
❖

DSC 40B
Lecture 14 : 

Hashing



❖

Warmup
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Exercise

● How fast can we query/insert with these data structures?

Query Insert

Unsorted linked list  𝛩( ? ) 𝛩(  )
Unsorted array 𝛩(  ) 𝛩(  )
Sorted array 𝛩(  ) 𝛩(  )
Balanced BST 𝛩(  ) 𝛩(  )
Unbalanced BST 𝛩(  ) 𝛩(  )
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Query Insert
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Direct Address Tables
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Counting Frequencies

● How many times does each age appear?
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Exercise

What data structure would you use to store the age counts?



❖

Direct Address Tables
●  Idea: keep an array arr of length, say, 125.

●  Initialize to zero.

● 0 0 0 0 … 0 0 0
0 1 2 3 … 5 6 124
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Direct Address Tables
●  Idea: keep an array arr of length, say, 125.

●  Initialize to zero.

●  If we see age 𝑥, increment arr[x] by one. Say, we see 2:
○ arr[2] += arr[2] + 1

0 0 0 0 … 0 0 0
0 1 2 3 … 5 6 124

0 0 1 0 … 0 0 0
0 1 2 3 … 5 6 124
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Building the Table

# loading the table
table = np.zeros(125)

for age in ages:
table[age] += 1



❖

Building the Table

# loading the table
table = np.zeros(125)

for age in ages:
table[age] += 1

Time complexity if there are 𝑛 people?

A:  Constant

B:   log n

C:    n

D:   n2
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Query

# query: how many people are 55?

print(table[55])

●  Time complexity if there are 𝑛 people?

Time complexity if 
there are 𝑛 people?

A:  Constant

B:   log n

C:    n

D:   n2
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Query

# query: how many people are 55?

print(table[55])

●  Time complexity if there are 𝑛 people?
○ 𝛩( 1 )
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Counting Names
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Downsides
●  DATs are fast.

●  What are the downsides of DATs?

●  Could we use a DAT to store:
○ zip codes?
○ phone numbers?
○ credit card numbers?
○ names?
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Downsides

●  Things being stored must be integers, or convertible to 
integers.
○ why? valid array indices

●  Must come from a small range of possibilities
○ why? memory usage. 
○ example: phone numbers
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Running time for Direct Hashing or DAT
class StudentDataBase:

  allStudents = np.zeros(4294967268)

  def add (s):
     index = s.studentId
     allStudents[index] = s 

  def get (s):
     index = s.studentId
     return allStudent[index] 

  def remove(s):
     index = s.studentId
     allStudents[index] = None
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Space complexity is horrible :(

● Allocating 4 billion entries for a UCSD student database is 
extremely wasteful.
○ The universe of keys is far larger than the number we 

expect to ever want to store.

● What if we decrease the size of the table from 4 billion entries 
to storing, say, just 100,000?

● 100,000 is still far higher than the actual number of UCSD 
students, so there should be plenty of space.
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Hash Tables

● Insight: anything can be “converted” to an integer 
through hashing.

● But not uniquely!

● Hash tables have many of the same advantages as DATs, 
but work more generally.
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Hashing
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Hashing

●  One of the most important ideas in CS.
●  Tons of uses:

○ Verifying message integrity.
○ Fast queries on a large data set.
○ Identify if file has changed in version control.
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Hash Function

●  A hash function takes a (large) object and returns a (smaller) 
“fingerprint” of that object.

●  Usually the fingerprint is a number, guaranteed to be in some 
range.
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How?

● Looking at certain bits, combining them in ways that look 
random (but aren’t!)



❖

Hash Function Properties

●  Hashing same thing twice returns the same hash.

●  Unlikely that different things have same fingerprint.
○  But not impossible!



❖

Collisions

● Hash functions map objects to numbers in a defined range.
○ Example: given image, return number in [0, 1, 2, … , 

1024]

●  There will be two images with the same hash.
○ Pigeonhole principle: if there are 𝑛 pigeons, < 𝑛 holes, 

there will a hole with ≥ 2 pigeons.

●  Collision: two objects have the same hash
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“Good” Hash Functions

●  A good hash function tries to minimize collisions.
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Hashing in Python

The hash function computes a hash.

>>> hash(”This is a test”)
-670458579957477203

>>> hash(”This is a test”)
-670458579957477203

>>> hash(”This is a test!”)
1860306055874153109



❖

Example

●  MD5 is a cryptographic hash function.
○  Hard to “reverse engineer” input from hash.

●  Returns a really large number in hex.

            a741d8524a853cf83ca21eabf8cea190

●  Used to “fingerprint” whole files.



❖

Example

> echo "My name is Marina" | md5

60b5504d3410d0f97796c95829adebfd

> echo "My name is Marina" | md5

60b5504d3410d0f97796c95829adebfd

> echo "My name is marina" | md5

4a3c494e411e94d2be7c32ac7461208f
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Example

>>> md5 finalA.pdf

MD5 (finalA.pdf) = ff5bcc7dcc4815aa221774b1507c42c5
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Why? Useful for security reasons

●  I release a piece of software.

