DSC 408

Thtm/é%ca/ Founolatong 7L

Lecture 16 Part 1

Minimum Spanning Trees

Today’s Problem

Fidiz4 5
ﬁ—f—ﬁ

/1

Choose a set of dirt roads to pave so that:
can get between any two buildings only on paved
roads;
total cost is minimized.

Solution: compute a minimum spanning tree.

Today’s Problem
Do
@ [ﬁ

ﬁ -5

Choose a set of dirt roads to pave so that:
can get between any two buildings only on paved
roads;
total cost is minimized.

Solution: compute a minimum spanning tree.

Trees

An undirected graph T = (V,E) is a tree if

it is connected; and
itis acyclic.

Example: a tree.

S O O
O\ L \/

O Q/
\O/ \
@

Trees

An undirected graph T = (V,E) is a tree if

it is connected; and
itis acyclic.

Example: a tree.

- O\o/
o~ \
@)

—
O\\O/O

O

Trees

An undirected graph T = (V,E) is a tree if

it is connected; and
itis acyclic.

Example: not a tree.

O
O/\/o O
\/o \O/
Lo

O o

Trees

An undirected graph T = (V,E) is a tree if

it is connected; and
itis acyclic.

Example: not a tree.

O

o \ O O

\ /o \O/

o7
O

O

Trees: Equivalent Definition

An undirected graph T = (V, E) is a tree if

it is connected; and
|E| =|V]-1.

Example: a tree.

< O O
O\ L \/

@) Q/
\O/ A
O

Trees: Equivalent Definition

An undirected graph T = (V, E) is a tree if

it is connected; and
|E| =|V]-1.

Example: a tree.
o O
~
\ /

O
VT
@

O\\O/O

Trees: Equivalent Definition

An undirected graph T = (V, E) is a tree if

it is connected; and
|E| =|V]-1.

Example: not a tree.

O
/ O O
] é/\/

P G
O\O Q/\O

Trees: Equivalent Definition

An undirected graph T = (V, E) is a tree if

it is connected; and
|E| =|V]-1.

Example: not a tree.

O

o \ @) @)
\ ° \ /
O/ Q/O\
\O X

Tree Properties

Removing an edge from a tree
disconnects it (no longer a tree).

u
\l O There is a unique simple path between
® O any two nodes in a tree.
O Adding a new edge to a tree creates a
// - cycle (no longer a tree).
O

_s0="°

Spanning Trees

Let G = (V,E) be a connected graph. A spanning tree of G is a
tree T = (V, E;) with the same nodes as G, and a subset of G's
edges.

O—0

\/\/
\O//
/\\

Many Spanning Trees

The same graph can have many spanning trees.

®) \ /O_/O O \ /O\—/O
\O/ / P / \O/ / e /
No” \\ 7 \\
O O

Spanning Tree Cost

If G = (V,E,w) is a weighted undirected graph, the cost (or
weight) of a spanning tree is the total weight of the edges in the

spanning tree.

\5 . O—+o0

\4 “INA

o//'" oyo 5
5
N \O

Bid+14+17+ 543+ F413= F2

Cost:

Spanning Tree Cost

Different spanning trees of the same graph can have different
costs.

o \5 =

V w \/
// \\

3

Cost: 142 +23tYr5i¢+7+8+4/2= 49

Minimum Spanning Tree

The minimum spanning tree problem is as follows:
GIVEN: A weighted, undirected graph G = (V, E, w).
COMPUTE: a spanning tree of G with minimum cost
(i.e., minimum total edge weight).

For a given graph, the MST may not be unique.

Suppose the edges of a graph G = (V, e, w) all have
the same weight. How can we compute an MST of
the graph?

Today’s Problem
&

AR A
B

Choose a set of dirt roads to pave so that:
can get between any two buildings only on paved

roads;
total cost is minimized.

Solution: compute a minimum spanning tree.

MSTs in Data Science?

Do we need to find MSTs in data science?

Actually, yes! (Next lecture)

psc 4058

Thtm’e%ca/ Founolatong 7L

Lecture 16 @ Part 2

Prim’s Algorithm

Building MSTs

How do we build a MST efficiently?

We'll adopt a greedy approach.
Build a tree edge-by-edge.
At every step, doing what looks best at the moment.

This strategy isn't guaranteed to work in all of life’s
situations, but it works for building MSTs.

Two Greedy Approaches

We'll look at two greedy algorithms:
Today: Prim’s Algorithm
Next time: Kruskal's Algorithm

Differ in the order in which edges are added to tree.

Also differ in time complexity.

O

5

4

O

Prim’s Algorithm, Informally

O
4

z

~
=

O

O—+0

X 4

/

O

3

Start by picking any node to add to
“tree”, T.

While T is not a spanning tree, greedily
add lightest edge from a node in Tto a
node notin T.
“lightest” = edge of smallest
weight

Prim’s Algorithm, Informally

Start by picking any node to add to
“tree”, T.

While T is not a spanning tree, greedily
add lightest edge from a node in Tto a
node notin T.
“lightest” = edge of smallest
weight

Is this guaranteed to work? Yes, as we'll
see.

