
❖

DSC 40B
Lecture 13 : Binary

Search Trees

❖

Dynamic Sets

❖

Clothes

● How do you store your clothes?

❖

Clothes

● How do you store your clothes?

❖

Clothes

● How do you store your clothes?

❖

Clothes: Tradeoffs

● Messy:
○ No upfront cost.
○ Cost to search is high.

● Organized
○ Big upfront cost.
○ Cost to search is low.

● “Right” choice depends on how often we search.

❖

Data Structures and Algorithms

● Data structures are ways of organizing data to make certain
operations faster.

● Come with an upfront cost (preprocessing).

● “Right” choice of data structure depends on what operations
we’ll be doing in the future.

❖

Queries: Easy to Hard

● We’ve been thinking about queries.
○ Given a collection of data, is 𝑥 in the collection?

● Querying is a fundamental operation.
○ Useful in a data science sense.
○ But also frequently performed in algorithms.

● There are several situations to think about.

❖

Situation #1: Static Set, One Query

● Given: an unsorted collection of 𝑛 numbers (or strings, etc.).

● In future, you will be asked single query.

● Which is better: linear search or sort + binary search?

❖

Situation #1: Static Set, One Query

● Given: an unsorted collection of 𝑛 numbers (or strings, etc.).

● In future, you will be asked single query.

● Which is better: linear search or sort + binary search?

A: linear search

B: sort + binary search

C: both are equivalent

❖

Situation #1: Static Set, One Query

● Given: an unsorted collection of 𝑛 numbers (or strings, etc.).

● In future, you will be asked single query.

● Which is better: linear search or sort + binary search?

● Linear search: Θ(𝑛) worst case.

● Binary search would require sorting first in Θ(𝑛 log 𝑛) worst case

❖

Situation #2: Static Set, Many Queries

● Given: an unsorted collection of 𝑛 numbers (or strings, etc.).

● In future, you will be asked many queries.

● Which is better: linear search or sort + binary search?

A: linear search

B: sort + binary search

C: both are equivalent

D: Depends on the number of queries

❖

Situation #2: Static Set, Many Queries

● Given: an unsorted collection of 𝑛 numbers (or strings, etc.).

● In future, you will be asked many queries.

● Which is better: linear search or sort + binary search?

● Depends on number of queries!

❖

Exercise

● Suppose you have a static set of 𝑛 items. How long will it take* a to
perform 𝑘 queries in total with:
○ linear search?
○ sort + binary search?

● If 𝑘 = 𝑛/10, which should you use? What if 𝑘 = log 𝑛?

*On average. Assume the best case is rare.

❖

Exercise

● Suppose you have a static set of 𝑛 items. How long will it take* a to
perform 𝑘 queries in total with:
○ linear search?
○ sort + binary search?

● If 𝑘 = 𝑛/10, which should you use? What if 𝑘 = log 𝑛?

*On average. Assume the best case is rare.

❖

Exercise

● Suppose you have a static set of 𝑛 items. How long will it take* a to
perform 𝑘 queries in total with:
○ linear search?
○ sort + binary search?

Tlinear(n) = kn # to perform k searches using linear search.

❖

Exercise

● Suppose you have a static set of 𝑛 items. How long will it take* a to perform 𝑘
queries in total with:
○ linear search?
○ sort + binary search?

Tliner(n) = kn # to perform k searches using linear search.

TbinaryS(n) = n logn + k log n # to perform k searches using binary search.

❖

Exercise, k = n/10
● Suppose you have a static set of 𝑛 items. How long will it take* a to perform 𝑘 queries

in total with:
○ linear search?
○ sort + binary search?

Tliner(n) = kn # to perform k searches using linear search.

TbinaryS(n) = n logn + k log n # to perform k searches using binary search.

A: linear search

B: sort + binary search

C: both are equivalent

❖

Exercise, k = n/10
● Suppose you have a static set of 𝑛 items. How long will it take* a to perform 𝑘 queries

in total with:
○ linear search?
○ sort + binary search?

