DSC 40B Theoretical Foundations II

Lecture 17 | Part 1

Kruskal's Algorithm

Last Time: Minimum Spanning Tree

- **▶ The minimum spanning tree** problem is as follows:
	- ▶ GIVEN: A weighted, undirected graph $G = (V, E, \omega)$.
	- \triangleright COMPUTE: a spanning tree of G with minimum cost (i.e., minimum total edge weight).

Example

Last Time: Building MSTs

- \blacktriangleright How do we build a MST efficiently?
- ▶ We'll adopt a **greedy** approach.
	- ▶ Build a tree edge-by-edge.
	- ▶ At every step, doing what looks best at the moment.
- \blacktriangleright This strategy isn't guaranteed to work in all of life's situations, but it works for building MSTs.

Two Greedy Approaches

\triangleright We'll look at two greedy algorithms:

- ▶ Last Time: Prim's Algorithm
- ▶ Today: Kruskal's Algorithm
- \blacktriangleright Differ in the order in which edges are added to tree.
- \triangleright Also differ in time complexity.

Prim's Algorithm, Informally

- \triangleright Start by picking any node to add to " $tree$ ", T .
- \triangleright While T is not a spanning tree, greedily add *lightest* edge from a node in T to a node not in T .
	- ▶ "lightest" = edge of smallest weight

Kruskal's Algorithm, Informally

- ▶ Start with empty forest: $T = (V, E_{\text{mst}})$, where $E_{\text{met}} = \emptyset$.
- \blacktriangleright Loop through edges in increasing order of weight.
	- If edge does not create a cycle in T , add it to T .
	- If T is a spanning tree, break.

Being Greedy

▶ Prim: add the **node** with smallest estimated cost and update neighbors.

▶ Works locally, "grows" a connected tree.

▶ Kruskal: add the **edge** with smallest weight. ▶ As long as it doesn't make a cycle. \blacktriangleright Edge can be anywhere in graph.

Kruskal's Algorithm (Pseudocode)

```
def kruskal(graph, weights):
    mst = UndirectedGraph()
    # sort edges in ascending order by weight
    sorted edges = sorted(graph.edges, key=weights)
    for (u, v) in sorted edges:
        # if u and v are not already connected
        if ...:
            mst.add edge(u, v)
            # (optional) if mst is now a spanning tree, break
            if len(mst.edges) == len(graph.nodes) - 1:
                break
```
return mst

Checking for Connectivity

- \blacktriangleright Each iteration: check if μ and ν are connected in $T = (V, E_{\text{met}}).$
- ▶ We *could* do a DFS/BFS on each iteration... \triangleright $\Theta(V + E_{\text{mst}}) = \Theta(V)$ each time. ▶ **Expensive**!
- ▶ Remember:
	- \blacktriangleright If you're computing something once, use a fast algorithm.
	- ▶ If you're computing it repeatedly, consider a **data structure**.

Disjoint Set Forests

 \triangleright Represent a collection of disjoint sets.

 $\{\{1, 5, 6\}, \{2, 3\}, \{0\}, \{4\}\}\$

 \triangleright . union(x, y): Union the sets containing x and **y**.

 \triangleright .in same set(x, y): Return True/False if x and y are in the same set.¹

 $^{\text{1}}$ Usually implemented as a <code>.find(x)</code> method returning representative of set containing x.

Example

```
»> # create a DSF with \{ \{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\} \}\gg dsf = DisjointSetForest([0, 1, 2, 3, 4, 5])
\gg dsf.union(\odot, 3)
\gg dsf.union(1, 4)
\gg dsf.union(3, 1)
\gg dsf.union(2, 5)
\gg # dsf now represents {{0, 1, 3, 4}, {2, 5}}
»> dsf.in same set(0, 3)
True
»> dsf.in same set(0, 2)
False
                           \{o, 3, 1, 4\} \{z, 5\}
```
Disjoint Set Forests ► Operations take $Θ(α(n))$ time, where *n* is number of objects in collection. \triangleright $\alpha(n)$ is the **inverse Ackermann function**. ▶ It grows very, **very** slowly. \blacktriangleright Essentially constant time. $x(10^{80}) 65$ $\int_{\mathcal{O}_{\mathcal{C}_{\mu}}} (1 \circ \circ \circ \circ \circ \circ) = 6$ ts

(1080) < 5

re n is number

(1 000 000) = 6

ction.

fog (n)

Disjoint Set Forests

- ▶ Can be used to keep track of CCs of a **dynamic graph**.
- \triangleright Nodes of CCs are disjoint sets. Add an edge (u, v) : .union(u, v) \triangleright Check if u and v are connected:
	- .in same set(u, v)
- \triangleright To check if u, v are already connected:
	- \triangleright BFS/DFS: Θ (V) each time.
	- \triangleright DSF: Θ(α (V)) each time (essentially Θ(1)).