Prim’s Algorithm, Equivalently

For each node u, store:
estimated cost of adding node to tree;
estimated “predecessor” v in the tree.

At each step,
Find node with smallest estimated cost.
Add to tree T by including edge with estimated
“predecessor”.
Update cost of neighbors.

Same as adding lightest edge from T to outside T at every
step!

Prim’s Algorithm, Equivalently

O While T is not a tree:
”/ TS 0.=— find the node u ¢ T with smallest
8
o V2% "
(-"]
; O\‘I/ \ 4 adcj the edge between u and its
| I O estimated “predecessor”to T
O 10 y 2z update estimated cost/pred. of
o~ O u’s neighbors which aren't
N\

1%
O/cr 5K already in tree.
O

Recall: Priority Queues

How do we efficiently find node with smallest cost?

Priority Queues:

PriorityQueue(priorities): creates priority queue from
dictionary whose values are priorities.

.extract_min(): removes and returns key with smallest value.

.decrease_priority(key, value): changes key’s value.

We'll use a priority queue to hold nodes not yet added to
tree.

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:
tree.add_edge(estimated_predecessor[ul], u)
for v in graph.neighbors(u):
if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u
return tree

Prim and Dijkstra

This is a lot like Dijkstra’s Algorithm for s.p.d.!

Both: at each step, extract node with smallest cost, update
its edges. (Prim: only those edges to nodes not in tree).

Dijkstra update of (u, v):
cost[v] = min(cost[v], cost[u] + weight(u, v))
Prim update of (u, v):

cost[v] = min(cost[v], weight(u, v))

psc 4058

Thtm’e%ca/ Founolatong 7L

Lecture 16 = Part 3

Time Complexity

Time Complexity

A priority queue can be implemented using a heap.

If a binary min-heap is used:
PriorityQueue(est) takes (V) time.
.extract_min() takes O(logV) time.
.decrease_priority() takes O(logV) time.

Time Complexity

def prim(graph, weight): @(\/ﬂz\/ +E/a°d \/)

tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes} Q(\/)
priority_queue = PriorityQueue(cost)
while priority_queue: &~ V rezfions O
u = priority_queue.extract_min() & \/JOZ V)
if estimated_predecessor[u] is not None:
tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u): &——— # r"‘% : @ (E)
if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))

cost[v] = weight(u, v) L_é @(JQOA,N:’/Q % Vi o

estimated_predecessor[v] = u

return tree ‘+b+’ O(E,Qoa. \I)

Time Complexity

Using a binary heap...
Overall: ©(VlogV + ElogV).
Since graph is assumed connected, E = Q(V).

So this simplifies to O(E log V).

Fibonacci Heaps

A priority queue can be implemented using a heap.

If a Fibonacci min-heap is used:
PriorityQueue(est) takes (V) time.
.extract_min() takes ©(log V) time'.
.decrease_priority() takes O(1) time.

TAmortized.

Time Complexity

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue: / O(V ﬂoa \/)

u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:
tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):
if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v) Q
estimated_predecessor[v] = u

return tree @ (E)

Time Complexity

Using a Fibonacci heap...

Overall: ©(VlogV +E).

Fibonacci vs. Binary Heaps

Using Fibonacci heaps improves time complexity when
graph is dense.

E.g., if E = O(V2):
Prim’s with Fibonacci: O(E) = O(V?)
Prim’s with binary: O(ElogE) = ©(V? log V).

But Fibonacci heaps are hard to implement; have large
constants.

Binary heaps used more in practice despite complexity.

psc 4058

T/wﬂz%ca/ Founolatong 7L

Lecture 16 @ Part 4

Correctness of Prim’s Algorithm

Being Greedy

At every step, we add the lightest edge.

Is this “safe”?

Being Greedy

At every step, we add the lightest edge.
Is this “safe”?

Yes! This is guaranteed to find an MST.

Promising Subtrees

37 4
2
7 8
4

Let G = (V, E, w) be a weighted graph.

A subgraph T’ = (V', E’) is promising if it
is “part” of some MST.
That is, it is an “MST in progress”
Not necessarily a tree!

That is, there exists an MST T = (V, E,,)
such that E’ C E ;.

Hint: a “promising subtree” where
V' =Visan MST!

Prim's starts with a promising subtree T. At each step, adds
lightest edge from a node within T to a node outside of T.

We'll show each new edge results in a larger promising sub-
tree. Eventually the promising subtree becomes a full MST.

Claim

Let G = (V, E, w) be a weighted graph.

Suppose T' = (V',E’) is a promising
subtree for an MST of G.

Let e = (u,v) be a lightest edge from a
node in T' to a node outside of T'.
(Prim).

Then adding (u,v) to T’ results in
another promising subtree.

Proof

Suppose T, is an MST that includes T".

If T iInCludes e, we're done: T' + e is
promising.

If it doesn’t include e, it must have an
edge f that connects T’ to rest of the
graph.

Swap fwith ein T,. The resultis a
tree, and it must be a MST since

w(e) < w(f).

So there is an MST that contains T’ + e.

