DSC 408

Thtm/e%ca/ Founolatong 7L

Lecture 17 Part 1

Kruskal's Algorithm

Last Time: Minimum Spanning Tree

The minimum spanning tree problem is as
follows:
GIVEN: A weighted, undirected graph
G=(V,E,w).
COMPUTE: a spanning tree of G with minimum
cost (i.e., minimum total edge weight).

Example

Last Time: Building MSTs
How do we build a MST efficiently?

We'll adopt a greedy approach.
Build a tree edge-by-edge.
At every step, doing what looks best at the moment.

This strategy isn't guaranteed to work in all of
life’s situations, but it works for building MSTs.

Two Greedy Approaches

We'll look at two greedy algorithms:
Last Time: Prim’s Algorithm
Today: Kruskal's Algorithm

Differ in the order in which edges are added to
tree.

Also differ in time complexity.

O

5

4

O

Prim’s Algorithm, Informally

@
&

z

~
=

O

O—+—0O

A

/

O

3

Start by picking any node to add to
“tree”, T.

While T is not a spanning tree, greedily
add lightest edge from a node in Tto a
node notin T.
“lightest” = edge of smallest
weight

Kruskal's Algorithm, Informally

Start with empty forest: T = (V, E,.;),
where E_ . = D.

mst

Loop through edges in increasing order
of weight.
If edge does not create a cycle in
T,add itto T.
If T is a spanning tree, break.

Being Greedy

Prim: add the node with smallest estimated cost
and update neighbors.
Works locally, “grows” a connected tree.

Kruskal: add the edge with smallest weight.
As long as it doesn’t make a cycle.
Edge can be anywhere in graph.

Kruskal's Algorithm (Pseudocode)

def kruskal(graph, weights):
mst = UndirectedGraph()

sort edges in ascending order by weight
sorted_edges = sorted(graph.edges, key=weights)

for (u, v) in sorted_edges:
if u and v are not already connected
if ...
mst.add_edge(u, v)

(optional) if mst is now a spanning tree, break
if len(mst.edges) == len(graph.nodes) - 1:

break

return mst

Checking for Connectivity

Each iteration: check if u and v are connected in
T=(V, Emst).

We could do a DFS/BFS on each iteration...
O(V +E) = O(V) each time.
Expensive!

Remember:
If you're computing something once, use a fast

algorithm.
If you're computing it repeatedly, consider a data

structure.

Disjoint Set Forests
Represent a collection of disjoint sets.
{{1,5,6},{2,3}, {0}, {4}}

.union(x, y): Union the sets containing x and
y.

.in_same_set(x, y): Return True/False if x
and y are in the same set.’

"Usually implemented as a . find(x) method returning representative of
set containing x.

Example

»> # create a DSF with {{e}, {1}, {2}, {3}, {4}, {5}}
»> dsf = DisjointSetForest([o, 1, 2, 3, 4, 5])

»> dsf.union(e, 3)

»> dsf.union(1, 4)

»> dsf.union(3, 1)

»> dsf.union(2, 5)

»> # dsf now represents {{e, 1, 3, 4}, {2, 5}}

»> dsf.in_same_set(o, 3)
True

»> dsf.in_same_set(o, 2)
False

30,5' \, u% %37 5?

Disjoint Set Forests
< (10%) <5

Operations take ©(a(n)) time, where n is number
of objects in collection. _,0% (1 coo ooo) - L

a(n) is the inverse Ackermann function.

ﬂaﬁ)

It grows very, very slowly. ‘K‘

Essentially constant time. n

Disjoint Set Forests

Can be used to keep track of CCs of a dynamic
graph.

Nodes of CCs are disjoint sets.
Add an edge (u,v): .union(u, v)
Check if u and v are connected:
.in_same_set(u, v)

To check if u,v are already connected:
BFS/DFS: ©(V) each time.
DSF: O(a(V)) each time (essentially ©(1)).

