=l

DSC 408B
IIIIIIIIIIIIIIIIIIIIIIIIIIII

Lecture 14 :
Hashing

223323931

T ———
..............................

Exercise

e How fast can we query/insert with these data structures?

HEE ..
B,

Query

Insert

Unsorted linked list

o(?)

o)

Unsorted array

o)

o)

Sorted array

o)

o)

Balanced BST

o)

o)

Unbalanced BST

o)

o)

"l'f‘l'f"f'!"!."!'

B ————T
.............................

!llllllllllllllllllllll=l=
.-

Exercise

e How fast can we query/insert with these data structures?

Query Insert

Unsorted linked list e(n) o(?)

Unsorted array e(7?) O(7?)

Sorted array O(?) O(?)

Balanced BST O(?) O(?)

Unbalanced BST e(7?) o(7?)

"l'f‘l'f"f'!"!."!'

T ————
.............................

!llllllllllllllllllllll=l=
.-

Exercise

e How fast can we query/insert with these data structures?

Query Insert
Unsorted linked list e(n) O(1) #end

Unsorted array 6(?) O(7?)

Sorted array O(?) O(?)

Balanced BST O(?) O(?)

Unbalanced BST e(7?) o(7?)

"l'f‘l"!"f'!"!."!'

T ————
.............................

Exercise

e How fast can we query/insert with these data structures?

HEE ..
B,

Query

Insert

Unsorted linked list

o(n)

O(1) #end

Unsorted array

e(n)

o(?)

Sorted array

o(?)

o(?)

Balanced BST

o(?)

o(?)

Unbalanced BST

o(?)

o(?)

"l'f‘l"!"f'!"!."!'

B ————T
.............................

Exercise

e How fast can we query/insert with these data structures?

HEE ..
B,

Query

Insert

Unsorted linked list

o(n)

O(1) #end

Unsorted array

e(n)

eo(n)

Sorted array

o(?)

o(?)

Balanced BST

o(?)

o(?)

Unbalanced BST

o(?)

o(?)

"l'f‘l"!"f'!"!."!'

B ————T
.............................

!llllllllllllllllllllll=l=
.-

Exercise

e How fast can we query/insert with these data structures?

Query Insert
Unsorted linked list e(n) O(1) #end
Unsorted array e(n) O(n)
Sorted array O(logn) o(?)

Balanced BST O(?) O(?)

Unbalanced BST e(7?) o(7?)

"l'f‘l"!"f'!"!."!'

T ————
.............................

!llllllllllllllllllllll=l=
.-

Exercise

e How fast can we query/insert with these data structures?

Query Insert
Unsorted linked list e(n) O(1) #end

Unsorted array o(n) e(n)

Sorted array O(logn) o(n)
Balanced BST o(?) e(7?)

Unbalanced BST e(7?) o(7?)

"l'f‘l"!"f'!"!."!'

T ————
.............................

!llllllllllllllllllllll=l=
.-

Exercise

e How fast can we query/insert with these data structures?

Query Insert
Unsorted linked list e(n) O(1) #end

Unsorted array o(n) e(n)

Sorted array O(logn) e(n)
Balanced BST O(logn) O(?)

Unbalanced BST e(7?) o(7?)

"l'f‘l"!"f'!"!."!'

T ————
.............................

!llllllllllllllllllllll=l=
.-

Exercise

e How fast can we query/insert with these data structures?

Query Insert
Unsorted linked list e(n) O(1) #end

Unsorted array o(n) e(n)

Sorted array O(logn) e(n)

Balanced BST O(logn) O(logn)
Unbalanced BST o(?) O(?)

"l'f‘l"!"f'!"!."!'

T ————
.............................

!llllllllllllllllllllll=l=
.-

Exercise

e How fast can we query/insert with these data structures?

Query Insert
Unsorted linked list e(n) O(1) #end

Unsorted array o(n) e(n)

Sorted array O(logn) e(n)

Balanced BST O(logn) O(logn)
Unbalanced BST e(n) o(?)

"l'f‘l"!"f'!"!."!'

T ————
.............................

!llllllllllllllllllllll=l=
.-

Exercise

e How fast can we query/insert with these data structures?