Tliner(n) = kn # to perform k searches using linear search.

TbinaryS(n) = n logn + k log n # to perform k searches using binary search.

Tliner(n) = n2/10 vs TbinaryS(n) = n logn + n /10 * logn

❖

Exercise, k = log n
● Suppose you have a static set of 𝑛 items. How long will it take* a to perform 𝑘 queries

in total with:
○ linear search?
○ sort + binary search?

Tliner(n) = kn # to perform k searches using linear search.

TbinaryS(n) = n logn + k log n # to perform k searches using binary search.

Tliner(n) = n logn vs TbinaryS(n) = n logn + logn * logn

❖

Situation #3: Dynamic Set, Many Queries

● Given: a collection of 𝑛 numbers (or strings, etc.).

● In future, you will be asked many queries and to insert
new elements.

● Best approach: ?

❖

Situation #3: Dynamic Set, Many Queries

● Given: a collection of 𝑛 numbers (or strings, etc.).

● In future, you will be asked many queries and to insert
new elements.

● Best approach: ?

❖

Binary Search?

● Can we still use binary search?

● Problem: To use binary search, we must maintain array in
sorted order as we insert new elements.

● Inserting into array takes Θ(𝑛) time in worst case.
○ Must “make room” for new element.
○ Can we use linked list with binary search?

❖

Midterm: mic

● Up to (including) this lecture
● This classroom
● Same time as a the class time.

❖

Last Lecture:

● Given: a collection of 𝑛 numbers (or strings, etc.).

● Dynamic: we can add/remove elements

● Queries:, you will be asked many queries

● Best approach: ?

❖

Last Lecture:

● Given: a collection of 𝑛 numbers (or strings, etc.).

● Dynamic: we can add/remove elements

● Queries:, you will be asked many queries

● Approaches:

○ Linear Search -> not efficient with many searches.

○ Sort + binary search -> the set is changing, need to
re-sort every time.

❖

Today:

● Introduce (or review) binary search trees.

● BSTs support fast queries and insertions and deletions.

● Preserve sorted order of data after insertion.

● Can be modified to solve many problems efficiently.
○ Example: finding order statistics.

❖

Binary Search Trees

❖

Trees

❖

Binary Trees
 Each node has at most two children (left and right).

❖

Binary Search Tree

● A binary search tree (BST) is a binary tree that satisfies the
following for any node x:

● if y is in 𝑥’s left subtree:
 y.key ≤ x.key

● if y is in 𝑥’s right subtree:
 y.key ≥ x.key

❖

Assumption (for simplicity)

● We’ll assume keys are unique (no duplicates).

● if y is in 𝑥’s left subtree:

y.key < x.key

● if y is in 𝑥’s right subtree:

y.key > x.key

❖

Example: This is a BST.

❖

Example: not a BST

❖

Think: Is this is a BST?

A: Yes

B: No

C: Maybe

D: Not paying attention

❖

Height

● The height of a tree is the number of edges on the
longest path from the root to a leaf.

● Suppose a binary tree has 𝑛 nodes.

● The tallest it can be is ≈ 𝑛
● The shortest it can be is ≈ ?

A: 1

B: log n

C: n

D: n log n

❖

Height

● The height of a tree is the number of edges on the
longest path from the root to a leaf.

● Suppose a binary tree has 𝑛 nodes.

● The tallest it can be is ≈ 𝑛
● The shortest it can be is ≈ log2 𝑛

❖

In Python

❖

In Python
50

❖

In Python
50

❖

In Python

 43

20

82

❖

Queries and Insertions in
BSTs

❖

Why?

● BSTs impose structure on data.

● “Not quite sorted”.

● Preprocessing for making insertions and queries faster.

❖

Operations on BSTs

● We will want to:
○ query a key (is it in the tree?)
○ insert a new key

❖

Queries

● Given: a BST and a target, 𝑡.

● Return: True or False, is the target in the collection?

