DSC 40B Lecture 18: Graph representations

Adjacency Matrices

Representations

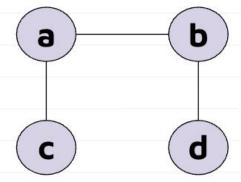
- How do we store a graph in a computer's memory?
- Three approaches:
 - Adjacency matrices.
 - Adjacency lists.
 - "Dictionary of sets"

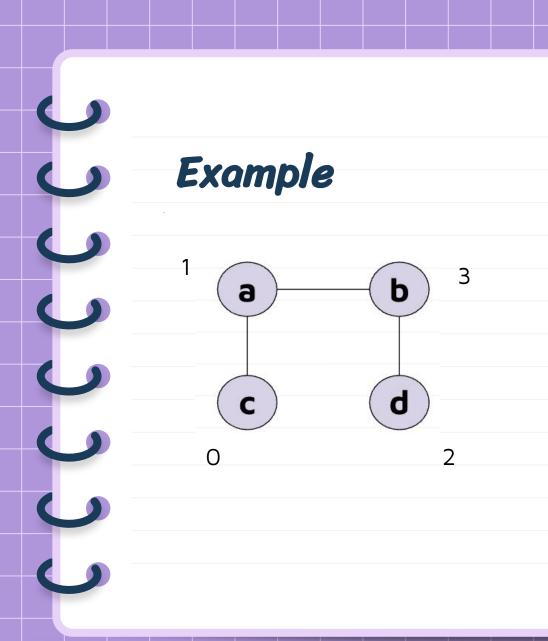
Adjacency Matrices

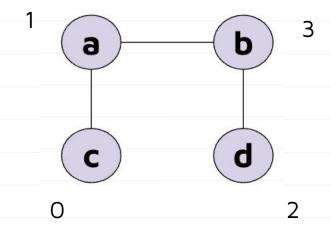
- Assume nodes are numbered 0, 1, ..., |V| 1
- Allocate a $|V| \times |V|$ (Numpy) array
- Fill array as follows:

$$\circ$$
 arr[i,j] = 1 if $(i, j) \in E$

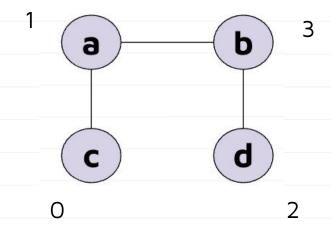
$$\circ$$
 arr[i,j] = 0 if $(i, j) \notin E$