Query Insert
Unsorted linked list e(n) O(1) #end

Unsorted array o(n) e(n)

Sorted array O(logn) e(n)

Balanced BST O(logn) O(logn)
Unbalanced BST o(n) e(n)

"l'f‘l"!"f'!"!."!'

T ————
.............................

93322290

Direct Address Tables
T T 1T Tt Tt rrr T TP T TP i rrr i1

==llllllllllllllllllllllll=ll

=I-—' Counting Frequencies

- e How many times does each age appear?

PID Name Age

A1843 Wan 24
A8293 Deveron 22

. A9821 Vinod 41
A8172 Aleix 17
A2882 Kayden 4

A1829 Raghu 51

= A9772 Cui 48
= L

B ————T
.............................

=l

What data structure would you use to store the age counts?

CEEREREREY

==llllllllllllllllllllllll=l=
.-

=I-’ Direct Address Tables

- o Idea: keep an array arr of length, say, 125.

e [nitialize to zero.

0 0 0

0 1 2

o
< =8

B ————T
e

==llllllllllllllllllllllll=l=
.-

- i
.I.__. Direct Address Tables

e Idea: keep an array arr of length, say, 125.

e Initialize to zero.

0 0 0 0 0 0 0

0 1 2 3 5 6 124

e |If we see age x, increment arr[x] by one. Say, we see 2:
.P O arr[2] += arr[2] + 1

0 0 1 0 0

I 0 1 2 3 5

B ————T
.............................

Building the Table

loading the table
table = np.zeros(125)

for age in ages:
table[age] += 1

11113999

T ————
.............................

RN
(]
B N
B B
=t: Building the Table =
= # loading the table Time complexity if there are n people? =
. table = np.zeros(125) R — .
= for age in ages: B: logn =
. table[age] += 1 C- .
=p D: n? =

I"' B
=-------———-----d...
-ttt

Time compIeX|ty if
there are n people?

3

2
i
a
-

A: Constant

B: logn

query: how many people are 557 o on

print(table[55])

N2

e Time complexity if there are n people?

11113999

T ————
.............................

Query

_ A
I
Al

query: how many people are 557
print(table[55])

e Time complexity if there are n people?
o O(1)

C

IIIIIIIII%HE%FII

T ————
e

!llllllllllllllllllllll=l=
.-

Counting Names

PID Name

A1843 Wan
A8293 Deveron
A9821 Vinod
A8172 Aleix
A2882 Kayden
A1829 Raghu
A9772 Cui

"l'f‘l'f"f'!"!."!'

T ————
.............................

Downsides

DATs are fast.
What are the downsides of DATSs?

Could we use a DAT to store:
o zip codes?

o phone numbers?

o credit card numbers?

O names?

11113999

T ————
.............................

Downsides

e Things being stored must be integers, or convertible to
integers.
o why? valid array indices

e Must come from a small range of possibilities
o why? memory usage.
o example: phone numbers

11113999

T ————
.............................

==llllllllllllllllllllllll=l=
.-

" &> Running time for Direct Hashing or DAT

class StudentDataBase:

allStudents = np.zeros(4294967268)

def add (s):
index = s.studentId
allStudents[index] = s

def get (s):
. index = s.studentId
return allStudent[index]

def remove (s) :
index = s.studentId
= allStudents[index] = None

B ————T
.............................

==llllllllllllllllllllllll=ll

=I._,o Space complexity is horrible :(

e Allocating 4 billion entries for a UCSD student database is
extremely wasteful.
o The universe of keys is far larger than the number we
expect to ever want to store.

What if we decrease the size of the table from 4 billion entries
to storing, say, just 100,0007?

100,000 is still far higher than the actual number of UCSD

I students, so there should be plenty of space.

B ————T
.............................

Hash Tables

e Insight: anything can be “converted” to an integer
through hashing.

e But not uniquely!

e Hash tables have many of the same advantages as DATS,
but work more generally.

11113999

T ————
.............................

Hashing

T ———
..............................

Hashing

e One of the most important ideas in CS.
e Tons of uses:
o Verifying message inteqgrity.
o Fast queries on a large data set.
o |dentify if file has changed in version control.

11113999

T ————
.............................

Hash Function

e A hash function takes a (large) object and returns a (smaller)
“fingerprint” of that object.

e Usually the fingerprint is a number, guaranteed to be in some
range.