❖

Queries: 36, 65, 23?

❖

Queries: 36, 65, 23?

❖

Queries: 36, 65, 23?

❖

Queries: 36, 65, 23?

❖

Queries: 36, 65, 23?

❖

Queries: 65, 23?

❖

Queries: 65, 23?

❖

Queries: 65, 23?

❖

Queries: 23?

❖

Queries: 23?

❖

Queries: 23?

❖

Queries: 23?

❖

Queries: 23? No!

❖

Queries

● Start walking from root.

● If current node is:

○ equal to target, return True;

○ too large (> target), follow left edge;

○ too small (< target), follow right edge;

○ None, return False

❖

Queries, in Python

❖

Exercise: complete

def query_recursive(node, target):
if node is None:

return False
if node.key == target:

...
elif ...

...
else ...

...

❖

Exercise: complete

def query_recursive(node, target):
if node is None:

return False
if node.key == target:

return True
elif ...

...
else ...

...

❖

Exercise: complete

def query_recursive(node, target):
if node is None:

return False
if node.key == target:

return True
elif node.key < target:

...
else ...

...

❖

Exercise: complete

def query_recursive(node, target):
if node is None:

return False
if node.key == target:

return True
elif node.key < target:

return query_recursive(?, target)
else ...

...

❖

Exercise: complete

def query_recursive(node, target):
if node is None:

return False
if node.key == target:

return True
elif node.key < target:

return query_recursive(node.right, target)
else ...

...

❖

Exercise: complete

def query_recursive(node, target):
if node is None:

return False
if node.key == target:

return True
elif node.key < target:

return query_recursive(node.right, target)
else:

...

❖

Exercise: complete

def query_recursive(node, target):
if node is None:

return False
if node.key == target:

return True
elif node.key < target:

return query_recursive(node.right, target)
else:

return query_recursive(node.left, target)

❖

Queries (Recursive)

❖

Queries, Analyzed

● Best case: Θ(1).

● Worst case: Θ(ℎ), where ℎ is height of tree.

❖

Insertion

❖

Insertion

● Given: a BST and a new key, 𝑘.

● Modify: the BST, inserting 𝑘.
● Must maintain the BST properties.

❖

Insert 23 into the BST.

❖

Insert 23 into the BST.

❖

Insert 23 into the BST.

❖

Insert 23 into the BST.

❖

Insert 23 into the BST.

23

❖

Insertion (The Idea)

● Traverse the tree as in query to find empty spot where new key
should go, keeping track of last node seen.

● Create new node; make last node seen the parent, update
parent’s children.

● Be careful about inserting into empty tree!

❖

❖

Insertion, Analyzed

● Worst case: Θ(ℎ), where ℎ is height of tree.

❖

Main Idea

Querying and insertion take Θ(ℎ) time in the worst case,
where ℎ is the height of the tree.

❖

Balanced and Unbalanced
BSTs

❖

Binary Tree Height

● In case of very balanced tree, ℎ = Θ(log 𝑛).
○ Query, insertion take worst case Θ(log 𝑛) time in a

balanced tree.

❖

Binary Tree Height

● In the case of very unbalanced tree, ℎ = Θ(𝑛).
○ Query, insertion take worst case Θ(𝑛) time in a

unbalanced tree.

❖

Unbalanced Trees

● Occurs if we insert items in (close to) sorted or reverse sorted
order.

● This is a common situation.

❖

Example

● Flight schedules — airline departure/arrival times are often listed
in chronological order: 7:00, 8:00, 10:00, 13:00 ….

● Insert 7, 8, 10, 13 (in that order).

❖

Example

● Flight schedules — airline departure/arrival times are often listed
in chronological order: 7:00, 8:00, 10:00, 13:00 ….

● Insert 7, 8, 10, 13 (in that order).

7

❖

Example

● Flight schedules — airline departure/arrival times are often listed
in chronological order: 7:00, 8:00, 10:00, 13:00 ….

