
❖

DSC 40B
Lecture 15 : Hashing

Good and Bad

❖

Fast Algorithms with Hash
Tables

❖

Faster Algorithms

● Hashing is a super common trick.

● The “best” solution to interview problems often involves
hashing.

❖

Example 1: The Movie Problem

● You’re on a flight that will last 𝐷 minutes.

● You want to pick two movies to watch.

● Find two whose durations sum to exactly 𝐷.

❖

Recall: Previous Solutions

● Brute force: Θ(𝑛2).

● Sort, use sorted structure: Θ(𝑛 log 𝑛) + Θ(𝑛).
● Theoretical lower bound: Ω(𝑛)?
● Can we speed this up with hash tables?

❖

Idea

● To use hash tables, we want to frame problem as a
membership query.

❖

Example

● Suppose flight is 360 (D) minutes long.

● Suppose first movie is fixed: 120 minutes.

● Is there a movie lasting (360 - 120) = 240 minutes?

❖

def optimize_entertainment_hash(times, D):
hash_table = dict()
for i, time in enumerate(times):

hash_table[time] = i

for i, time in enumerate(times):
target = D - time
if target in hash_table:

return i, hash_table[target]

❖

Example 2: Anagrams

● Two strings w1 and w2 are anagrams if the letters of w1
one can be permuted to make w2.

❖

Examples of anagrams

● abcd / dbca

● listen / silent

● sandiego / doginsea

❖

Problem

● Given a collection of 𝑛 strings, determine if any two of
them are anagrams.

● Design an efficient algorithm for solving this problem.
What is its time complexity?

❖

Solution

● Let’s turn this into a membership query.

● Trick: two strings are anagrams if

 sorted(w1) == sorted(w2)

❖

What is the worst time
complexity?

A: Constant

B: n

C: n log n

D: n2

❖

Hashing Downsides

● Problem must involve membership query.

❖

Example: The Movie Problem

● You’re on a flight that will last 𝐷 minutes.

● You want to pick two movies to watch.

● Find two whose added durations is closest to 𝐷.

❖

Hashing Downsides

● No locality: similar items map to different bins.

● There is no way to quickly query entry closest to given
input.

❖

Locality

❖

Memory: To access a value, we must know its
address .

❖

Sequences

● How do we store an ordered (sorted) sequence?
○ E.g. 10, 20, 30, 80, 95, 96, 190

❖

Arrays

Good and Bad

❖

Arrays
● Store elements contiguously (next to each other):

○ E.g. 10, 20, 30, 80, 95, 96, 190

● NumPy arrays are…arrays

❖

Allocation
● Memory is shared resource.

● A chunk of memory of fixed size has to be reserved (allocated) for the
array.

● The size has to be known beforehand.

❖

Arrays

❖ To access an element, we need its address.

❖ Key Idea: Address are easily calculated.

➢ int arr [] = {1,2,3,4,5}

➢ For kth element:
■ Address(arr[k]) = Address of the first + k × Size of each element

❖ Therefore, arrays support -time access

 1 2 3 4 5

arr

❖

Downsides of Arrays

❖ Homogeneous: every element must be same size.

❖ To resize the array, a totally new chunk of memory has to be found; old

values copied over.

❖

Locality

● Arrays are better for numerical algorithms.
○ Arrays have good cache performance.
○ Works with pages (4kb)

● MergeSort vs QuickSort
○ better cache performance.

❖

Hashing Downsides

● No locality: similar items map to different bins.

● There is no way to quickly query entry closest to given
input.

❖

Example: Number of Elements

● Given a collection of 𝑛 numbers and two endpoints, 𝑎 and
𝑏, determine how many of the numbers are contained in
[𝑎, 𝑏].

● Not a membership query.

● Idea: sort and use modified binary search.

❖

Hash Table Drawbacks

❖

Hashing Downsides

● No locality: similar items map to different bins.

● But we often want similar items at the same time.

● Results in many cache misses, slow.

● Memory overhead.

❖

Hash Tables vs. BSTs

● Hash Table: Θ(1) insertion, query (expected time).

● BST: Θ(log 𝑛) insertion, query (if balanced).

● Why ever use a BST?

❖

Hash Tables vs. BSTs

● Hash tables keep items in arbitrary order.

● Example: how many elements are in the interval [3, 23]?

● Example: what is the min/max/median?

● BSTs win when order is important.

❖

Do you have any questions?

Thank you!

CampusWire!