11113999

T ————
.............................

B .
| 4 .
.I.__. L
o .
= How? B
o L
= e Looking at certain bits, combining them in ways that look =
.t random (but aren’t!) .
o .
.P .
O -
.I". .
= L

T ——
-ttt

Hash Function Properties

e Hashing same thing twice returns the same hash.

e Unlikely that different things have same fingerprint.
o But not impossible!

11113999

T ————
.............................

ll lllllllllllllllllllllll=l=
.-

I-’ Collisions

- e Hash functions map objects to numbers in a defined range.
. o Example: given image, return number in [0, 1, 2,

1024]

There will be two images with the same hash.
o Pigeonhole principle: if there are n pigeons, < n holes,
there will 8 hole with =z 2 pigeons.

Collision: two objects have the same hash

T ————
e

“Good ” Hash Functions

e A good hash function tries to minimize collisions.

3232393

g
)
m
I
I
i

Hashing in Python

The hash function computes a hash.

>>> hash(”"This is a test”)
-670458579957477203

>>> hash(”"This is a test”)
-670458579957477203

>>> hash(”"This is a test!”)
1860306055874153109

11113999

T ————
.............................

Example

MD5 is a cryptographic hash function.
o Hard to “reverse engineer” input from hash.

Returns a really large number in hex.
8741d8524a853cf83ca21eabf8ceal90

Used to “fingerprint” whole files.

11113999

T ————
.............................

I lllllllllllllllllllllll=l=
.-

.I"‘. Example

> echo "My name is Marina" | md5

60b5504d3410d0f97796c95829adebfd

> echo "My name is Marina" | md5

.P 60b5504d3410d0f97796c95829adebfd

> echo "My name is marina” | md5

I 433c494e411e94d2be7c32ac7461208f

= T —— T ———

93333399

Example

MD5 (finalA.pdf) = ff5bcc7dcc4815aa221774b1507c42c5

>>> md5 finalA.pdf

Why? Useful for security reasons

e |release a piece of software.

e | host it on Google Drive.

e Someone (Google, US Gov., etc.) decides to insert extra
code into software to spy on users.

e You have no way of knowing.

11113999

T ————
.............................

Another Use: De-duplication

e Building a massive training set of images.

e Given a new image, is it already in my collection?
e Don’t need to compare images pixel-by-pixel!

e |Instead, compare hashes.

11113999

T ————
.............................

Hashing for Data Scientists

e Don’'t need to know much about how the hash function
works.

e But should know how they are used.

11113999

T ————
.............................

Hash Tables

T ———
..............................

Membership Queries

e Given: a collection of n numbers and a target +.

e Find: determine if ris in the collection.

11113999

T ————
.............................

S
S

e DATs are fast, but won’t work for things that aren’t numbers

in @ small range.
e Idea: hash objects to numbers in a small range, use a DAT.

e But must deal with collisions.

11113999

T ————
.............................

Hash Tables

e Pick a table size m.
o Usually m = number of things you’ll be storing.

e Create hash function to turn input into a number in {0, 1, ... , m

e C(Create DAT with m bins.

11113999

T ————
.............................

ll lllllllllllllllllllllll=l=
.-

.I.-—' Example

hash('hello') == 3
nash('data') == 0
nash('science') =

= 4

. l—'

m -1

T ————
e

|
I.-—' Example =

hash('hello') == 3
nash('data') == 0
nash('science') =

. l—'

m -1

T ————
e

ll lllllllllllllllllllllll=ll

.I.-—' Example

t hash('hello') == 3
i nash('data') == 0

nash('science'

o
o
.I
data
.P 0 m -1
= L

T W W T—————
e

.I.-—' Example

t nash('hello')
i nash('data') = e

ll lllllllllllllllllllllll=ll

nash('science' = &

=
=
.
I data “hello”
J | |

.="' 0 3 4 m-1
= o

T W W T—————
e

“science”

I lllllllllllllllllllllll=l=
.-

Collisions

The universe is the set of all possible inputs.

This is usually much larger than m (even infinite).
Not possible to assign each input to a unique bin.

If hash(a) == hash(b), there is a collision.

