
❖

DSC 40B
Lecture 14 :

Hashing

❖

Warmup

❖

Exercise

● How fast can we query/insert with these data structures?

Query Insert

Unsorted linked list 𝛩(?) 𝛩()
Unsorted array 𝛩() 𝛩()
Sorted array 𝛩() 𝛩()
Balanced BST 𝛩() 𝛩()
Unbalanced BST 𝛩() 𝛩()

❖

Exercise

● How fast can we query/insert with these data structures?

Query Insert

Unsorted linked list 𝛩(n) 𝛩(?)
Unsorted array 𝛩(?) 𝛩(?)
Sorted array 𝛩(?) 𝛩(?)
Balanced BST 𝛩(?) 𝛩(?)
Unbalanced BST 𝛩(?) 𝛩(?)

❖

Exercise

● How fast can we query/insert with these data structures?

Query Insert

Unsorted linked list 𝛩(n) 𝛩(1) #end
Unsorted array 𝛩(?) 𝛩(?)
Sorted array 𝛩(?) 𝛩(?)
Balanced BST 𝛩(?) 𝛩(?)
Unbalanced BST 𝛩(?) 𝛩(?)

❖

Exercise

● How fast can we query/insert with these data structures?

Query Insert

Unsorted linked list 𝛩(n) 𝛩(1) #end
Unsorted array 𝛩(n) 𝛩(?)
Sorted array 𝛩(?) 𝛩(?)
Balanced BST 𝛩(?) 𝛩(?)
Unbalanced BST 𝛩(?) 𝛩(?)

❖

Exercise

● How fast can we query/insert with these data structures?

Query Insert

Unsorted linked list 𝛩(n) 𝛩(1) #end
Unsorted array 𝛩(n) 𝛩(n)
Sorted array 𝛩(?) 𝛩(?)
Balanced BST 𝛩(?) 𝛩(?)
Unbalanced BST 𝛩(?) 𝛩(?)

❖

Exercise

● How fast can we query/insert with these data structures?

Query Insert

Unsorted linked list 𝛩(n) 𝛩(1) #end
Unsorted array 𝛩(n) 𝛩(n)
Sorted array 𝛩(log n) 𝛩(?)
Balanced BST 𝛩(?) 𝛩(?)
Unbalanced BST 𝛩(?) 𝛩(?)

❖

Exercise

● How fast can we query/insert with these data structures?

Query Insert

Unsorted linked list 𝛩(n) 𝛩(1) #end
Unsorted array 𝛩(n) 𝛩(n)
Sorted array 𝛩(log n) 𝛩(n)
Balanced BST 𝛩(?) 𝛩(?)
Unbalanced BST 𝛩(?) 𝛩(?)

❖

Exercise

● How fast can we query/insert with these data structures?

Query Insert

Unsorted linked list 𝛩(n) 𝛩(1) #end
Unsorted array 𝛩(n) 𝛩(n)
Sorted array 𝛩(log n) 𝛩(n)
Balanced BST 𝛩(log n) 𝛩(?)
Unbalanced BST 𝛩(?) 𝛩(?)

❖

Exercise

● How fast can we query/insert with these data structures?

Query Insert

Unsorted linked list 𝛩(n) 𝛩(1) #end
Unsorted array 𝛩(n) 𝛩(n)
Sorted array 𝛩(log n) 𝛩(n)
Balanced BST 𝛩(log n) 𝛩(log n)
Unbalanced BST 𝛩(?) 𝛩(?)

❖

Exercise

● How fast can we query/insert with these data structures?

Query Insert

Unsorted linked list 𝛩(n) 𝛩(1) #end
Unsorted array 𝛩(n) 𝛩(n)
Sorted array 𝛩(log n) 𝛩(n)
Balanced BST 𝛩(log n) 𝛩(log n)
Unbalanced BST 𝛩(n) 𝛩(?)

❖

Exercise

● How fast can we query/insert with these data structures?

Query Insert

Unsorted linked list 𝛩(n) 𝛩(1) #end
Unsorted array 𝛩(n) 𝛩(n)
Sorted array 𝛩(log n) 𝛩(n)
Balanced BST 𝛩(log n) 𝛩(log n)
Unbalanced BST 𝛩(n) 𝛩(n)

❖

Direct Address Tables

❖

Counting Frequencies

● How many times does each age appear?

❖

Exercise

What data structure would you use to store the age counts?

❖

Direct Address Tables
● Idea: keep an array arr of length, say, 125.

● Initialize to zero.

