93333390

DSC 408
Lecture 18 : Graph
representations
S o

T ———
..............................

Representations

e How do we store a graph in a computer’'s memory?
e Three approaches:

o Adjacency matrices.

o Adjacency lists.

o “Dictionary of sets”

11113999

T ————
.............................

Adjacency Matrices

e Assume nodes are numbered O, 1, ..., [V | -1

e Allocatea |V | x |V | (Numpy) array
e Fill array as follows:
o arr[i,j] =1 1if (i, j) € E
o arr[i,j] = 0 if (i, j) ¢ E

11113999

T ————
.............................

T R ————
-ttt

T R ————
-ttt

=l

W -

3333333

=l

W -

3333333

=l

W -

3333333

=l

W -

3333333

=l

W -

3333333

=l

W -

3333333

pttppp.n

=l

L.Ppp.p-.rpb.-.

=l

L.Ppp.p-.rpb.-.

=l

L.Ppp.p-.rpb.-.

=l

L.Ppp.p-.rpb.-.

=l

L.Ppp.p-.rpb.-.

33333223

/

NO
o (€
-ttt

Observations

e If G is undirected, matrix is symmetric.

e If Gis directed, matrix may not be symmetric.

11113999

T ————
.............................

Time Complexity

operation code

Edge query adj[i, j] == 1

Degree(i) np.sum(adj[i,:])

11113999

T ————
.............................

Space Requirements

e Uses |V |? bits, even if there are very few edges.

e But most real-world graphs are sparse.

o They contain many fewer edges than possible.

11113999

T ————
.............................

Example: Facebook

e Facebook has 2 billion users. (V)
(2 x 10°)? = 4 x 108 bits

= 500 petabits

=~ 6500 years of video at 1080p

=~ 60 copies of the internet as it was in 2000

11113999

T ————
.............................

Adjacency Matrices and Math

e Adjacency matrices are useful mathematically.
e Example: (i, j) entry of A% gives number of hops of length
2 between i and .

11113999

T ————
.............................

T ———
..............................

==llllllllllllllllllllllll=ll

II.__.
D What’s Wrong with Adjacency Matrices?

e Requires O(|V |?) storage.

e Even if the graph has no edges.

.I e Idea: only store the edges that exist.

< =8

B ————T
e

Adjacency Lists

e C(reate a list adj containing | V] lists.

e adj[1] is list containing the neighbors of node i.

11113999

T ————
.............................

T R ————
-ttt

T R ————
-ttt

pttppp.n

=l

L.Ppp.p-.rpb.

"‘l‘t‘t‘t‘f‘t’f‘t‘

N A A
——— =aEE
.

adj[1] is list containing the neighbors of node i.

adj = [

T ————
Lttt

"‘l‘t‘t‘t‘f‘t’f‘t‘

N A A
——— =aEE
.

adj[1] is list containing the neighbors of node i.

adj = [

T ————
Lttt

"‘l‘t‘t‘t‘f‘t’f‘t‘

N A A
——— =aEE
.

adj[1] is list containing the neighbors of node i.

adj = [

T ————
Lttt

"‘l‘t‘t‘t‘f‘t’f‘t‘

N A A
——— =aEE
.

adj[1] is list containing the neighbors of node i.

adj = [

T ————
Lttt

"‘l‘t‘t‘t‘f‘t’f‘t‘

N A A
——— =aEE
.

adj[1] is list containing the neighbors of node i.

adj = [

T ————
Lttt

T R ————
-ttt

==llllllllllllllllllllllll==ll

T R ————
-ttt

=l

L.p_.pb_.p-.rp

=l

!lllllllllllllllllllllll=l=
.-

adj[1] is list containing the neighbors of node i.

adj = [

T ————
e

!lllllllllllllllllllllll=l=
.-

adj[1] is list containing the neighbors of node i.

adj = [

T ————
e

!lllllllllllllllllllllll=l=
.-

adj[1] is list containing the neighbors of node i.

adj = [

#0 [2, 3],

T ————
e

!lllllllllllllllllllllll=l=
.-

adj[1] is list containing the neighbors of node i.

adj = [

#0 [2, 3],

#1 [2],

T ————
e

Seeeeeeee

!lllllllllllllllllllllll=l=
.-

adj[1] is list containing the neighbors of node i.

adj = [

#0 [2, 3],

#1 [2],

#2 [O],

T ————
.............................

