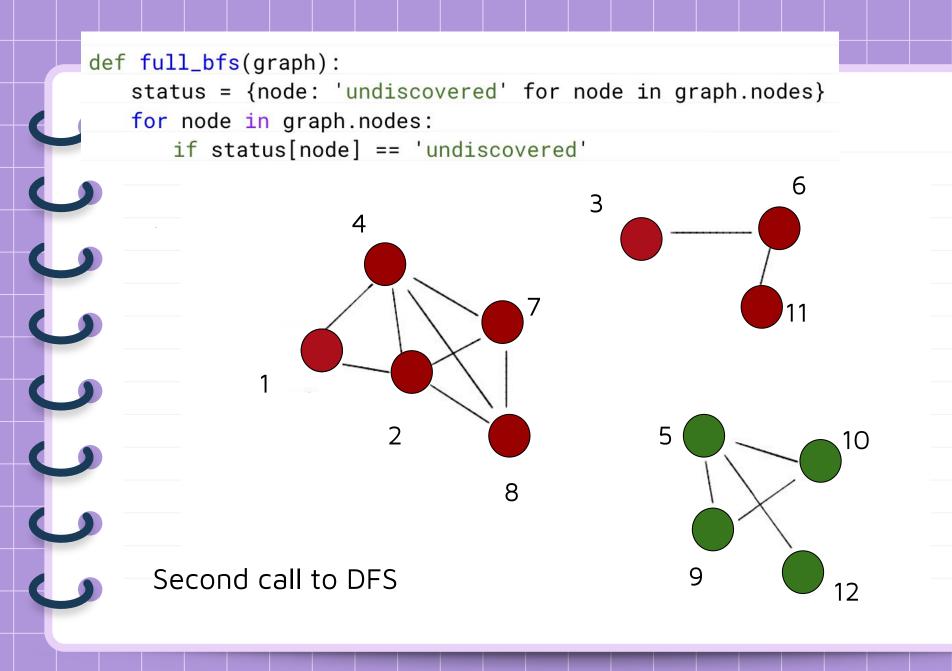


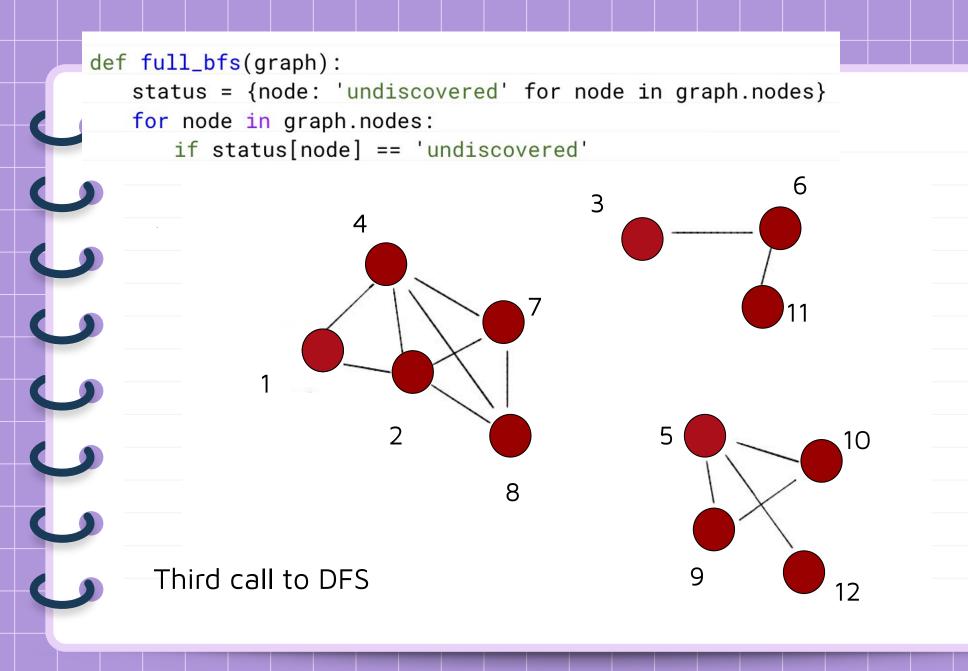




Example

```
def full_bfs(graph):
      status = {node: 'undiscovered' for node in graph.nodes}
      for node in graph.nodes:
         if status[node] == 'undiscovered'
                                                       10
First call to DFS
```



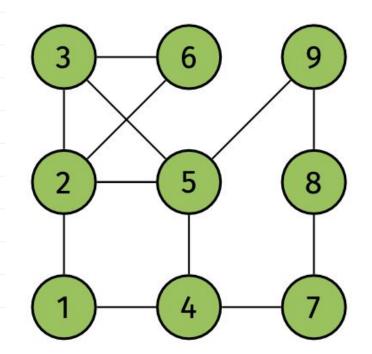


Observation

If there are k connected components, bfs in line 5 is called exactly k times

```
def full_bfs(graph):
    status = {node: 'undiscovered' for node in graph.nodes}
    for node in graph.nodes:
        if status[node] == 'undiscovered':
            bfs(graph, node, status)
```

How many times is each node added to the queue in a BFS of the graph below?



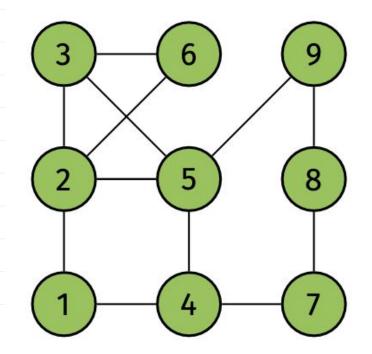
A: Once

B: Twice

C: E times

D: V times

How many times is each node added to the queue in a BFS of the graph below?