● 0 0 0 0 … 0 0 0
0 1 2 3 … 5 6 124

❖

Direct Address Tables
● Idea: keep an array arr of length, say, 125.

● Initialize to zero.

● If we see age 𝑥, increment arr[x] by one. Say, we see 2:
○ arr[2] += arr[2] + 1

0 0 0 0 … 0 0 0
0 1 2 3 … 5 6 124

0 0 1 0 … 0 0 0
0 1 2 3 … 5 6 124

❖

Building the Table

loading the table
table = np.zeros(125)

for age in ages:
table[age] += 1

❖

Building the Table

loading the table
table = np.zeros(125)

for age in ages:
table[age] += 1

Time complexity if there are 𝑛 people?

A: Constant

B: log n

C: n

D: n2

❖

Query

query: how many people are 55?

print(table[55])

● Time complexity if there are 𝑛 people?

Time complexity if
there are 𝑛 people?

A: Constant

B: log n

C: n

D: n2

❖

Query

query: how many people are 55?

print(table[55])

● Time complexity if there are 𝑛 people?
○ 𝛩(1)

❖

Counting Names

❖

Downsides
● DATs are fast.

● What are the downsides of DATs?

● Could we use a DAT to store:
○ zip codes?
○ phone numbers?
○ credit card numbers?
○ names?

❖

Downsides

● Things being stored must be integers, or convertible to
integers.
○ why? valid array indices

● Must come from a small range of possibilities
○ why? memory usage.
○ example: phone numbers

❖

Running time for Direct Hashing or DAT
class StudentDataBase:

 allStudents = np.zeros(4294967268)

 def add (s):
 index = s.studentId
 allStudents[index] = s

 def get (s):
 index = s.studentId
 return allStudent[index]

 def remove(s):
 index = s.studentId
 allStudents[index] = None

❖

Space complexity is horrible :(

● Allocating 4 billion entries for a UCSD student database is
extremely wasteful.
○ The universe of keys is far larger than the number we

expect to ever want to store.

● What if we decrease the size of the table from 4 billion entries
to storing, say, just 100,000?

● 100,000 is still far higher than the actual number of UCSD
students, so there should be plenty of space.

❖

Hash Tables

● Insight: anything can be “converted” to an integer
through hashing.

● But not uniquely!

● Hash tables have many of the same advantages as DATs,
but work more generally.

❖

Hashing

❖

Hashing

● One of the most important ideas in CS.
● Tons of uses:

○ Verifying message integrity.
○ Fast queries on a large data set.
○ Identify if file has changed in version control.

❖

Hash Function

● A hash function takes a (large) object and returns a (smaller)
“fingerprint” of that object.

● Usually the fingerprint is a number, guaranteed to be in some
range.

❖

How?

● Looking at certain bits, combining them in ways that look
random (but aren’t!)

❖

Hash Function Properties

● Hashing same thing twice returns the same hash.

● Unlikely that different things have same fingerprint.
○ But not impossible!

❖

Collisions

● Hash functions map objects to numbers in a defined range.
○ Example: given image, return number in [0, 1, 2, … ,

1024]

● There will be two images with the same hash.
○ Pigeonhole principle: if there are 𝑛 pigeons, < 𝑛 holes,

there will a hole with ≥ 2 pigeons.

● Collision: two objects have the same hash

❖

“Good” Hash Functions

● A good hash function tries to minimize collisions.

❖

Hashing in Python

The hash function computes a hash.

>>> hash(”This is a test”)
-670458579957477203

>>> hash(”This is a test”)
-670458579957477203

>>> hash(”This is a test!”)
1860306055874153109

❖

Example

● MD5 is a cryptographic hash function.
○ Hard to “reverse engineer” input from hash.

● Returns a really large number in hex.

 a741d8524a853cf83ca21eabf8cea190

● Used to “fingerprint” whole files.

❖

Example

> echo "My name is Marina" | md5

60b5504d3410d0f97796c95829adebfd

> echo "My name is Marina" | md5

60b5504d3410d0f97796c95829adebfd

> echo "My name is marina" | md5

4a3c494e411e94d2be7c32ac7461208f

❖

Example

>>> md5 finalA.pdf

MD5 (finalA.pdf) = ff5bcc7dcc4815aa221774b1507c42c5

❖

Why? Useful for security reasons

● I release a piece of software.

● I host it on Google Drive.

● Someone (Google, US Gov., etc.) decides to insert extra
code into software to spy on users.

● You have no way of knowing.

