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Clothes

●  How do you store your clothes?
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Clothes: Tradeoffs

●  Messy:
○ No upfront cost.
○ Cost to search is high.

●  Organized
○ Big upfront cost.
○ Cost to search is low.

●  “Right” choice depends on how often we search.



❖

Data Structures and Algorithms

● Data structures are ways of organizing data to make certain 
operations faster.

●  Come with an upfront cost (preprocessing).

●  “Right” choice of data structure depends on what operations 
we’ll be doing in the future.



❖

Queries: Easy to Hard

● We’ve been thinking about queries.
○ Given a collection of data, is 𝑥 in the collection?

● Querying is a fundamental operation.
○ Useful in a data science sense.
○ But also frequently performed in algorithms.

● There are several situations to think about.



❖

Situation #1: Static Set, One Query

●  Given: an unsorted collection of 𝑛 numbers (or strings, etc.).

●  In future, you will be asked single query.

●  Which is better: linear search or sort + binary search?
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Situation #1: Static Set, One Query

●  Given: an unsorted collection of 𝑛 numbers (or strings, etc.).

●  In future, you will be asked single query.

●  Which is better: linear search or sort + binary search?

● Linear search: Θ(𝑛) worst case.

● Binary search would require sorting first in Θ(𝑛 log 𝑛) worst case



❖

Situation #2: Static Set, Many Queries

●  Given: an unsorted collection of 𝑛 numbers (or strings, etc.).

●  In future, you will be asked many queries.

●  Which is better: linear search or sort + binary search?

A:  linear search

B:  sort + binary search

C:  both are equivalent

D: Depends on the number of queries
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Situation #2: Static Set, Many Queries

●  Given: an unsorted collection of 𝑛 numbers (or strings, etc.).

●  In future, you will be asked many queries.

●  Which is better: linear search or sort + binary search?

●  Depends on number of queries!



❖

Exercise

● Suppose you have a static set of 𝑛 items. How long will it take* a to 
perform 𝑘 queries in total with:
○ linear search?
○ sort + binary search?

● If 𝑘 = 𝑛/10, which should you use? What if 𝑘 = log 𝑛?

*On average. Assume the best case is rare.
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Exercise

● Suppose you have a static set of 𝑛 items. How long will it take* a to 
perform 𝑘 queries in total with:
○ linear search?
○ sort + binary search?

Tlinear(n) = kn  # to perform k searches  using linear search. 
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Exercise

● Suppose you have a static set of 𝑛 items. How long will it take* a to perform 𝑘 
queries in total with:
○ linear search?
○ sort + binary search?

Tliner(n) = kn  # to perform k searches  using linear search. 

TbinaryS(n) = n logn + k log n # to perform k searches  using binary search.
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Exercise, k = n/10
● Suppose you have a static set of 𝑛 items. How long will it take* a to perform 𝑘 queries 

in total with:
○ linear search?
○ sort + binary search?

Tliner(n) = kn  # to perform k searches  using linear search. 

TbinaryS(n) = n logn + k log n # to perform k searches  using binary search.

A:  linear search

B:  sort + binary search

C:  both are equivalent
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Exercise, k = n/10
● Suppose you have a static set of 𝑛 items. How long will it take* a to perform 𝑘 queries 

in total with:
○ linear search?
○ sort + binary search?

Tliner(n) = kn  # to perform k searches  using linear search. 

TbinaryS(n) = n logn + k log n # to perform k searches  using binary search.

Tliner(n) = n2/10    vs   TbinaryS(n) = n logn + n /10 * logn



❖

Exercise, k = log n
● Suppose you have a static set of 𝑛 items. How long will it take* a to perform 𝑘 queries 

in total with:
○ linear search?
○ sort + binary search?

Tliner(n) = kn  # to perform k searches  using linear search. 

TbinaryS(n) = n logn + k log n # to perform k searches  using binary search.

Tliner(n) = n logn    vs   TbinaryS(n) = n logn + logn * logn
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Situation #3: Dynamic Set, Many Queries

● Given: a collection of 𝑛 numbers (or strings, etc.).

● In future, you will be asked many queries and to insert 
new elements.

● Best approach: ?
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Situation #3: Dynamic Set, Many Queries

● Given: a collection of 𝑛 numbers (or strings, etc.).

● In future, you will be asked many queries and to insert 
new elements.

● Best approach: ?



❖

Binary Search?

●  Can we still use binary search?

●  Problem: To use binary search, we must maintain array in 
sorted order as we insert new elements.

●  Inserting into array takes Θ(𝑛) time in worst case.
○ Must “make room” for new element.
○ Can we use linked list with binary search?
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Midterm:   mic

● Up to (including) this lecture
● This classroom
● Same time as a the class time. 
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Last Lecture:

● Given: a collection of 𝑛 numbers (or strings, etc.).