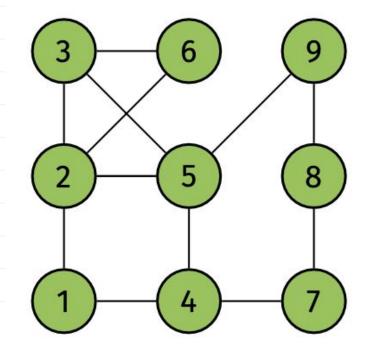
A: Once

B: Twice

C: E times

D: V times

How many times is each edge "explored" in a BFS of the graph below?



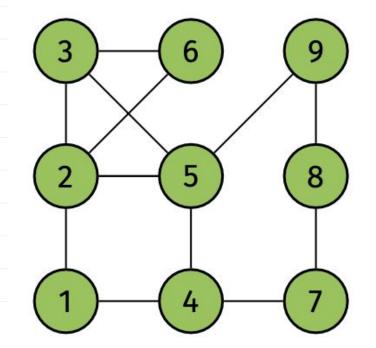
A: Once

B: Twice

C: E times

D: V times

How many times is each edge "explored" in a BFS of the graph below?



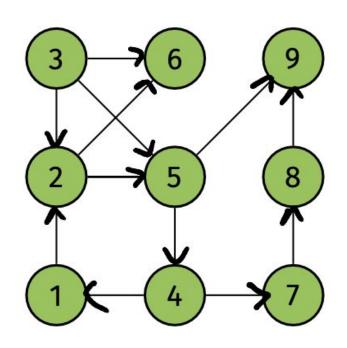
A: Once

B: Twice

C: E times

D: V times

How many times is each edge "explored" in a BFS of the **directed** graph below?



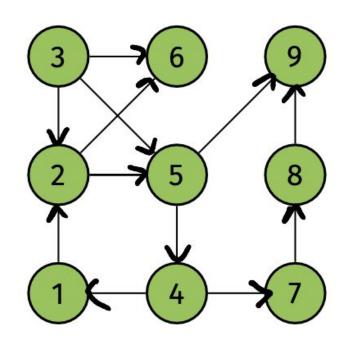
A: Once

B: Twice

C: E times

D: V times

How many times is each edge "explored" in a BFS of the **directed** graph below?



A: Once

B: Twice

C: E times

D: V times

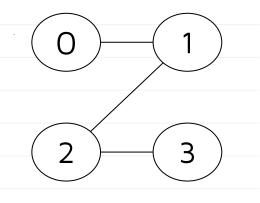
Key Properties of full_bfs

- Each node added to queue **exactly once**.
- Each edge is *explored* **exactly**:
 - o once if graph is directed.
 - o twice if graph is undirected.

Time Complexity of full_bfs

- Analyzing full_bfs is easier than analyzing bfs.
 - o full_bfs visits all nodes, no matter the graph.
- Result will be upper bound on time complexity of bfs.
- We'll use an aggregate analysis.

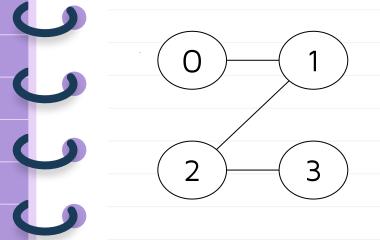
```
from collections import deque
def bfs(graph, source):
    """Start a BFS at `source`."""
status = {node: 'undiscovered' for node in graph.nodes}
    status[source] = 'pending'
    pending = deque([source])
    # while there are still pending nodes
    while pending:
        u = pending.popleft()
        for v in graph.neighbors(u):
             # explore edge (u,v)
             if status[v] == 'undiscovered':
                 status[v] = 'pending'
                 # append to right
                 pending.append(v)
        status[u] = 'visited'
```



```
adj = [
    [1],
    [0, 2],
    for u in range(len(adj)):
        [1, 3],
        for v in adj[u]:
        print(f"({u}, {v})")
]
```

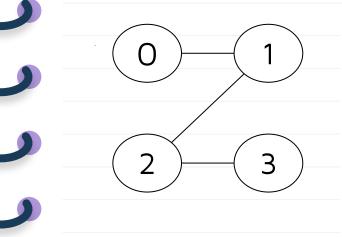
What is the time complexity in terms of |V| and |E|?

A:
$$\Theta$$
 (|E| + |V|) C: Θ (|E|)



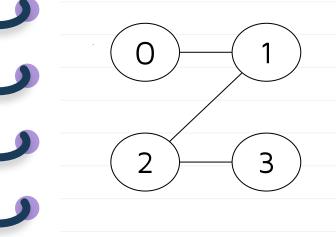
u is 0

 $\vee = 1$



u is 0 u is 1

v=1 v=0, 2



u is O

u is 1

u is 2

$$\vee = 1$$

$$V = 0, 2$$

u is O

u is 1

u is 2 u is 3

$$\vee = 1$$

$$V=0, 2 V=1, 3$$

u is 0 u is 1 u is 2 u is 3

 $\vee = 1$

v=0, 2 v=1, 3 v=2 Total of 6 iterations

u is 0

u is 1

u is 2 u is 3

$$\vee = 1$$

v=0, 2 v=1, 3 v=2 Total of 6 iterations (E)

Exercise 5:

```
0 1
```

u is 0 u is 1 u is 2 u is 3

- - Total of 4 iterations (V)

Thank you!

Do you have any questions?

CampusWire!