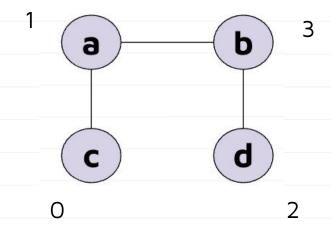




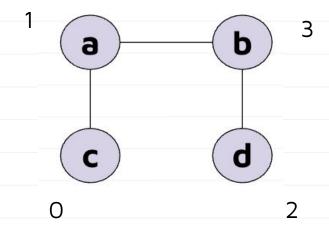
	0	1	2	3
0				
1				
2				
3				



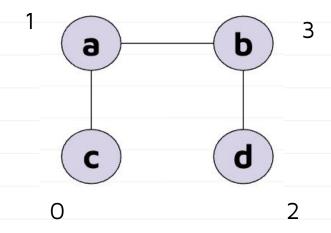
	0	1	2	3
0		1		
1				
2				
3				



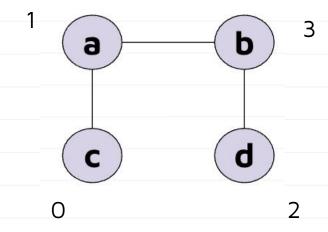
	0	1	2	3
0		1		
1	1			
2				
3				



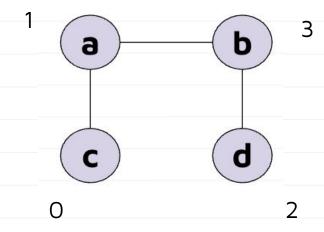
	0	1	2	3
0		1		
1	1			1
2				
3				



	0	1	2	3
0		1		
1	1			1
2				
3		1		



	0	1	2	3
0		1		
1	1			1
2				1
3		1	1	



	0	1	2	3
0	0	1	0	0
1	1	0	0	1
2	0	0	0	1
3	0	1	1	0

1 a b 3 0 C d 2

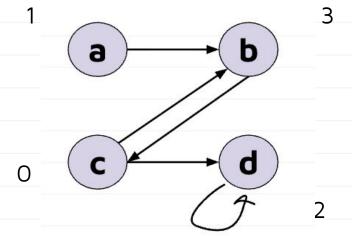
	0	1	2	3
0				
1				1
2				
3				

1 a b 3 0 C d 2

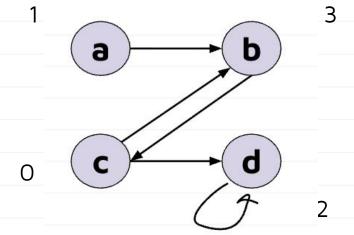
	0	1	2	3
0				1
1				1
2				
3				

1 a b 3 0 C d 2

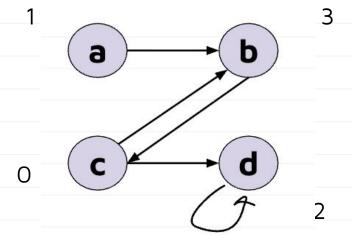
	0	1	2	3
0			1	1
1				1
2				
3				



	0	1	2	3
0			1	1
1				1
2				
3	1			



	0	1	2	3
0			1	1
1				1
2			1	
3	1			



	0	1	2	3
0	0	0	1	1
1	0	0	0	1
2	0	0	1	0
3	1	0	0	0

Observations

- If *G* is **undirected**, matrix is *symmetric*.
- If G is **directed**, matrix may not be symmetric.

Time Complexity

operation	code	time
Edge query	adj[i, j] == 1	Θ(1)
Degree(i)	np.sum(adj[i,:])	$\Theta(V)$

Space Requirements

- Uses $|V|^2$ bits, even if there are very few edges.
- But most real-world graphs are **sparse**.
 - They contain many fewer edges than possible.

Example: Facebook

Facebook has 2 billion users. (V)

$$(2 \times 10^9)^2 = 4 \times 10^{18}$$
 bits

= 500 petabits

≈ 6500 years of video at 1080p

≈ 60 copies of the internet as it was in 2000

Adjacency Matrices and Math

- Adjacency matrices are useful mathematically.
- **Example**: (i, j) entry of A^2 gives number of hops of length 2 between i and j.

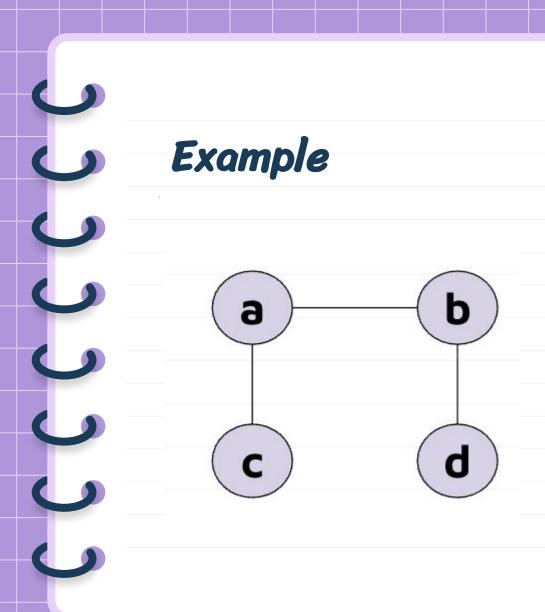
Adjacency Lists

What's Wrong with Adjacency Matrices?

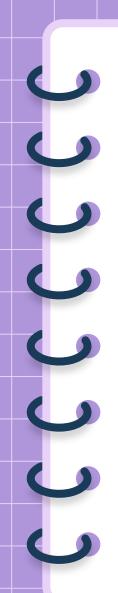
- Requires $\Theta(|V|^2)$ storage.
- Even if the graph has no edges.
- **Idea**: only store the edges that exist.