Observations

e |f Gis undirected, each edge appears twice.

e |f Gis directed, each edge appears once.

11113999

T ————
.............................

Time Complexity

operation

code

time

Edge query

J in adj[i, J]

O(degree(i))

Degree(i)

len(adj[i])

o(1)

11113999

T — T W ————
.............................

==llllllllllllllllllllllll=ll

B
.I'-’ Exercise 1: Build a graph from the list

adj = [
[4],

[0, 2] for u in range(len(adj)):
[1, 3], for v in adj[ul:
[2] print(f”"({u}, {v})"”)

o
< =8

B ————T
e

==llllllllllllllllllllllll=ll

0
=I'-’ Exercise 1: Build a graph from the list
0

ORORU

[0, 2], for u in range(len(adj)):

for v in adj[u]:
(2) (3) iy M. print(F7({u}, {v})")
]
.I
iII L

B ————T
||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“||||“|||||

==llllllllllllllllllllllll=ll

B
.I'-’ Exercise 1: Build a graph from the list

adj = [
[4],

[0, 2] for u in range(len(adj)):
[1, 3], for v in adj[ul:
2] prinmt(f"({u}, 1vi)")

o
< =8

B ————T
e

==llllllllllllllllllllllll=ll

0
=I'-’ Exercise 1: Build a graph from the list
0

(D s i g

[0, 2], for u in range(len(adj)):

for v in adj[u]:
(2) (3) ay 8l print(F"({u}, {v})")
]
.I
= L

B ————T
.............................

==llllllllllllllllllllllll=ll

0
=I'-’ Exercise 1: Build a graph from the list
0

(D s i g

[0, 2], for u in range(len(adj)):

for v in adj[u]:
(2)3 3y 31 print(fF7({u}, {vH)")
.I
= o

B ————T
.............................

==llllllllllllllllllllllll=ll

N
=I'-’ Exercise 2: What does the following code
N

d?
(D g

[0, 2], for u in range(len(adj)):

for v in adj[u]:
(23 iy M print(F({u}, {vH")
.I
= =

B ————T
.............................

==llllllllllllllllllllllll=ll

N
=I'-’ Exercise 2: What does the following code
N

d?
(D g

[0, 2], for u in range(len(adj)):

for v in adj[u]:
(23 iy M print(F({u}, {vH")

. Prints all edges
= =i

B ————T
.............................

==llllllllllllllllllllllll=ll

N
=I'-’ Exercise 2: What does the following code
N

d?
(D g

[0, 2], for u in range(len(adj)):

for v in adj[u]:
(23 iy M print(F({u}, {vH")

. (0, 1)
Prints all edges

< =8

B ————T
e

==llllllllllllllllllllllll=ll

N
=I'-’ Exercise 2: What does the following code
N

d?
(D g

[0, 2], for u in range(len(adj)):

for v in adj[u]:
(23 ' print(F7({u}, {vH)")

. Prints all edges
= =i

B ————T
.............................

==llllllllllllllllllllllll=ll

N
=I'-’ Exercise 2: What does the following code
N

d?
(D g

[0, 2], for u in range(len(adj)):

for v in adj[u]:
(23 iy M print(F({u}, {vH")

. Prints all edges

(O,
(1,
(1,
- :
(2,
= L

B ————T
.............................

1)
0)
2)
1)
3)

==llllllllllllllllllllllll=ll

N
=I'-’ Exercise 2: What does the following code
N

d?
(D g

[0, 2], for u in range(len(adj)):

for v in adj[u]:
(23 iy M print(F({u}, {vH")

. Prints all edges
= =i

B ————T
.............................

(0, 1)
(1, O)
(1, 2)
(2, 1)
(2, 3)
(3, 2)

==llllllllllllllllllllllll=l=
.-

=I,_) Exercise 3: Complexity
o
o
. 1] for u in range(len(adj)):

L0, for v in adj[ul:
= a e 5] print(f”"({u}, {v})")
.]

How many times is the print statement executed in terms of
|V | and |E| (if undirected)?

A: |E|+ |V C:2*|E|

B: |E|* |V D: |E| + |V|- 1

T ————
e

==llllllllllllllllllllllll=l=
.-

=I,_) Exercise 3: Complexity
o
o
. 1] for u in range(len(adj)):

L0, for v in adj[ul:
= a e 5] print(f”"({u}, {v})")
.]