● Insert 7, 8, 10, 13 (in that order).

7

8

❖

Example

● Flight schedules — airline departure/arrival times are often listed
in chronological order: 7:00, 8:00, 10:00, 13:00 ….

● Insert 7, 8, 10, 13 (in that order).

7

8

10

❖

Example

● Flight schedules — airline departure/arrival times are often listed
in chronological order: 7:00, 8:00, 10:00, 13:00 ….

● Insert 7, 8, 10, 13 (in that order).

7

8

10

13

❖

Time Complexities

● query Θ(ℎ)
● insertion Θ(ℎ)

● Where ℎ is height, and ℎ = Ω(log 𝑛) and ℎ = 𝑂(𝑛).

❖

Time Complexities: (Balanced)

● query Θ(log 𝑛)
● insertion Θ(log 𝑛)

● Where ℎ is height, and ℎ = Ω(log 𝑛) and ℎ = 𝑂(𝑛).

❖

Worst Case Time Complexities
(Unbalanced)

query Θ(𝑛)
insertion Θ(𝑛)

● The worst case is bad.
○ Worse than using a sorted array!

● The worst case is not rare.

❖

Main Idea

The operations take linear time in the worst case unless we
can somehow ensure that the tree is balanced.

❖ Self-Balancing Trees

❖

Self-Balancing Trees

● There are variants of BSTs that are self-balancing.
○ Red-Black Trees, AVL Trees, etc.

● Quite complicated to implement correctly.

● But their height is guaranteed to be ∼ log 𝑛.
● So insertion, query take Θ(log 𝑛) in worst case.

❖

Quick Visualization: B-trees

https://docs.google.com/file/d/11F8-HZyI4HAevnx59ybO-QOMxlynMSU5/preview

❖

Warning

If asked for the time complexity of a BST operation, be careful!

A common mistake is to say that insertion/query are Θ(log 𝑛)
without being told that the tree is balanced.

❖

Main Idea

In general, insertion/query take Θ(ℎ) time in worst case.

- If tree is balanced, ℎ = Θ(log 𝑛), so they take Θ(log 𝑛) time.
- If tree is badly unbalanced, ℎ = 𝑂(𝑛), and they can take 𝑂(𝑛)

time.

❖

Augmenting BSTs

❖

Modifying BSTs

● Perhaps more than most other data structures, BSTs must
be modified (augmented) to solve unique problems.

❖

Order Statistics

● Given 𝑛 numbers, the 𝑘th order statistic is the 𝑘th smallest
number in the collection.

❖

Dynamic Set, Many Order Statistics

● Quickselect finds any order statistic in linear expected time.

● This is efficient for a static set.

● Inefficient if set is dynamic.

❖

Goal

● Create a dynamic set data structure that supports fast
computation of any order statistic.

❖

BST Solution

● For each node, keep attribute .size, containing #of
nodes in subtree rooted at current node:

● Property:
x.size = x.left.size + x.right.size + 1

If a left or right child doesn’t exist, consider its size zero.

❖

BST Solution

Property:
x.size = x.left.size + x.right.size + 1

❖

BST Solution

Property:
x.size = x.left.size + x.right.size + 1

 1 1

❖

BST Solution

Property:
x.size = x.left.size + x.right.size + 1

 1 1

 3

❖

BST Solution

Property:
x.size = x.left.size + x.right.size + 1

 1 1

 3

4

❖

BST Solution

Property:
x.size = x.left.size + x.right.size + 1

 1 1

 3

4 1

❖

BST Solution

Property:
x.size = x.left.size + x.right.size + 1

 1 1

 3

4 1

6

❖

Computing Sizes

❖

Note

● Also need to maintain size upon inserting a node.

❖

Computing Order Statistics: 8th? 2nd?
12th

❖

Augmenting Data Structures

● This is just one example, but many more.

● Understanding how BSTs work is key to augmenting them.

❖

Do you have any questions?

Thank you!

CampusWire!