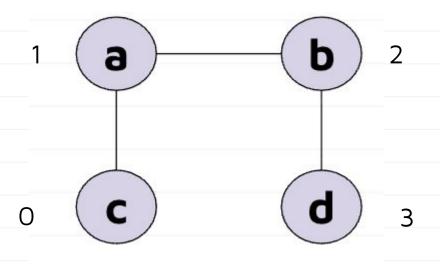
Adjacency Lists

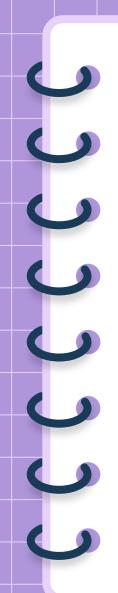
- ullet Create a list adj containing |V| lists.
- adj[i] is list containing the neighbors of node *i*.

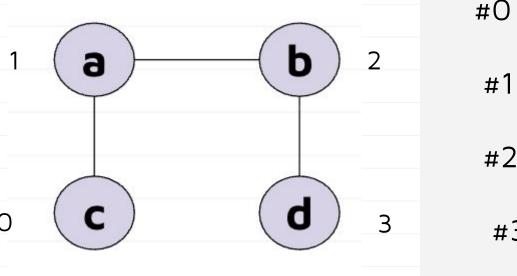


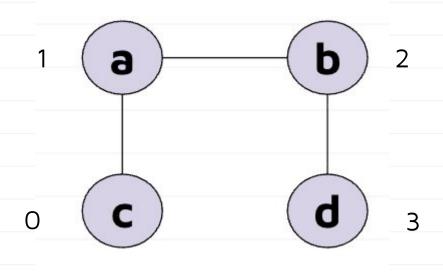
Example adj = [2 9 3



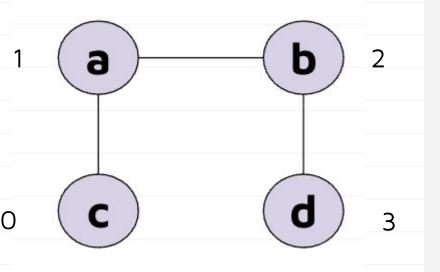




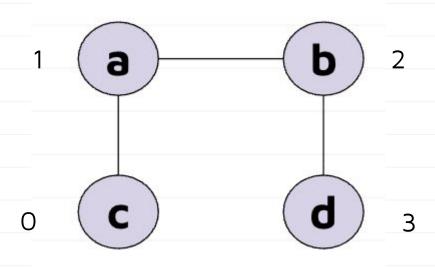




```
adj = [
  #O [1],
  #1 [0, 2],
  #2 [ ? ],
  #3 [ ?
```

```
adj = [
  #O [1],
  #1 [0, 2],
  #2 [1, 3],
   #3 [ ? ]
```

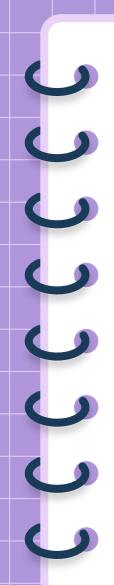
```
adj = [
  #O [1],
   #1 [0, 2],
   #2 [1, 3],
   #3 [2]
```