="’ =8

B ————T
e

ll lllllllllllllllllllllll=l=
.-

.I.-—' Example

hash('hello') == 3
nash('data') == 0
nash('science') =

= 3

. l—'

m -1

T ————
e

ll lllllllllllllllllllllll=l=
.-

.I.-—' Example

h('hello') == 3
h('data') == o
n('science') =

m -1

T ————
e

ll lllllllllllllllllllllll=l=
.-

.I.-—' Example

h('hello') == 3
h('data') == o
n('science') =

T ————
e

I.-—' Example

n('hello')
n('data') =

|

n('science’

= 3
(0]
== 3

[I] [“he{lo’] [T]

2 3 4

mnd I

||

. Example
t hash('hello') == 3
B nash('data') == o
=t nash('science') == 3

pw (1 [L] [

B 0 1"2' 3 '4'
==". =

.I.-—' Example

n('hello')
n('data') =

n('science’

= 3
(0]
== 3

“hello”

| Escie?ce] [I]

. 3 o . .

mnd I

I lllllllllllllllllllllll=l=
.-

.I.__.
Chaining

- @ Collisions stored in same bin, in linked list.

e Query: Hash to find bin, then linear search.

teecccce

T ————
Lttt

ll lllllllllllllllllllllll=l=
.-

.I.-—' Chaining

e C(Collisions stored in same bin, in linked list.

e Query: Hash to find bin, then linear search.

“hello”

[I] [sc.ence] H
2 3 | 4 |

T ————
e

The Idea

e A good hash function will utilize all bins evenly.
o Looks like uniform random distribution.

e If m =n, then only a few elements in each bin.

e As we add more elements, we need to add bins.

11113999

T ————
.............................

Average Case

e 1 elements.
e m bins.

e Assume elements placed randomly (but deterministically) in
bins.

e Expected size of linked list inside the bin: n/m.

199999949

T ————
.............................

Analysis

e Query:
o ©(1) to find bin (hashing step)
O(n/m) for a linear search in a list.
Total: O(1 + n/m). (m = n)
We usually guarantee m = O(n) = O(1).

11113999

T ————
.............................

Worst Case mic

e Everything hashed to same bin.

o Really unlikely!

o Adversarial attack (next slide)
e Query:

o (1) to find bin

o O(n) for linear search

o Total: O(n)

11113999

T ————
.............................

==llllllllllllllllllllllll=ll

.I.__.
. Adversarial attack: HashDoS attack (back)

@ A HashDoS attack targets systems that use hash tables by
flooding them with keys that all hash to the same value.
e How?
o Weak hash functions (like early implementations of
hash() in some languages).

.P o Unprotected hash maps in web servers, APIs, or

input-parsing code.
o By sending thousands of colliding inputs, they slow down

I or crash the system.
= L

B ————T
.............................

Exercise

What is the worst case time complexity of inserting an
element into a hash table that uses chaining with linked lists?

11113999

T ————
.............................

Growing the Hash Table

e Insertions take ©(1) unless the hash table needs to grow.

e We need to ensure thatm < ¢ - n.
o Otherwise, too many collisions.

e |f we add a bunch of elements, we’ll need to increase m.

e Increasing m mean allocating a new array, ©(m) = ©(n)
time.

= T —— T ———

T.' 9999499

Main Idea

Hash tables support constant (expected) time insertion and
membership queries.

133193149

T ————
.............................

Dictionaries

e Hash tables can also be used to store (key, value) pairs.

e Often called dictionaries or associative arrays.

11113999

T ————
.............................

NN
——— =aEE
.

Hashing in Python

e dict and set implement hash tables.
e Querying is done using in:

make a set

>>> L = {3, 6, -2, 1, 7, 12}

>>> 1 in L # Theta(1)

True

>>> 8 in L # Theta(1)
False

11113999

T ————
.............................

NN
——— =aEE
.

Hashing in Python

e (Querying is done using in:

make a list

>> L = [3, 6, -2, 1, 7, 12]
>>> 1 in L # Theta(?)

True

>>> 8 1n L # Theta(?)
False

11113999

T ————
.............................

NN
——— =aEE
.

Hashing in Python

e (Querying is done using in:

make a list

>> L = [3, 6, -2, 1, 7, 12]
>>> 1 in L # Theta(n)

True

>>> 8 1n L # Theta(n)
False

11113999

T ————
.............................

Thank you!

.I CampusWire!
=l--

)

