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Clothes: Tradeoffs

e Messy:
o No upfront cost.
o Cost to search is high.

e Organized
o Big upfront cost.
o Cost to search is low.

e "Right” choice depends on how often we search.
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Data Structures and Algorithms

e Data structures are ways of organizing data to make certain
operations faster.

e Come with an upfront cost (preprocessing).

e "Right” choice of data structure depends on what operations
we'll be doing in the future.
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Queries: Easy to Hard

e \We’'ve been thinking about queries.
o Given a collection of data, is x in the collection?

e Querying is a fundamental operation.
o Useful in a data science sense.
o But also frequently performed in algorithms.

e There are several situations to think about.
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Situation #1: Static Set, One Query

e Given: an unsorted collection of n numbers (or strings, etc.).
In future, you will be asked single query.

Which is better: linear search or sort + binary search?
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Situation #1: Static Set, One Query

e Given: an unsorted collection of n numbers (or strings, etc.).

In future, you will be asked single query.
Which is better: linear search or sort + binary search?

A: linear search
B: sort + binary search

C: both are equivalent
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Situation #1: Static Set, One Query

e Given: an unsorted collection of n numbers (or strings, etc.).
In future, you will be asked single query.

Which is better: linear search or sort + binary search?

Linear search: @(n) worst case.

Binary search would require sorting first in ©(n log n) worst case
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Situation #2: Static Set, Many Queries

e Given: an unsorted collection of n numbers (or strings, etc.).
In future, you will be asked many queries.
e Which is better: 1inear search or sort + binary search?

A: linear search

: sort + binary search

B
C: both are equivalent
D

: Depends on the number of queries
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Situation #2: Static Set, Many Queries

Given: an unsorted collection of n numbers (or strings, etc.).
In future, you will be asked many queries.

Which is better: 1inear search or sort + binary search?

Depends on number of queries!
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Exercise

~ @ Suppose you have a static set of n items. How long will it take® a to
perform k queries in total with:
o linear search?
o sort + binary search?

e If k = n/10, which should you use? What if k = log n?

'!.'f"f'!"!."!'

=i'. *On average. Assume the best case is rare.
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Exercise

~ @ Suppose you have a static set of n items. How long will it take® a to
perform k queries in total with:
o linear search?
o sort + binary search?

(n) = kn # to perform k searches using linear search.

linear

11113999

T ————
.............................



Exercise

e Suppose you have a static set of n items. How long will it take™ a to perform k
queries in total with:
o linear search?
o sort + binary search?

T, _(n) = kn # to perform k searches using linear search.

liner

CCCCee

.. T = n logn + k log n # to perform k searches using binary search.
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.I-’ Exercise, k = n/10
. e Suppose you have a static set of n items. How long will it take® a to perform k queries
. in total with:

o linear search?

o sort + binary search?
=i T, .(n) =kn # to perform k searches using linear search.

=PTbmaryS(n) = n logn + k log n # to perform k searches using binary search.

A: linear search
.i) B: sort + binary search
= C: both are equivalent
T —————————
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.I-’ Exercise, k = n/10
. e Suppose you have a static set of n items. How long will it take® a to perform k queries
. in total with:

o linear search?

o sort + binary search?
=i T, .(n) =kn # to perform k searches using linear search.

=PTbmaryS(n) = n logn + k log n # to perform k searches using binary search.

.= Ilner
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=n%/10 vs T (n) = nlogn + n /10 * logn
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.I-’ Exercise, k = log n
. e Suppose you have a static set of n items. How long will it take® a to perform k queries
. in total with:

o linear search?

o sort + binary search?
=i T, .(n) =kn # to perform k searches using linear search.

=PTbmaryS(n) = n logn + k log n # to perform k searches using binary search.

=pTI|ner(n) =nlogn vs T
= Nl
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binaryS(n) = n logn + logn * logn




Situation #3: Dynamic Set, Many Queries

Given: 3 collection of n numbers (or strings, etc.).

In future, you will be asked many queries and to insert
new elements.

