
❖

DSC 40B
Lecture 18 : Graph
representations

❖

Adjacency Matrices

❖

Representations

● How do we store a graph in a computer’s memory?
● Three approaches:

○ Adjacency matrices.
○ Adjacency lists.
○ “Dictionary of sets”

❖

Adjacency Matrices

● Assume nodes are numbered 0, 1, …, |𝑉 | − 1

● Allocate a |𝑉 | × |𝑉 | (Numpy) array

● Fill array as follows:

○ arr[i,j] = 1 if (𝑖, 𝑗) ∈ 𝐸

○ arr[i,j] = 0 if (𝑖, 𝑗) ∉ 𝐸

❖

Example

❖

Example

 0

 1

 2

 3

❖

Example

 0

 1

 2

 3 0 1 2 3

0

1

2

3

❖

Example

 0

 1

 2

 3 0 1 2 3

0 1
1

2

3

❖

Example

 0

 1

 2

 3 0 1 2 3

0 1
1 1
2

3

❖

Example

 0

 1

 2

 3 0 1 2 3

0 1
1 1 1
2

3

❖

Example

 0

 1

 2

 3 0 1 2 3

0 1
1 1 1
2

3 1

❖

Example

 0

 1

 2

 3 0 1 2 3

0 1
1 1 1
2 1
3 1 1

❖

Example

 0

 1

 2

 3 0 1 2 3

0 0 1 0 0
1 1 0 0 1
2 0 0 0 1
3 0 1 1 0

❖

Example

 0

 1

 2

 3
0 1 2 3

0

1 1
2

3

❖

Example

 0

 1

 2

 3
0 1 2 3

0 1
1 1
2

3

❖

Example

 0

 1

 2

 3
0 1 2 3

0 1 1
1 1
2

3

❖

Example

 0

 1

 2

 3
0 1 2 3

0 1 1
1 1
2

3 1

❖

Example

 0

 1

 2

 3
0 1 2 3

0 1 1
1 1
2 1
3 1

❖

Example

 0

 1

 2

 3
0 1 2 3

0 0 0 1 1
1 0 0 0 1
2 0 0 1 0
3 1 0 0 0

❖

Observations

● If 𝐺 is undirected, matrix is symmetric.

● If 𝐺 is directed, matrix may not be symmetric.

❖

Time Complexity

 operation code time
Edge query adj[i, j] == 1 Θ(1)

Degree(i) np.sum(adj[i,:]) Θ(|𝑉 |)

❖

Space Requirements

● Uses |𝑉 |2 bits, even if there are very few edges.

● But most real-world graphs are sparse.

○ They contain many fewer edges than possible.

❖

Example: Facebook

● Facebook has 2 billion users. (V)

(2 × 109)2 = 4 × 1018 bits

 = 500 petabits

 ≈ 6500 years of video at 1080p

 ≈ 60 copies of the internet as it was in 2000

❖

Adjacency Matrices and Math

● Adjacency matrices are useful mathematically.
● Example: (𝑖, 𝑗) entry of 𝐴2 gives number of hops of length

2 between 𝑖 and 𝑗.

❖

Adjacency Lists

❖

What’s Wrong with Adjacency Matrices?

● Requires Θ(|𝑉 |2) storage.

● Even if the graph has no edges.

● Idea: only store the edges that exist.

❖

Adjacency Lists

● Create a list adj containing |𝑉| lists.

● adj[i] is list containing the neighbors of node 𝑖.

❖

Example

❖

Example

0

1 2

3

❖

Example

0

1 2

3

adj = [

 [],

 [],

 [],

 []

]

❖

Example

0

1 2

3

adj = [

 #0 [],

 #1 [],

 #2 [],

 #3 []

]

❖

adj[i] is list containing the neighbors of node 𝑖.

0

1 2

3

adj = [

 #0 [?],

 #1 [?],

 #2 [?],

 #3 [?]

]

❖

adj[i] is list containing the neighbors of node 𝑖.

0

1 2

3

adj = [

 #0 [1],

 #1 [?],

 #2 [?],

 #3 [?]

]

❖

adj[i] is list containing the neighbors of node 𝑖.

0

1 2

3

adj = [

 #0 [1],

 #1 [0, 2],

 #2 [?],

 #3 [?]

]

❖

adj[i] is list containing the neighbors of node 𝑖.

0

1 2

3

adj = [

 #0 [1],

 #1 [0, 2],

 #2 [1, 3],

 #3 [?]

]

❖

adj[i] is list containing the neighbors of node 𝑖.

0

1 2

3

adj = [

 #0 [1],

 #1 [0, 2],

 #2 [1, 3],

 #3 [2]

]

❖

Example

❖

Example

0

1 2

3

❖

Example

0

1 2

3

adj = [

 [],

 [],

 [],

 []

]

❖

Example

0

1 2

3

adj = [

 #0 [],

 #1 [],

 #2 [],

 #3 []

]

❖

adj[i] is list containing the neighbors of node 𝑖.

0

1 2

3

adj = [

 #0 [?],

 #1 [?],

 #2 [?],

 #3 [?]

]

❖

adj[i] is list containing the neighbors of node 𝑖.

0

1 2

3

adj = [

 #0 [2, 3],

 #1 [?],

 #2 [?],

 #3 [?]

]

❖

adj[i] is list containing the neighbors of node 𝑖.

0

1 2

3

adj = [

 #0 [2, 3],

 #1 [2],

 #2 [?],

 #3 [?]

]

❖

adj[i] is list containing the neighbors of node 𝑖.

0

1 2

3

adj = [

 #0 [2, 3],

 #1 [2],

 #2 [0],

 #3 [?]

]

❖

adj[i] is list containing the neighbors of node 𝑖.

