93392290

DSC 408B
Lecture 15 : Hashing
Good and Bad
T T T T T T T T T I T T T T T T

93322290

Fast Algorithms with Hash
Tables

Faster Algorithms

e Hashing is a super common trick.

e The "best” solution to interview problems often involves
hashing.

11113999

T ————
.............................

Example 1: The Movie Problem

e You're on a flight that will last D minutes.

e You want to pick two movies to watch.

e Find two whose durations sum to exactly D.

11113999

T ————
.............................

Recall: Previous Solutions

e Brute force: O(n?).

e Sort, use sorted structure: O(n log n) + O(n).
e Theoretical lower bound: Q(n)?

e (Can we speed this up with hash tables?

11113999

T ————
.............................

=l

e To use hash tables, we want to frame problem as a
membership query.

Idea

CEEREREREY

Example

e Suppose flight is 360 (D) minutes long.

e Suppose first movie is fixed: 120 minutes.

e |s there 3 movie lasting (360 - 120) = 240 minutes?

11113999

T ————
.............................

11113999

def optimize_entertainment_hash(times,

hash_table = dict()
for i, time in enumerate(times):

hash_table[time] = i

for i, time in enumerate(times):
target = D - time
if target in hash_table:
return i, hash_table[target]

B ————T
.............................

D) :

ceeecece

Example 2: Anagrams

e Two strings w, and w, are anagrams if the letters of w.
one can be permuted to make w.,.

T ————
.............................

93333390

sandiego / doginsea

abcd / dbca
listen / silent

Examples of anagrams

Problem

e Given a collection of n strings, determine if any two of
them are anagrams.

e Design an efficient algorithm for solving this problem.
What is its time complexity?

11113999

T ————
.............................

Solution

e Let's turn this into a membership query.

e Trick: two strings are anagrams if

sorted(wl) == sorted(wz)

11113999

T ————
.............................

..............................
., .
. def any_anagrams(words): .
. seen = set() o
L for word in words: B
L w = sorted(word) | | B
B NI A 5
. else: A: Constant .
.P seen.add(w) 58 n .
" =
¥ =
=- T ———— T ———
-ttt

=l

e Problem must involve membership query.

ashlng Downsides

L.Ppp.p-.rpb.-.

Example: The Movie Problem

e You're on a3 flight that will last D minutes.

e You want to pick two movies to watch.

e Find two whose added durations is closest to D.

11113999

T ————
.............................

Hashing Downsides

e No locality: similar items map to different bins.

e There is no way to quickly query entry closest to given
input.

11113999

T ————
.............................

T ———
..............................

=l

Memory: To access a value, we must know its

‘address .

CEEREREREY

=l

e How do we store an ordered (sorted) sequence?
o E.qg.10, 20, 30, 80, 95, 96, 190

Sequences

CEEREREREY

T ———
..............................

B .
R -
II'-’ B
n Arrays L
= - e Store elements contiguously (next to each other): =
E.qg. 10, 20, 30, 80, 95, 96, 190

B S0 B
B B
= =
B B
.p e NumPy arrays are...arrays .
- =

T T ———————
..............................

==llllllllllllllllllllllll=ll

L
o .
.I"’ Allocation

- e Memory is shared resource.

e A chunk of memory of fixed size has to be reserved (allocated) for the
array.

The size has to be known beforehand.

o
< =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

Arraqs

< To access an element, we need its address.
s Key Ildea: Address are easily calculated.
> intarr[] =1{1,2,3,4,5}

> For kth element:
m Address(arr[k]) = Address of the first + kxSize of each element

< Therefore, arrays support @(1) -time access

arr

1

= T —— T ———

Downsides of Arrays

% Homogeneous: every element must be same size.
% To resize the array, a totally new chunk of memory has to be found; old

values copied over.

11113999

T ————
.............................

Locality

o Arrays are better for numerical algorithms.
o Arrays have good cache performance.

o Works with pages (4kb)
Cache
Level 2

asealou| azis pue Aauaje

e MergeSort vs QuickSort
o better cache performance.

Mass Storage
(Hard Disk, etc.)

: TCTTT'!‘C'!"

T T T - ————
Lttt

Hashing Downsides

e No locality: similar items map to different bins.

e There is no way to quickly query entry closest to given
input.

11113999

T ————
.............................

Example: Number of Elements

Given a collection of n numbers and two endpoints, a and
b, determine how many of the numbers are contained in
la, b].

Not a membership query.

Idea: sort and use modified binary search.

11113999

T ————
.............................

93322290

Hash Table Drawbacks

Hashing Downsides

e No locality: similar items map to different bins.

e But we often want similar items at the same time.
e Results in many cache misses, slow.

e Memory overhead.

11113999

T ————
.............................

Hash Tables vs. BSTs

e Hash Table: O(1) insertion, query (expected time).

e BST: O(log n) insertion, query (if balanced).
e Why ever use a BST?

11113999

T ————
.............................

Hash Tables vs. BSTs

Hash tables keep items in arbitrary order.

Example: how many elements are in the interval [3, 23]?
Example: what is the min/max/median?

BSTs win when order is important.

11113999

T ————
.............................

Thank you!

.I CampusWire!
=l--

)