Best approach: ?
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Situation #3: Dynamic Set, Many Queries

Given: 3 collection of n numbers (or strings, etc.).

In future, you will be asked many queries and to insert
new elements.

Best approach: ?
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Binary Search?

e (Can we still use binary search?

e Problem: To use binary search, we must maintain array in
sorted order as we insert new elements.

e Inserting into array takes ©(n) time in worst case.
o Must "make room” for new element.
o Can we use linked list with binary search?
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Midterm: mic

e Up to (including) this lecture
e This classroom
e Same time as a the class time.
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Last Lecture:

Given: 3 collection of n numbers (or strings, etc.).
Dynamic: we can add/remove elements

Queries:, you will be asked many queries

Best approach: ?
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Last Lecture:

Given: a collection of n numbers (or strings, etc.).
Dynamic: we can add/remove elements

Queries:, you will be asked many queries
Approaches:

o Linear Search -> not efficient with many searches.

o Sort + binary search -> the set is changing, need to
re-sort every time.

133193149

T ————
.............................



Today:

e Introduce (or review) binary search trees.
e BSTs support fast queries and insertions and deletions.
e Preserve sorted order of data after insertion.

e (Can be modified to solve many problems efficiently.
o Example: finding order statistics.
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.I-’ Binary Trees

'Each node has at most two children (left and right).
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Binary Search Tree

e A binary search tree (BST) is a binary tree that satisfies the
following for any node x:

e ifyisinux’s left subtree:
y.key = x.key

e ifyisinx’s right subtree:
y.key 2 x.key
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.I.__.
= Assumption (for simplicity)

e We'll assume keys are unique (no duplicates).

e ifyisinx’'sleft subtree:

y.key < x.key

.P e ifyisinx’s right subtree:
y.key > x.key
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Example: This is a BST.
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- Example: not a BST

T ————
e



Think: Is this is a BST?

: No
: Maybe

: Not paying attention
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Height

The height of a tree is the number of edges on the
longest path from the root to a leaf.

Suppose a binary tree has n nodes.
The tallest it can beis = n

The shortest it can beis = ?

N

P > nlogn
= =
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Height

The height of a tree is the number of edges on the
longest path from the root to a leaf.

Suppose a binary tree has n nodes.
The tallest it can beis = n

The shortest it can be is = log, n

="’ =8
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.I.__. In Python

.t class Node:
def __init__(self, key, parent=None):

P self.right = None

class BinarySearchTree:

def __init__ (self, root: Node):
l—. self.root = root
T T ——————
.............................

. self.key = key

. self.parent = parent
. self.left = None

o
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.I.__. In nyhon @

.t class Node:
def __init__(self, key, parent=None):

P self.right = None

class BinarySearchTree:

def __init__ (self, root: Node):
l—. self.root = root
T T ——————
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. self.key = key

. self.parent = parent
. self.left = None
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| 0
=I..) n Python -
0
=

li: ‘
N

root = Node(43)

ni1 = Node(20, parent=root)
root.left = n1

n2 = Node(s2, parent=root)
root.right = n2

tree = BinarySearchTree(root)

T ————
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Queries and Insertions in
BSTs
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e BSTs impose structure on data.

e “Not quite sorted”.

e Preprocessing for making insertions and queries faster.
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o query a key (is it in the tree?)
o insert a3 new key

We will want to:

Operafions on BSTs




Queries

e Given: 3 BST and a target, +.

e Return: True or False, is the target in the collection?
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.I..) Queries: 36, 65, 23? I-.
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.I..) Queries: 65, 23? -
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Queries

e Start walking from root.
e |f current node is:
o equal to target, return True;
o too large (> target), follow left edge;

o too small (< target), follow right edge;

o None, return False

= T —— T ———
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def query(self, target):
"""As method of BinarySearchTree.
current_node = self.root
while current_node 1s not None:
if current_node.key == target:
return current_node
elif current_node.key < target:
current_node = current_node.right
else:
current_node = current_node.left
return None

nrnn
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.I._’
B Exercise: complete

def query_recursive(node, target):
if node is None:
return False
if node.key == target:

.I RN
elsé.:..
= L
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.I._’
B Exercise: complete

def query_recursive(node, target):
if node is None:
return False
if node.key == target:
return True

.I elif ...
elsé.:..
= L
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.I._’
B Exercise: complete

def query_recursive(node, target):
if node is None:
return False
if node.key == target:
return True

.I elif node.key < target:
elsé.:..
= L
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.I._’
B Exercise: complete

def query_recursive(node, target):
if node is None:
return False
if node.key == target:
return True

. elif node.key < target:
return query_recursive(?, target)

else ...
= L
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.I._’
B Exercise: complete

def query_recursive(node, target):
if node is None:
return False
if node.key == target:
return True

. elif node.key < target:
return query_recursive(node.right, target)

else ...
= L
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.I._’
B Exercise: complete

def query_recursive(node, target):
if node is None:
return False
if node.key == target:
return True

. elif node.key < target:
return query_recursive(node.right, target)

else:
= L
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.I)
B Exercise: complete

def query_recursive(node, target):
if node is None:
return False
if node.key == target:
return True

. elif node.key < target:
return query_recursive(node.right, target)

else:
= L

return query_recursive(node.left, target)
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=I..) Queries (Recursive)

def query_recursive(node, target):
N Ae 4 "rred Funetion' .
if node is None:
return False

if node.key == target:

return node
elif node.key < target:

return query_recursive(node.right, target)
else:

= return query_recursive(node.left, target)
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e Worst case: O(h), where h is height of tree.

Queries, Analyzed

e Best case: O(1).
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Insertion
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Insertion

e Given: a BST and a new key, k.

e Modify: the BST, inserting k.

e Must maintain the BST properties.
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.I..) Insert 23 into the BST.
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.I'-’ Insert 23 into the BST. -

0
mud I
IIIIIIIIIIIIIIIIIIIIIIIIIIIIII




---------------------------

.I'-’ Insert 23 into the BST. -

0
mud I
IIIIIIIIIIIIIIIIIIIIIIIIIIIIII




---------------------------

.I'-’ Insert 23 into the BST. -




Insertion (The Idea)

e Traverse the tree as in query to find empty spot where new key
should go, keeping track of last node seen.

e Create new node; make last node seen the parent, update
parent’s children.

Be careful about inserting into empty tree!

ceecccce
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- ! | | | .
def insert(self, new_key): .
# assume new_key is unique
current_node = self.root
parent = None

NN
N I I -

# find place to insert the new node
while current_node is not None:
parent = current_node
if current_node.key < new_key:
current_node = current_node.right

else: # current_node.key > new_key
current_node = current_node.left

# create the new node
new_node = Node(key=new_key, parent=parent)

# if parent is None, this is the root. Otherwise, update the
# parent's left or right child as appropriate
if parent is None:
self.root = new_node
elif parent.key < new_key:
parent.right = new_node
else:
parent.left = new_node

ceecccce
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e Worst case: O(h), where h is height of tree.

Insertion, Analyzed
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Main Idea

Querying and insertion take ©(h) time in the worst case,
where & is the height of the tree.

133193149

T ————
.............................



93322290

Balanced and Unbalanced
BSTs
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Binary Tree Height

- ® |In case of very balanced tree, h = O(log n).
o Query, insertion take worst case O(log »n) time in 3
balanced tree.