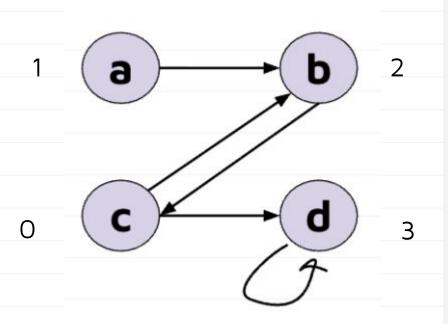
Example

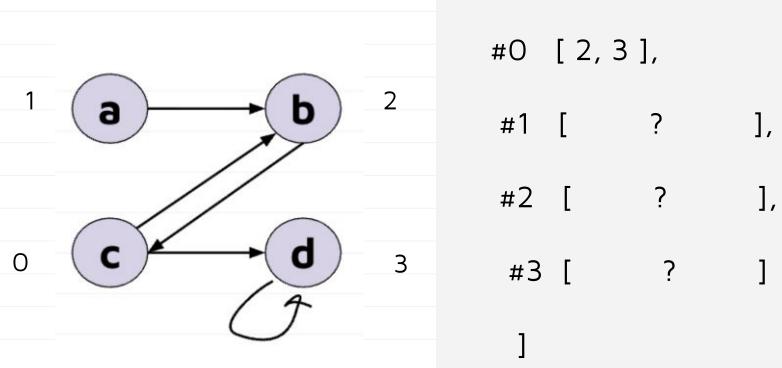
Example 2 b 3

Example

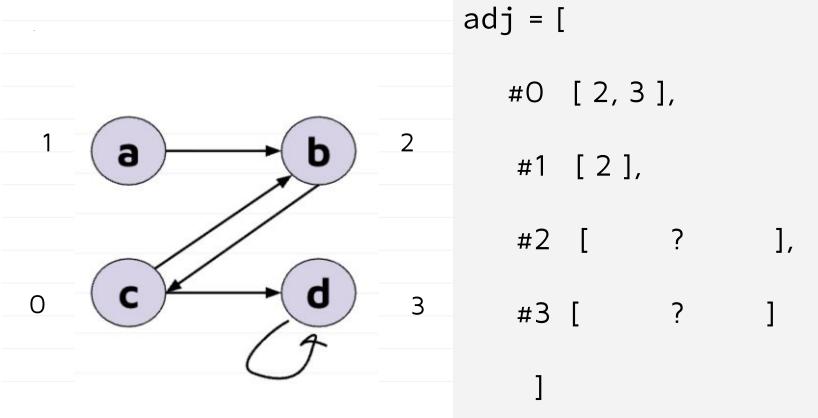
Example

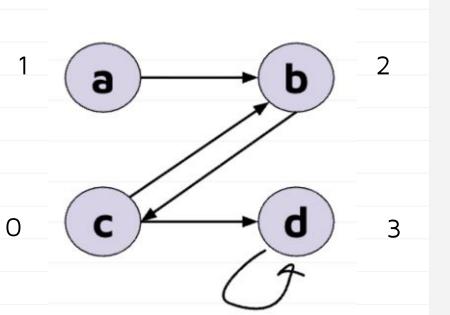




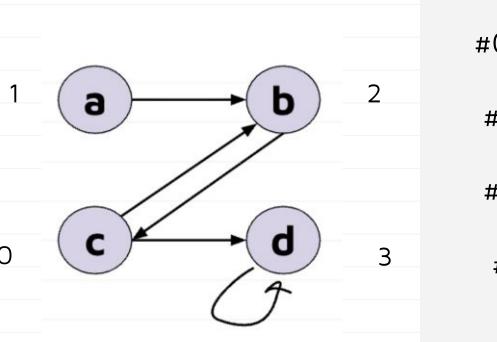


adj = [





```
adj = [
  #0 [2,3],
  #1 [2],
  #2 [O],
  #3 [ ? ]
```

Observations

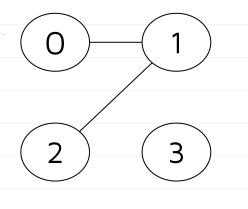
- \bullet If G is **undirected**, each edge appears **twice**.
- If *G* is **directed**, each edge appears **once**.

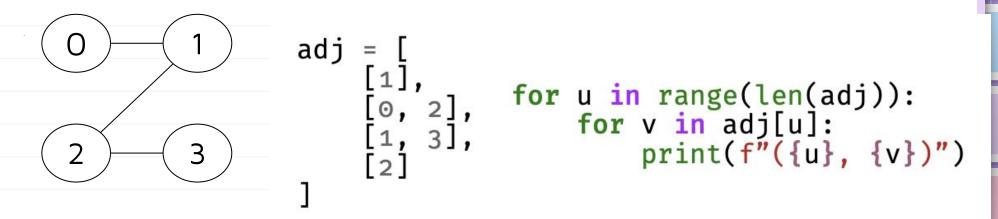
Time Complexity

operation	code	time
Edge query	j in adj[i, j]	Θ(degree(i))
Degree(i)	len(adj[i])	Θ(1)

- 0 1
- 2 3

```
adj = [
    [1],
    [0, 2],
    [1, 3],
    [1, 3],
    [2]
    [2]
for u in range(len(adj)):
    for v in adj[u]:
    print(f"({u}, {v})")
```





do?

0 1

```
adj = [
    [1],
    [0, 2],
    [1, 3],
    [1, 3],
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
```

0 1

do?

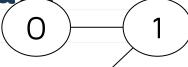
0 1

3

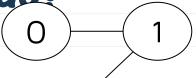
Prints all edges

(0, 1)

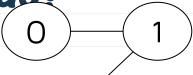
do?



do?