● Dynamic: we can add/remove elements

● Queries:, you will be asked many queries 

● Best approach: ?
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Last Lecture:

● Given: a collection of 𝑛 numbers (or strings, etc.).

● Dynamic: we can add/remove elements

● Queries:, you will be asked many queries 

● Approaches: 

○ Linear Search -> not efficient with many searches. 

○ Sort + binary search -> the set is changing, need to 
re-sort every time. 



❖

Today:

●  Introduce (or review) binary search trees.

●  BSTs support fast queries and insertions and deletions.

●  Preserve sorted order of data after insertion.

●  Can be modified to solve many problems efficiently.
○ Example: finding order statistics.
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Binary Search Trees
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Trees



❖

Binary Trees
 Each node has at most two children (left and right).



❖

Binary Search Tree

●  A binary search tree (BST) is a binary tree that satisfies the 
following for any node x:

●  if y is in 𝑥’s left subtree: 
                         y.key ≤ x.key

●  if y is in 𝑥’s right subtree: 
                          y.key ≥ x.key



❖

Assumption (for simplicity)

●  We’ll assume keys are unique (no duplicates).

●  if y is in 𝑥’s left subtree:

y.key < x.key

●  if y is in 𝑥’s right subtree:

y.key > x.key
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Example: This is a BST.
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Example: not a BST
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Think: Is this is a BST?

A:  Yes

B:  No
 
C:  Maybe

D: Not paying attention



❖

Height

● The height of a tree is the number of edges on the 
longest path from the root to a leaf.

●  Suppose a binary tree has 𝑛 nodes.

●  The tallest it can be is ≈ 𝑛
●  The shortest it can be is ≈ ?

A:  1

B:  log n

C:   n

D:  n log n



❖

Height

● The height of a tree is the number of edges on the 
longest path from the root to a leaf.

●  Suppose a binary tree has 𝑛 nodes.

●  The tallest it can be is ≈ 𝑛
●  The shortest it can be is ≈ log2 𝑛
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In Python
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In Python

 43

20

82
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Queries and Insertions in 
BSTs



❖

Why?

●  BSTs impose structure on data.

●  “Not quite sorted”.

●  Preprocessing for making insertions and queries faster.



❖

Operations on BSTs

●  We will want to:
○ query a key (is it in the tree?)
○ insert a new key



❖

Queries

●  Given: a BST and a target, 𝑡.

●  Return: True or False, is the target in the collection?
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Queries: 36, 65, 23?
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Queries: 23?



❖

Queries: 23?  No!



❖

Queries

●  Start walking from root.

●  If current node is:

○ equal to target, return True;

○ too large (> target), follow left edge;

○ too small (< target), follow right edge;

○ None, return False



❖

Queries, in Python



❖

Exercise: complete

def query_recursive(node, target):
if node is None:

return False
if node.key == target:

...
elif ...

...
else ...

...
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def query_recursive(node, target):
if node is None:

return False
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return True
elif ...

...
else ...

...
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Exercise: complete

def query_recursive(node, target):
if node is None:

return False
if node.key == target:

return True
elif node.key < target:

...
else ...

...
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Exercise: complete

def query_recursive(node, target):
if node is None:

return False
if node.key == target:

return True
elif node.key < target:

return query_recursive(?, target)
else ...

...
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Exercise: complete

def query_recursive(node, target):
if node is None:

return False
if node.key == target:

return True
elif node.key < target:

return query_recursive(node.right, target)
else ...

...
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Exercise: complete

def query_recursive(node, target):
if node is None:

return False
if node.key == target:

return True
elif node.key < target:

return query_recursive(node.right, target)
else:

...



❖

Exercise: complete

def query_recursive(node, target):
if node is None:

return False
if node.key == target:

return True
elif node.key < target:

return query_recursive(node.right, target)
else:

return query_recursive(node.left, target)



❖

Queries (Recursive)



❖

Queries, Analyzed

●  Best case: Θ(1).

●  Worst case: Θ(ℎ), where ℎ is height of tree.
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Insertion
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Insertion

● Given: a BST and a new key, 𝑘.

● Modify: the BST, inserting 𝑘.
● Must maintain the BST properties.
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Insert 23 into the BST.
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Insert 23 into the BST.

23



❖

Insertion (The Idea)

●  Traverse the tree as in query to find empty spot where new key 
should go, keeping track of last node seen.

●  Create new node; make last node seen the parent, update 
parent’s children.

●  Be careful about inserting into empty tree!



❖



❖

Insertion, Analyzed

●  Worst case: Θ(ℎ), where ℎ is height of tree.