= ik S
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.I._’
B Binary Tree Helght

- o In the case of very unbalanced tree, h = O(n).
o Query, insertion take worst case O(n) time in a
unbalanced tree.

o
< =8
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Unbalanced Trees

e OQOccurs if we insert items in (close to) sorted or reverse sorted
order.

e This is a3 common situation.
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.I-’ Example

~ @ Flight schedules — airline departure/arrival times are often listed
in chronological order: 7:00, 8:00, 10:00, 13:00 ..
e Insert 7,8, 10, 13 (in that order).

o
< =8
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.I-’ Example

~ @ Flight schedules — airline departure/arrival times are often listed
in chronological order: 7:00, 8:00, 10:00, 13:00 ..
e Insert 7,8, 10, 13 (in that order).
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.I-’ Example

~ @ Flight schedules — airline departure/arrival times are often listed
in chronological order: 7:00, 8:00, 10:00, 13:00 ..
e Insert 7,8, 10, 13 (in that order).
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.I-’ Example

~ @ Flight schedules — airline departure/arrival times are often listed
in chronological order: 7:00, 8:00, 10:00, 13:00 ..
e Insert 7,8, 10, 13 (in that order).
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.I-’ Example

~ @ Flight schedules — airline departure/arrival times are often listed
in chronological order: 7:00, 8:00, 10:00, 13:00 ..
e Insert 7,8, 10, 13 (in that order).
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Time Complexities
e query O(h)
e insertion O(h)

T T S ——

P e Where h is height, and h = Q(log n) and h = O(n).
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Time Complexities: (Balanced)

e query O(log n)
e insertion ©(log n)

e Where h is height, and h = Q(log n) and h = O(n).
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= Worst Case Time Complexities

=t: _ (Unbalanced)
B

. query O(n)
insertion O(n)
e The worst case is bad.
P o Worse than using a sorted array!
e The worst case is not rare.
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Main Idea

The operations take linear time in the worst case unless we
can somehow ensure that the tree is balanced.
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Balancing Trees

Self-
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Self-Balancing Trees

e There are variants of BSTs that are self-balancing.
o Red-Black Trees, AVL Trees, etc.

Quite complicated to implement correctly.

But their height is guaranteed to be ~ log n.

So insertion, query take O(log n) in worst case.
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Quick Visualization: B-trees



https://docs.google.com/file/d/11F8-HZyI4HAevnx59ybO-QOMxlynMSU5/preview

Warning

If asked for the time complexity of a BST operation, be careful!

A common mistake is to say that insertion/query are ©(log n)
without being told that the tree is balanced.

=="" I
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Main Idea

In general, insertion/query take ©(h) time in worst case.

- If tree is balanced, h = O(log n), so they take O(log n) time.
- If tree is badly unbalanced, h = O(n), and they can take O(n)
time.
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Augmenting BSTs
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Modifying BSTs

e Perhaps more than most other data structures, BSTs must
be modified (augmented) to solve unique problems.
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Order Statistics

e Given n numbers, the kth order statistic is the kth smallest
number in the collection.

11113999

T ————
.............................



ceeecece

Dynamic Set, Many Order Statistics

e Quickselect finds any order statistic in /inear expected time.

e This is efficient for a static set.

e Inefficient if set is dynamic.
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e Create a dynamic set data structure that supports fast

computation of any order statistic.
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II.__,
= BST Solution

. e For each node, keep attribute .size, containing #of
. nodes in subtree rooted at current node:

e Property:
X.s1ze = x.left.size + x.right.size + 1

If a left or right child doesn’t exist, consider its size zero.
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.I.__. L |
= BST Solution

Property:
X.slze = x.left.size + x.right.size + 1
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= BST Solution

Property:
X.slze = x.left.size + x.right.size + 1
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= BST Solution

Property:
X.slze = x.left.size + x.right.size + 1
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= BST Solution

Property:
X.slze = x.left.size + x.right.size + 1
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= BST Solution

Property:
X.slze = x.left.size + x.right.size + 1
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=I..) Computing Sizes

def add_sizes _to_tree(node):
if node 1s None:
return o
left_size = add _sizes to_tree(node.left)

.I right _size = add_sizes_to_tree(node.right)

node.size = left_size + right_size + 1

return node.size
T T T T T T ——— Il‘
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Also need to maintain size upon inserting a node.
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.I..) Computing Order Statistics: 8th? 2nd?

1941

key: 20
size: 12

o
< =8
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.I.__.
o Augmenting Data Structures

e This is just one example, but many more.

e Understanding how BSTs work is key to augmenting them.
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Thank you!
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