0

1 2

3

adj = [

 #0 [2, 3],

 #1 [2],

 #2 [0],

 #3 [3]

]

❖

Observations

● If 𝐺 is undirected, each edge appears twice.

● If 𝐺 is directed, each edge appears once.

❖

Time Complexity

 operation code time
Edge query j in adj[i, j] Θ(degree(i))

Degree(i) len(adj[i]) Θ(1)

❖

Exercise 1: Build a graph from the list

❖

Exercise 1: Build a graph from the list

0 1

2 3

❖

Exercise 1: Build a graph from the list

0 1

2 3

❖

Exercise 1: Build a graph from the list

0 1

2 3

❖

Exercise 1: Build a graph from the list

0 1

2 3

❖

Exercise 2: What does the following code
do?

0 1

2 3

❖

Exercise 2: What does the following code
do?

0 1

2 3

Prints all edges

❖

Exercise 2: What does the following code
do?

0 1

2 3

Prints all edges
(0, 1)

❖

Exercise 2: What does the following code
do?

0 1

2 3

Prints all edges
(0, 1)
(1, 0)
(1, 2)

❖

Exercise 2: What does the following code
do?

0 1

2 3

Prints all edges
(0, 1)
(1, 0)
(1, 2)
(2, 1)
(2, 3)

❖

Exercise 2: What does the following code
do?

0 1

2 3

Prints all edges

(0, 1)
(1, 0)
(1, 2)
(2, 1)
(2, 3)
(3, 2)

❖

Exercise 3: Complexity

0 1

2 3

How many times is the print statement executed in terms of
|𝑉 | and |𝐸| (if undirected)?

A: |E| + |V| C: 2 * |E|

B: |E| * |V| D: |E| + |V| - 1

❖

Exercise 3: Complexity

0 1

2 3

How many times is the print statement executed in terms of
|𝑉 | and |𝐸| (if undirected)?

A: |E| + |V| C: 2 * |E|

B: |E| * |V| D: |E| + |V| - 1

❖

Exercise 3: Complexity

0 1

2 3

How many times is the print statement executed in terms of
|𝑉 | and |𝐸| (if directed)?

A: |E|

❖

Exercise 4: Complexity

0 1

2 3

What is the time complexity in terms of |𝑉 | and |𝐸|?

A: Θ (|E| + |V|) C: Θ (|E|)

B: Θ (|E| * |V|) D: Θ (|V|)

❖

Exercise 5:

What is the time complexity for this case?

A: Θ (|E| + |V|) C: Θ (|E|)

B: Θ (|E| * |V|) D: Θ (|V|)

0 1

2 3

❖

Exercise 5:

What is the time complexity for this case?

A: Θ (|E| + |V|) C: Θ (|E|)

B: Θ (|E| * |V|) D: Θ (|V|)

0 1

2 3

❖

Exercise 4: Complexity

0 1

2 3

What is the time complexity in terms of |𝑉 | and |𝐸|?

A: Θ (|E| + |V|) C: Θ (|E|)

B: Θ (|E| * |V|) D: Θ (|V|)

❖

Looping Over Edges

● Looping over all edges in this way takes Θ(𝑉 + 𝐸) time.

● In aggregate, the print statement is executed:
○ 2|𝐸| times if graph is undirected.
○ |𝐸| times if graph is directed.

● This is called an aggregate analysis.

❖

Space Requirements

● Need Θ(|𝑉 |) space for outer list.

● Plus Θ(|𝐸|) space for inner lists.

● In total: Θ(|𝑉 | + |𝐸|) space.

❖

Example: Facebook

● Facebook has 2 billion users, 400 billion friendships.

● If each edge requires 32 bits: (2 bits × 200 × (2 billion))

= 64 × 400 × 109 bits

= 3.2 terabytes

= 0.04 years of HD video

❖

Dictionary of Sets

❖

Trade Offs

● Adjacency matrix: fast edge query, lots of space.

● Adjacency list: slower edge query, space efficient.

● Can we have the best of both?

❖

Idea

● Use hash tables.

● Replace inner edge lists by sets.

● Replace outer list with dict.
○ Doesn’t speed things up, but allows nodes to have arbitrary

labels.

❖

Example

❖

Example

0

1 2

3

❖

Example

0

1 2

3

adj = {

 ‘a’:

 ‘b’:

 ‘c’:

 ‘d’:

 }

❖

Example

0

1 2

3

adj = {

 ‘a’: {‘b’},

 ‘b’:

 ‘c’:

 ‘d’:

 }

❖

Example

0

1 2

3

adj = {

 ‘a’: {‘b’},

 ‘b’: {‘c’},

 ‘c’:

 ‘d’:

 }

❖

Example

0

1 2

3

adj = {

 ‘a’: {‘b’},

 ‘b’: {‘c’},

 ‘c’: {‘b’, ‘d’},

 ‘d’:

 }

❖

Example

0

1 2

3

adj = {

 ‘a’: {‘b’},

 ‘b’: {‘c’},

 ‘c’: {‘b’, ‘d’},

 ‘d’: {‘d’}

 }

❖

Time Complexity

 operation code time
Edge query j in adj[i, j] Θ(1) on average

Degree(i) len(adj[i]) Θ(1) on average

❖

Space Requirements

● Requires only Θ(V + 𝐸).

● But there is overhead to using hash tables.

❖

Dict-of-sets implementation

● Install with pip install dsc40graph

● Import with import dsc40graph

● Docs: https://eldridgejm.github.io/dsc40graph/

● Source code: https://github.com/eldridgejm/dsc40graph

● Will be used in HW coding problems.

❖

Do you have any questions?

Thank you!

CampusWire!