Kruskal’s Algorithm

def kruskal(graph, weights):
mst = UndirectedGraph()

place each node in its own disjoint set
components = DisjointSetForest(graph.nodes)

sort edges in ascending order by weight
sorted_edges = sorted(graph.edges, key=weights)

for (u, v) in sorted_edges:
if not components.in_same_set(u, v):
mst.add_edge(u, v)
components.union(u, v)

(optional) if mst is now a spanning tree, break
if len(mst.edges) == len(graph.nodes) - 1:

break

return mst

Time Complexity

def kruskal(graph, weights):
mst = UndirectedGraph()

place each node in its own disjoint set
components = DisjointSetForest(graph.nodes) @LV)

sort edges in ascending order by weight

sorted_edges = sorted(graph.edges, key=weights) e (E ﬂoﬁ E)

for (u, v) in sorted_edges:
if not components.in_same_set(u, v):—— G)(“(VD +o vim onee
mst.add_edge(u, v) rons ot MM '\E\ +i

components.union(u, v)
Overaff < B\ s (V) +ime

(optional) if mst is now a spanning tree, break
if len(mst.edges) == len(graph.nodes) - 1:

T O+ O(E Iy D +M

Time Complexity _,c, con.

iy
Assume graph is connected. enE Q(V U%)

Kruskal's takes O(E logE) = O(E log V) time.
Dominated by sorting the edges.

Note: if graph disconnected, Kruskal's produces
a minimum spanning forest.

psc 408

TW?QM/ Founolatong ZL

Lecture 17 Part 2

Kruskal v. Prim

Kruskal v. Prim
Both algorithms for computing MSTs.
Which is “better”?

There’s no clear winner.

Time Complexity

Prim:
Binary heap: ©(VlogV + ElogV)
Fibonacci heap: ©(VlogV +E)

Kruskal: ©(E log V)

If the graph is dense, E = O(V?), and Prim’s with
Fibonacci heap “wins”.
O(V?) versus O(V2 log V).

Not so fast...

Fibonacci heaps are hard to implement, high
overhead.

Prim’s will be faster for very large dense graphs.

But Kruskal's may be faster for smaller dense
graphs.

The right choice depends on your application.

Asymptotic time complexity isn’t everything. For
small inputs, the “inefficient” algorithm may beat
the “efficient” one. There's also ease of implemen-
tation to consider.

psc 408

Thtm/e%ca/ Founolatong 7L

Lecture 17 Part 3

MSTs and Clustering

Clustering

Goal: identify the groups in data. Example:

\Nm‘" . 4
Tont L

Clustering, Formalized

We frame as an optimization problem.
GIVEN: n data points.
GOAL: assign color to each point (red or blue) to
maximize the distance between the closest pair of
red and blue points.

Bad Clustering

Clustering, Formalized

We frame as an optimization problem.
GIVEN: n data points.
GOAL: assign color to each point (red or blue) to
maximize the distance between the closest pair of
red and blue points.

Good Clustering

Brute Force Solution
Try all possible assignments; return best.

If there are n data points, there are 6(2")
assignments.

Exponential time; very slow. Practical only for
~ 50 data points.

Instead, we will turn it into a graph problem.

Distance Graphs

Given n data points, p,, p,, ..., p,,, Create complete graph with
V={pq,...Pp}

Set weight of edge (p;, p;) = dist(p;, p;).

The result is a weighted, undirected distance graph.
N

AP

We can always think of a set of points in a (met-
ric) space as a weighted distance graph. This is a
very important idea, because it allows us to use
our graph algorithms!

Clustering with MSTs

Given n data points and a number of clusters, k:
Create distance graph G.
Run Kruskal's Algorithm on G until there are only k
components.

/*\ y
/
" ¥
'I-’ *
The resulting connected components are the clusters.
This is known as single-linkage clustering.

Example

Single-Linkage Clustering

Time complexity of single-linkage is determined
by Kruskal's Algorithm: ©(E log E).

Since distance graph is complete, E = ©(V?), and
o)
O(E logE) = O(V? log V) = ©(n? log n)

Practically, can cluster ~ 10,000 points.

Summary

We started the quarter with a brute force

solution.
Took ©(2") time, only feasible for a few dozen points.

We've now reframed the problem using graph
theory.

Now only ©(n? logn) time!

Feasible for tens of thousands of points.

Why Algorithms?
Data scientists use computers as tools.

But solving a problem isn’t just about coding it
up.

You need to know how to analyze your code and
use the right algorithms and data structures to
make your solution efficient.