❖

Main Idea

Querying and insertion take Θ(ℎ) time in the worst case, 
where ℎ is the height of the tree.



❖

Balanced and Unbalanced 
BSTs
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Binary Tree Height

●  In case of very balanced tree, ℎ = Θ(log 𝑛).
○ Query, insertion take worst case Θ(log 𝑛) time in a 

balanced tree.
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Binary Tree Height

● In the case of very unbalanced tree, ℎ = Θ(𝑛).
○ Query, insertion take worst case Θ(𝑛) time in a 

unbalanced tree.



❖

Unbalanced Trees

● Occurs if we insert items in (close to) sorted or reverse sorted 
order.

●  This is a common situation.
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Example

● Flight schedules — airline departure/arrival times are often listed 
in chronological order: 7:00, 8:00, 10:00, 13:00 ….

● Insert 7, 8, 10, 13 (in that order).
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● Insert 7, 8, 10, 13 (in that order).

7
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Example

● Flight schedules — airline departure/arrival times are often listed 
in chronological order: 7:00, 8:00, 10:00, 13:00 ….

● Insert 7, 8, 10, 13 (in that order).

7

8
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Example

● Flight schedules — airline departure/arrival times are often listed 
in chronological order: 7:00, 8:00, 10:00, 13:00 ….

● Insert 7, 8, 10, 13 (in that order).

7

8

10
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Example

● Flight schedules — airline departure/arrival times are often listed 
in chronological order: 7:00, 8:00, 10:00, 13:00 ….

● Insert 7, 8, 10, 13 (in that order).

7

8

10

13



❖

Time Complexities

● query Θ(ℎ)
● insertion Θ(ℎ)

● Where ℎ is height, and ℎ = Ω(log 𝑛) and ℎ = 𝑂(𝑛).
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Time Complexities: (Balanced)

● query Θ(log 𝑛)
● insertion Θ(log 𝑛)

● Where ℎ is height, and ℎ = Ω(log 𝑛) and ℎ = 𝑂(𝑛).
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Worst Case Time Complexities
(Unbalanced)

query Θ(𝑛)
insertion Θ(𝑛)

● The worst case is bad.
○ Worse than using a sorted array!

● The worst case is not rare.
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Main Idea

The operations take linear time in the worst case unless we 
can somehow ensure that the tree is balanced.



❖ Self-Balancing Trees
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Self-Balancing Trees

● There are variants of BSTs that are self-balancing.
○ Red-Black Trees, AVL Trees, etc.

●  Quite complicated to implement correctly.

●  But their height is guaranteed to be ∼ log 𝑛.
●  So insertion, query take Θ(log 𝑛) in worst case.
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Quick Visualization: B-trees

https://docs.google.com/file/d/11F8-HZyI4HAevnx59ybO-QOMxlynMSU5/preview


❖

Warning

If asked for the time complexity of a BST operation, be careful! 

A common mistake is to say that insertion/query are Θ(log 𝑛) 
without being told that the tree is balanced.
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Main Idea

In general, insertion/query take Θ(ℎ) time in worst case.

- If tree is balanced, ℎ = Θ(log 𝑛), so they take Θ(log 𝑛) time. 
- If tree is badly unbalanced, ℎ = 𝑂(𝑛), and they can take 𝑂(𝑛) 

time.
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Augmenting BSTs
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Modifying BSTs

● Perhaps more than most other data structures, BSTs must 
be modified (augmented) to solve unique problems.



❖

Order Statistics

● Given 𝑛 numbers, the 𝑘th order statistic is the 𝑘th smallest 
number in the collection.
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Dynamic Set, Many Order Statistics

● Quickselect finds any order statistic in linear expected time.

● This is efficient for a static set.

● Inefficient if set is dynamic.



❖

Goal

● Create a dynamic set data structure that supports fast 
computation of any order statistic.



❖

BST Solution

● For each node, keep attribute .size, containing #of 
nodes in subtree rooted at current node:

● Property:
x.size = x.left.size + x.right.size + 1

If a left or right child doesn’t exist, consider its size zero.



❖

BST Solution

Property:
x.size = x.left.size + x.right.size + 1
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BST Solution

Property:
x.size = x.left.size + x.right.size + 1

    1   1
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Property:
x.size = x.left.size + x.right.size + 1

    1   1
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4 1
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BST Solution

Property:
x.size = x.left.size + x.right.size + 1

    1   1

    3

4 1

6
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Computing Sizes
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Note

●  Also need to maintain size upon inserting a node.



❖

Computing Order Statistics: 8th? 2nd? 
12th



❖

Augmenting Data Structures

● This is just one example, but many more.

● Understanding how BSTs work is key to augmenting them.



❖

Do you have any questions?

Thank you!

CampusWire!