Kruskal's Algorithm

```
def kruskal(graph, weights):
   mst = UndirectedGraph()
```

```
# place each node in its own disjoint set
components = DisjointSetForest(graph.nodes)
```

```
# sort edges in ascending order by weight
sorted edges = sorted(graph.edges, key=weights)
```

```
for (u, v) in sorted_edges:
    if not components.in same set(u, v):
        mst.add_edge(u, v)
        components.union(u, v)
```

```
# (optional) if mst is now a spanning tree, break
if len(mst.edges) == len(graph.nodes) - 1:
   break
```
return mst

Time Complexity

def kruskal(graph, weights): mst = UndirectedGraph()

```
# place each node in its own disjoint set
components = DisjointSetForest(graph.nodes)
```

```
# sort edges in ascending order by weight
sorted edges = sorted(graph.edges, key=weights)
for (u, v) in sorted edges:
       if not components.in_same_set(u, v):
              v) in sorted edges:<br>ot components.in_same_set(u, v): \rightarrow \odot(\alpha(v)) to run once<br>mst.add_edge(u, v)
             components.union(u, v)
             # (optional) if mst is now a spanning tree, break
                                                                                     \Theta(E\ell_{os}E)
                                                                               runs at most TEI times
                                                                              Overall \leq |E| \propto (v) time
              v) in sorted edges:<br>
v) in sorted edges:<br>
ot components.in_same_set(u, v): \rightarrow \odot(\alpha(v)) to vive once<br>
nut.add_edge(u, v)<br>
components.union(u, v)<br>
\alpha(w) and \alpha + w of \alpha + w<br>
\alpha +
```
 $\Theta(v)$

if len(mst.edges) == $len(graph.nodes) - 1$:

Fine: return mst

$▶$ Assume graph is connected. Then $E = \Omega(V)$. **plexity** for con. graph
ed. Then $E = Q(V)$.

Time Complexity

 $▶$ Kruskal's takes $\Theta(E \log E) = \Theta(E \log V)$ time. \triangleright Dominated by sorting the edges.

▶ Note: if graph disconnected, Kruskal's produces a **minimum spanning forest**.

DSC 40B Theoretical Foundations II

Lecture 17 | Part 2

Kruskal v. Prim

Kruskal v. Prim

▶ Both algorithms for computing MSTs.

 \triangleright Which is "better"?

 \triangleright There's no clear winner.

Time Complexity

▶ Prim:

- ► Binary heap: $\Theta(V \log V + E \log V)$
- ► Fibonacci heap: $\Theta(V \log V + E)$
- \triangleright Kruskal: $\Theta(E \log V)$
- $▶$ If the graph is dense, $E = \Theta(V^2)$, and Prim's with Fibonacci heap "wins". \triangleright $\Theta(V^2)$ versus $\Theta(V^2 \log V)$.

Not so fast...

- \triangleright Fibonacci heaps are hard to implement, high overhead.
- ▶ Prim's will be faster for very large dense graphs.
- ▶ But Kruskal's may be faster for smaller dense graphs.
- \triangleright The right choice depends on your application.

Main Idea

Asymptotic time complexity isn't everything. For small inputs, the "inefficient" algorithm may beat the "efficient" one. There's also ease of implementation to consider.

DSC 40B Theoretical Foundations II

Lecture 17 | Part 3

MSTs and Clustering

Clustering

Goal: identify the groups in data. Example:

Clustering, Formalized

 \triangleright We frame as an optimization problem.

- \triangleright GIVEN: *n* data points.
- ▶ Goal: assign color to each point (red or blue) to maximize the distance between the closest pair of red and blue points.

Bad Clustering

Clustering, Formalized

 \triangleright We frame as an optimization problem.

- \triangleright GIVEN: *n* data points.
- ▶ Goal: assign color to each point (red or blue) to maximize the distance between the closest pair of red and blue points.

Good Clustering

Brute Force Solution

- \triangleright Trv all possible assignments; return best.
- $▶$ If there are *n* data points, there are $\Theta(2^n)$ assignments.
- \triangleright Exponential time; very slow. Practical only for ∼ 50 data points.
- \blacktriangleright Instead, we will turn it into a graph problem.

Distance Graphs

- ▶ Given *n* data points, $p_1, p_2, ..., p_n$, create complete graph with $V = \{p_1, \ldots, p_n\}.$
- \blacktriangleright Set weight of edge (p_i, p_j) = dist(p_i, p_j).
- ▶ The result is a weighted, undirected **distance graph**.

Main Idea

We can always think of a set of points in a (metric) space as a weighted distance graph. This is a **very** important idea, because it allows us to use our graph algorithms!

Clustering with MSTs

- \triangleright Given *n* data points and a number of clusters, k:
	- \triangleright Create distance graph G.
	- \triangleright Run Kruskal's Algorithm on G until there are only k components.

▶ The resulting connected components are the **clusters**. ▶ This is known as **single-linkage clustering**.

Single-Linkage Clustering

- \triangleright Time complexity of single-linkage is determined by Kruskal's Algorithm: $\Theta(E \log E)$.
- $▶$ Since distance graph is complete, $E = \Theta(V^2)$, and so $\Theta(E \log E) = \Theta(V^2 \log V) = \Theta(n^2 \log n)$

▶ Practically, can cluster ∼ 10, 000 points.

Summary

- \triangleright We started the quarter with a brute force solution.
	- \triangleright Took $\Theta(2^n)$ time, only feasible for a few dozen points.
- \triangleright We've now reframed the problem using graph theory.
	- ▶ Now only $\Theta(n^2 \log n)$ time!
	- \blacktriangleright Feasible for tens of thousands of points.

Why Algorithms?

- ▶ Data scientists use computers as tools.
- \triangleright But solving a problem isn't just about coding it up.
- ▶ You need to know how to analyze your code and use the right algorithms and data structures to make your solution efficient.