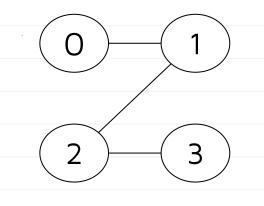


do?



```
(0, 1)
(1, 0)
(1, 2)
(2, 1)
(2, 3)
(3, 2)
```

Exercise 3: Complexity

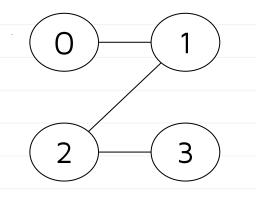


How many times is the **print** statement executed in terms of |V| and |E| (if undirected)?

Exercise 3: Complexity

How many times is the **print** statement executed in terms of |V| and |E| (if undirected)?

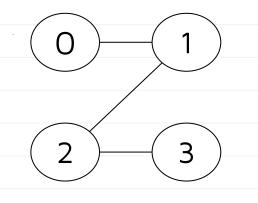
Exercise 3: Complexity



How many times is the **print** statement executed in terms of |V| and |E| (if directed)?

A: |E|

Exercise 4: Complexity



What is the time complexity in terms of |V| and |E|?

Exercise 5:

What is the time complexity for this case?

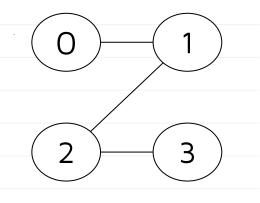
A:
$$\Theta(|E| + |V|)$$
 C: $\Theta(|E|)$

Exercise 5:

What is the time complexity for this case?

A:
$$\Theta(|E| + |V|)$$
 C: $\Theta(|E|)$

Exercise 4: Complexity



```
adj = [
    [1],
    [0, 2],
    for u in range(len(adj)):
        [1, 3],
        for v in adj[u]:
        print(f"({u}, {v})")
]
```

What is the time complexity in terms of |V| and |E|?

Looping Over Edges

- Looping over all edges in this way takes $\Theta(V + E)$ time.
- In aggregate, the print statement is executed:
 - \circ 2|E| times if graph is undirected.
 - \circ |E| times if graph is directed.
- This is called an aggregate analysis.

Space Requirements

- Need $\Theta(|V|)$ space for **outer list**.
- Plus $\Theta(|E|)$ space for **inner lists**.
- In total: $\Theta(|V| + |E|)$ space.

Example: Facebook

- Facebook has 2 billion users, 400 billion friendships.
- If each edge requires 32 bits: (2 bits × 200 × (2 billion))
 - $= 64 \times 400 \times 109 \text{ bits}$
 - = 3.2 terabytes
 - = 0.04 years of HD video

Dictionary of Sets

Trade Offs

- Adjacency matrix: fast edge query, lots of space.
- Adjacency list: slower edge query, space efficient.
- Can we have the best of both?



Idea

- Use hash tables.
- Replace inner edge lists by **set**s.
- Replace outer list with **dict**.
 - Doesn't speed things up, but allows nodes to have arbitrary labels.

Example

Example 2 b 3

Example b 9

```
adj = {
         `a':
         `b':
         `c':
         'd':
```

2

Example b 9 0

```
adj = {
         `a': {`b'},
         `b':
         `c':
         'd':
```

2

Example 9

```
adj = {
         `a': {`b'},
         'b': {'c'},
         `c':
         `d':
```

2

Example 9 Ο

```
adj = {
         `a': {`b'},
         'b': {'c'},
         `c': {`b', `d'},
         `d':
```

2

Example 9 0

```
adj = {
          'a': {'b'},
          'b': {'c'},
          `c': {`b', `d'},
          'd': {'d'}
```

2

Time Complexity

operation	code	time
Edge query	j in adj[i, j]	Θ(1) on average
Degree(i)	len(adj[i])	Θ(1) on average

Space Requirements

- Requires only $\Theta(V + E)$.
- But there is overhead to using hash tables.

Dict-of-sets implementation

- Install with pip install dsc40graph
- Import with import dsc40graph
- **Docs**: https://eldridgejm.github.io/dsc40graph/
- **Source code**: https://github.com/eldridgejm/dsc40graph
- Will be used in HW coding problems.

Thank you!

Do you have any questions?

CampusWire!