❖

Another Use: De-duplication

● Building a massive training set of images.

● Given a new image, is it already in my collection?

● Don’t need to compare images pixel-by-pixel!

● Instead, compare hashes.

❖

Hashing for Data Scientists

● Don’t need to know much about how the hash function
works.

● But should know how they are used.

❖

Hash Tables

❖

Membership Queries

● Given: a collection of 𝑛 numbers and a target 𝑡.
● Find: determine if 𝑡 is in the collection.

❖

Goal

● DATs are fast, but won’t work for things that aren’t numbers
in a small range.

● Idea: hash objects to numbers in a small range, use a DAT.

● But must deal with collisions.

❖

Hash Tables

● Pick a table size 𝑚.
○ Usually 𝑚 ≈ number of things you’ll be storing.

● Create hash function to turn input into a number in {0, 1, … , 𝑚 − 1}.

● Create DAT with 𝑚 bins.

❖

Example

❖

Example

“hello”

❖

Example

“hello”“data”

❖

Example

“hello”“data” “science”

❖

Collisions

● The universe is the set of all possible inputs.

● This is usually much larger than 𝑚 (even infinite).

● Not possible to assign each input to a unique bin.

● If hash(a) == hash(b), there is a collision.

❖

Example

❖

Example

“hello”“data”

❖

Example

❖

Example

“hello”

❖

Example

“hello”“data”

❖

Example

“hello”

“data” “science”

❖

Chaining

● Collisions stored in same bin, in linked list.

● Query: Hash to find bin, then linear search.

❖

Chaining

“hello”

“data” “science”

● Collisions stored in same bin, in linked list.

● Query: Hash to find bin, then linear search.

❖

The Idea

● A good hash function will utilize all bins evenly.
○ Looks like uniform random distribution.

● If 𝑚 ≈ 𝑛, then only a few elements in each bin.

● As we add more elements, we need to add bins.

❖

Average Case

● 𝑛 elements.

● 𝑚 bins.

● Assume elements placed randomly (but deterministically) in
bins.

● Expected size of linked list inside the bin: 𝑛/𝑚.

❖

Analysis

● Query:
○ Θ(1) to find bin (hashing step)
○ Θ(𝑛/𝑚) for a linear search in a list.
○ Total: Θ(1 + 𝑛/𝑚). (𝑚 ≈ 𝑛)
○ We usually guarantee 𝑚 = 𝑂(𝑛) ⟹ Θ(1).

❖

Worst Case mic

● Everything hashed to same bin.
○ Really unlikely!
○ Adversarial attack (next slide)

● Query:
○ Θ(1) to find bin
○ Θ(𝑛) for linear search
○ Total: Θ(𝑛)

❖

Adversarial attack: HashDoS attack (back)

● A HashDoS attack targets systems that use hash tables by
flooding them with keys that all hash to the same value.

● How?
○ Weak hash functions (like early implementations of

hash() in some languages).
○ Unprotected hash maps in web servers, APIs, or

input-parsing code.
○ By sending thousands of colliding inputs, they slow down

or crash the system.

❖

Exercise

Exercise

What is the worst case time complexity of inserting an
element into a hash table that uses chaining with linked lists?

❖

Growing the Hash Table

● Insertions take Θ(1) unless the hash table needs to grow.

● We need to ensure that 𝑚 ≤ 𝑐 ⋅ 𝑛.
○ Otherwise, too many collisions.

● If we add a bunch of elements, we’ll need to increase 𝑚.

● Increasing 𝑚 mean allocating a new array, Θ(m) = Θ(n)
time.

❖

Main Idea

Hash tables support constant (expected) time insertion and
membership queries.

❖

Dictionaries

● Hash tables can also be used to store (key, value) pairs.

● Often called dictionaries or associative arrays.

❖

Hashing in Python

● dict and set implement hash tables.
● Querying is done using in:
make a set
>>> L = {3, 6, -2, 1, 7, 12}
>>> 1 in L # Theta(1)
True

>>> 8 in L # Theta(1)
False

❖

Hashing in Python

● Querying is done using in:
make a list
>>> L = [3, 6, -2, 1, 7, 12]
>>> 1 in L # Theta(?)
True

>>> 8 in L # Theta(?)
False

❖

Hashing in Python

● Querying is done using in:
make a list
>>> L = [3, 6, -2, 1, 7, 12]
>>> 1 in L # Theta(n)
True

>>> 8 in L # Theta(n)
False

❖

Do you have any questions?

Thank you!

CampusWire!