●  I host it on Google Drive.

●  Someone (Google, US Gov., etc.) decides to insert extra 
code into software to spy on users.

●  You have no way of knowing.
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Another Use: De-duplication

●  Building a massive training set of images.

●  Given a new image, is it already in my collection?

●  Don’t need to compare images pixel-by-pixel!

●  Instead, compare hashes.
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Hashing for Data Scientists

● Don’t need to know much about how the hash function 
works.

●  But should know how they are used.
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Hash Tables
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Membership Queries

●  Given: a collection of 𝑛 numbers and a target 𝑡.
●  Find: determine if 𝑡 is in the collection.
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Goal

● DATs are fast, but won’t work for things that aren’t numbers 
in a small range.

●  Idea: hash objects to numbers in a small range, use a DAT.

●  But must deal with collisions.
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Hash Tables

● Pick a table size 𝑚.
○ Usually 𝑚 ≈ number of things you’ll be storing.

● Create hash function to turn input into a number in {0, 1, … , 𝑚 − 1}.

● Create DAT with 𝑚 bins.
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Example
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Example

“hello”
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Example

“hello”“data”



❖

Example

“hello”“data” “science”



❖

Collisions

● The universe is the set of all possible inputs.

●  This is usually much larger than 𝑚 (even infinite).

●  Not possible to assign each input to a unique bin.

●  If hash(a) == hash(b), there is a collision.
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Example
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Example

“hello”“data”
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Example

“hello”
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Example

“hello”“data”
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Example

“hello”

“data” “science”



❖

Chaining

● Collisions stored in same bin, in linked list.

● Query: Hash to find bin, then linear search.
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Chaining

“hello”

“data” “science”

● Collisions stored in same bin, in linked list.

● Query: Hash to find bin, then linear search.



❖

The Idea

●  A good hash function will utilize all bins evenly.
○  Looks like uniform random distribution.

●  If 𝑚 ≈ 𝑛, then only a few elements in each bin.

● As we add more elements, we need to add bins.
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Average Case

●  𝑛 elements.

●  𝑚 bins.

●  Assume elements placed randomly (but deterministically) in 
bins.

●  Expected size of linked list inside the bin: 𝑛/𝑚.
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Analysis

●  Query:
○ Θ(1) to find bin (hashing step)
○ Θ(𝑛/𝑚) for a linear search in a list.
○ Total: Θ(1 + 𝑛/𝑚).   (𝑚 ≈ 𝑛)
○ We usually guarantee 𝑚 = 𝑂(𝑛) ⟹ Θ(1).
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Worst Case              mic

●  Everything hashed to same bin.
○  Really unlikely!
○  Adversarial attack (next slide)

●  Query:
○ Θ(1) to find bin
○ Θ(𝑛) for linear search
○ Total: Θ(𝑛)
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Adversarial attack: HashDoS attack  (back)

● A HashDoS attack targets systems that use hash tables by 
flooding them with keys that all hash to the same value.

● How?
○ Weak hash functions (like early implementations of 

hash() in some languages).
○ Unprotected hash maps in web servers, APIs, or 

input-parsing code.
○ By sending thousands of colliding inputs, they slow down 

or crash the system.
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Exercise

Exercise

What is the worst case time complexity of inserting an 
element into a hash table that uses chaining with linked lists?
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Growing the Hash Table

●  Insertions take Θ(1) unless the hash table needs to grow.

●  We need to ensure that 𝑚 ≤ 𝑐 ⋅ 𝑛.
○ Otherwise, too many collisions.

●  If we add a bunch of elements, we’ll need to increase 𝑚.

●  Increasing 𝑚 mean allocating a new array, Θ(m) = Θ(n) 
time.
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Main Idea

Hash tables support constant (expected) time insertion and 
membership queries.
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Dictionaries

● Hash tables can also be used to store (key, value) pairs.

● Often called dictionaries or associative arrays.
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Hashing in Python

●  dict and set implement hash tables.
●  Querying is done using in:
# make a set
>>> L = {3, 6, -2, 1, 7, 12}
>>> 1 in L             # Theta(1)
True

>>> 8 in L           # Theta(1)
False



❖

Hashing in Python

●  Querying is done using in:
# make a list
>>> L = [3, 6, -2, 1, 7, 12]
>>> 1 in L        # Theta(?)
True

>>> 8 in L       # Theta(?)
False



❖

Hashing in Python

●  Querying is done using in:
# make a list
>>> L = [3, 6, -2, 1, 7, 12]
>>> 1 in L        # Theta(n)
True

>>> 8 in L       # Theta(n)
False



❖

Do you have any questions?

Thank you!

CampusWire!


