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Adjacency Matrices
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Representations

●  How do we store a graph in a computer’s memory?
●  Three approaches:

○ Adjacency matrices.
○  Adjacency lists.
○ “Dictionary of sets”
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Adjacency Matrices

●  Assume nodes are numbered 0, 1, …, |𝑉 | − 1

●  Allocate a |𝑉 | × |𝑉 | (Numpy) array

●  Fill array as follows:

○ arr[i,j] = 1 if (𝑖, 𝑗) ∈ 𝐸

○ arr[i,j] = 0 if (𝑖, 𝑗) ∉ 𝐸
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Observations

● If 𝐺 is undirected, matrix is symmetric.

● If 𝐺 is directed, matrix may not be symmetric.
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Time Complexity

   operation code time
Edge query adj[i, j] == 1 Θ(1)

Degree(i) np.sum(adj[i,:]) Θ(|𝑉 |)
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Space Requirements

●  Uses |𝑉 |2 bits, even if there are very few edges.

●  But most real-world graphs are sparse.

○ They contain many fewer edges than possible.
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Example: Facebook

●  Facebook has 2 billion users.  (  V  )

(2 × 109)2 = 4 × 1018 bits

               = 500 petabits

               ≈ 6500 years of video at 1080p

               ≈ 60 copies of the internet as it was in 2000
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Adjacency Matrices and Math

●  Adjacency matrices are useful mathematically.
●  Example: (𝑖, 𝑗) entry of 𝐴2 gives number of hops of length 

2 between 𝑖 and 𝑗.
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Adjacency Lists
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What’s Wrong with Adjacency Matrices?

●  Requires Θ(|𝑉 |2) storage.

●  Even if the graph has no edges.

●  Idea: only store the edges that exist.
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Adjacency Lists

● Create a list adj containing |𝑉| lists. 

● adj[i] is list containing the neighbors of node 𝑖.
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adj[i] is list containing the neighbors of node 𝑖.
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adj[i] is list containing the neighbors of node 𝑖.
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adj[i] is list containing the neighbors of node 𝑖.
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adj[i] is list containing the neighbors of node 𝑖.
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adj[i] is list containing the neighbors of node 𝑖.
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adj[i] is list containing the neighbors of node 𝑖.
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adj[i] is list containing the neighbors of node 𝑖.
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adj[i] is list containing the neighbors of node 𝑖.
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adj[i] is list containing the neighbors of node 𝑖.
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adj[i] is list containing the neighbors of node 𝑖.
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Observations

●  If 𝐺 is undirected, each edge appears twice.

●  If 𝐺 is directed, each edge appears once.
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Time Complexity

   operation code time
Edge query j in adj[i, j] Θ(degree(i))

Degree(i) len(adj[i]) Θ(1)
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Exercise 1: Build a graph from the list
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Exercise 2: What does the following code 
do?
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Exercise 2: What does the following code 
do?
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Exercise 2: What does the following code 
do?

0 1
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Prints all edges

(0, 1)
(1, 0)
(1, 2)
(2, 1)
(2, 3)
(3, 2)
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Exercise 3: Complexity
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2 3

How many times is the print statement executed in terms of 
|𝑉 | and |𝐸|  (if undirected)?

A:   |E| + |V|          C: 2 * |E|

B:   |E| * |V|          D:  |E| + |V| - 1
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Exercise 3: Complexity

0 1

2 3

How many times is the print statement executed in terms of 
|𝑉 | and |𝐸|  (if undirected)?

A:   |E| + |V|          C: 2 * |E|

B:   |E| * |V|          D:  |E| + |V| - 1



❖

Exercise 3: Complexity

0 1

2 3

How many times is the print statement executed in terms of 
|𝑉 | and |𝐸|  (if directed)?

A:   |E|
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Exercise 4: Complexity
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2 3

What is the time complexity in terms of |𝑉 | and |𝐸|?

A:  Θ (|E| + |V| )        C: Θ (|E|)

B:  Θ (|E| * |V| )        D:  Θ (|V|)
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Exercise 5: 

What is the time complexity for this case?

A:  Θ (|E| + |V| )         C: Θ (|E|)

B:   Θ (|E| * |V| )        D:  Θ (|V|)

0 1

2 3



❖

Exercise 5: 

What is the time complexity for this case?
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Exercise 4: Complexity
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What is the time complexity in terms of |𝑉 | and |𝐸|?

A:  Θ (|E| + |V| )        C: Θ (|E|)

B:  Θ (|E| * |V| )        D:  Θ (|V|)
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Looping Over Edges

●  Looping over all edges in this way takes Θ(𝑉 + 𝐸) time.

●  In aggregate, the print statement is executed:
○ 2|𝐸| times if graph is undirected.
○ |𝐸| times if graph is directed.

●  This is called an aggregate analysis.
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Space Requirements

●  Need Θ(|𝑉 |) space for outer list.

●  Plus Θ(|𝐸|) space for inner lists.

●  In total: Θ(|𝑉 | + |𝐸|) space.
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Example: Facebook

●  Facebook has 2 billion users, 400 billion friendships.

●  If each edge requires 32 bits: (2 bits × 200 × (2 billion))

= 64 × 400 × 109 bits

= 3.2 terabytes

= 0.04 years of HD video
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Dictionary of Sets
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Trade Offs

●  Adjacency matrix: fast edge query, lots of space.

●  Adjacency list: slower edge query, space efficient.

●  Can we have the best of both?
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Idea

●  Use hash tables.

●  Replace inner edge lists by sets.

●  Replace outer list with dict.
○ Doesn’t speed things up, but allows nodes to have arbitrary 

labels.
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Example

0

1 2

3

adj = {

             ‘a’: {‘b’},

  ‘b’: {‘c’},

  ‘c’: {‘b’, ‘d’},

  ‘d’:

        }
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adj = {

             ‘a’: {‘b’},

  ‘b’: {‘c’},

  ‘c’: {‘b’, ‘d’},

  ‘d’: {‘d’}

        }
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Time Complexity

   operation code time
Edge query j in adj[i, j] Θ(1) on average

Degree(i) len(adj[i]) Θ(1) on average
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Space Requirements

●  Requires only Θ(V + 𝐸).

●  But there is overhead to using hash tables.
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Dict-of-sets implementation

●  Install with pip install dsc40graph

●  Import with import dsc40graph

●  Docs: https://eldridgejm.github.io/dsc40graph/

●  Source code: https://github.com/eldridgejm/dsc40graph

●  Will be used in HW coding problems.
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Do you have any questions?

Thank you!

CampusWire!