How many times is the print statement executed in terms of
|V | and |E| (if undirected)?

A: |E|+ |V C: 2 * |E|

B: |E|* |V D: |E| + |V|- 1

T ————
e

==llllllllllllllllllllllll=l=
.-

=I,_) Exercise 3: Complexity
o
o
. 1] for u in range(len(adj)):

L0, for v in adj[ul:
= a e 5] print(f”"({u}, {v})")
.]

How many times is the print statement executed in terms of
|V | and |E| (if directed)?

T ————
e

==llllllllllllllllllllllll=ll

=I,_) Exercise 4: Complexitq
B
B

for u in range(len(adj)):

]
0, for v in adj[ul:
@ 9 2] print(f"({u}, {v})")

]
.I What is the time complexity in terms of |V | and |E|?

A: O(|E[+[V]) C:O(|El])

I.) B: O(E|*[V]) D: @(V])
= L

B ————T
.............................

=
.I'-’ Exercise 5: @
(2)

adj = [

_ A
I
Al

ONON
Lt

for u in range(len(adj)):
for v in adjlul:

pr1nt(f Ciul; Avbi™)

.P What is the time complexity for this case?

A: O (|E| +[V]) C: O (|E)

IL, B: O(E|*V]) D: ©(V)
= -

B ————T
.............................

=
.I'-’ Exercise 5: @
(2)

adj = [

_ A
I
Al

ONON
Lt

for u in range(len(adj)):
for v in adjlul:

pr1nt(f Ciul; Avbi™)

.P What is the time complexity for this case?

A: O (|E| +[V]) C: O (|E)

i,, B: O(E*V]) D:@(V]
= -

B ————T
.............................

==llllllllllllllllllllllll=ll

=I,_) Exercise 4: Complexitq
B
B

for u in range(len(adj)):

]
0, for v in adj[ul:
@ 9 2] print(f"({u}, {v})")

]
.I What is the time complexity in terms of |V | and |E|?

A: O ([E[+|V]) C:O(|E|)

I.) B: O(E|*[V]) D: @(V])
= L

B ————T
.............................

Looping Over Edges

e Looping over all edges in this way takes O(V + E) time.

e |n aggregate, the print statement is executed:
o 2|E]| times if graph is undirected.
o |E| times if graph is directed.

e This is called an aggregate analysis.

11113999

T ————
.............................

Space Requirements

e Need O(|V |) space for outer list.

e Plus O(|E]|) space for inner lists.

e Intotal: O(|V | + |E]) space.

11113999

T ————
.............................

==llllllllllllllllllllllll=ll

=I..) Example: Facebook

- e Facebook has 2 billion users, 400 billion friendships.
e If each edge requires 32 bits: (2 bits x 200 x (2 billion))
= 64 x 400 x 109 bits
= 3.2 terabytes

.P = 0.04 years of HD video
= o

B ————T
.............................

Dictionary of Sets

T ———
..............................

Trade Offs

e Adjacency matrix: fast edge query, lots of space.

e Adjacency list: slower edge query, space efficient.

e (Can we have the best of both?

11113999

T ————
.............................

Idea

Use hash tables.
e Replace inner edge lists by sets.

e Replace outer list with dict.
o Doesn’t speed things up, but allows nodes to have arbitrary
labels.

= T —— T ———

'l' ceeeee

T R ————
-ttt

==llllllllllllllllllllllll==ll

T R ————
-ttt

=l

L.p_.pb_.p-.rp

=l

L.Ppb_.p-.rp

=l

}

L.Ppb_.p-.rp

=l

L.Ppp.p-.rpb.

=l

L.Ppp.p-.rpb.

Time Complexity

operation code time

Edge query j in adj[i, j] ©(1) on average

Degree(i) len(adj[i]) ©(1) on average

11113999

T ————
.............................

93333390

But there is overhead to using hash tables.

Requires only O(V + E).

Space Requirements

Dict-of-sets implementation

e Install with pip install dsc40graph
Import with import dsc40graph
Docs: https://eldridgejm.github.io/dsc40graph/
Source code: https://github.com/eldridgejm/dsc40graph

Will be used in HW coding problems.

133193149

T ————
.............................

Thank you!

.I CampusWire!
=l--

)

