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DSC 40B
Lecture 12 : 

Partition and 
QuickSort
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Agenda
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Partition



❖

Partitioning

●  Given an array of 𝑛 numbers and the index of a pivot p.

●  Rearrange elements so that:
○ Everything < 𝑝 is first.
○ Everything = 𝑝 is next.
○ Everything > 𝑝 is last.

,
●  Return index of first element ≥ 𝑝.



❖

Approach #1

● [77, 42, 11, 99, 0, 101], pivot is 11.
● [    ,     ,     ,    ,    ,      ]
● [    ,     ,     ,    ,    , 77]
● [    ,     ,     ,    ,  42, 77]
● skip for now
● [    ,     ,     ,  99, 42, 77]
● [0,     ,     ,  99, 42, 77]
● [0,     , 101, 99, 42, 77]
● [0,  11, 101, 99, 42, 77]



❖

Approach #1

● [77, 42, 11, 99, 0, 101], pivot is 11.
● [    ,     ,     ,    ,    ,      ]
● [    ,     ,     ,    ,    , 77]
● [    ,     ,     ,    ,  42, 77]
● skip for now
● [    ,     ,     ,  99, 42, 77]
● [0,     ,     ,  99, 42, 77]
● [0,     , 101, 99, 42, 77]
● [0,  11, 101, 99, 42, 77]

How long does it 
take?

A: Constant

B:  Log

C:  Linear

D: n log n

E:  n2



❖

Approach #1

● [77, 42, 11, 99, 0, 101], pivot is 11.
● [    ,     ,     ,    ,    ,      ]
● [    ,     ,     ,    ,    , 77]
● [    ,     ,     ,    ,  42, 77]
● skip for now
● [    ,     ,     ,  99, 42, 77]
● [0,     ,     ,  99, 42, 77]
● [0,     , 101, 99, 42, 77]
● [0,  11, 101, 99, 42, 77]

Issue: Not in-place.



❖

Partition

●  partition takes Θ(𝑛) time.
●  This is optimal.
●  But we can use memory more efficiently.



❖

Approach #2. Motivation

●  Similar to selection sort, we’ll use two barriers:

●  “Middle” barrier:
○  Separates things < pivot from things ≥
○  Index of first thing in “right”

●  “End” barrier:
○ Separates processed from processed.
○ Index of first “unprocessed” thing.

[ < | middle  ≥ |  end    ? ]



❖

Example. 

arr = [77, 42, 11, 99, 0, 101]
           0      1       2     3      4      5

Simplification: start by moving pivot to the end of the list

pivot_ix = 1
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Example. 

arr = [     77, 42, 11, 99, 0, 101]
                0        1       2     3      4      5

Simplification: start by moving pivot to the end of the list

pivot_ix = 1
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Example. 

arr = [     77, 42, 11, 99, 0, 101]
                0        1       2     3      4      5

Simplification: start by moving pivot to the end of the list

pivot_ix = 1
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Example. 

arr = [     77, 101, 11, 99, 0, 42]
                0        1       2     3      4      5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5
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Example. 

arr = [     77, 101, 11, 99, 0, 42]
                0        1       2     3      4      5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5
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Example. 

arr = [     77, 101, 11, 99, 0, 42]
                0        1       2     3      4      5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5
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Example. 

arr = [     77, 101, 11, 99, 0, 42]
                0        1       2     3      4      5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5



❖

Example. 

arr = [     77, 101, 11, 99, 0, 42]
                0        1       2     3      4      5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

      Swap!
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Example. 

arr = [     11, 101, 77, 99, 0, 42]
                0        1       2     3      4      5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5
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Example. 

arr = [     11, 101, 77, 99, 0, 42]
                0        1       2     3      4      5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5
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Example. 

arr = [     11, 101, 77, 99, 0, 42]
                0        1       2     3      4      5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5
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Example. 

arr = [     11, 101, 77, 99, 0, 42]
                0        1       2     3      4      5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5



❖

Example. 

arr = [     11, 101, 77, 99, 0, 42]
                0        1       2     3      4      5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5
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Example. 

arr = [     11, 101, 77, 99, 0, 42]
                0        1       2     3      4      5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5



❖

Example. 

arr = [     11,   0, 77, 99,  101, 42]
                0        1     2     3         4      5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5



❖

Example. 

arr = [     11,   0, 77, 99,  101, 42]
                0        1     2     3         4      5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5



❖

Example. 

arr = [     11,   0, 77, 99,  101, 42]
                0        1     2     3         4      5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

What to do with the pivot?



❖

Example. 

arr = [     11,   0, 42, 99,  101, 77]
                0        1     2     3        4         5

Simplification: start by moving pivot to the end of the list

pivot_ix = 2

Swap!



❖

Example. 

arr = [     11,   0, 42, 99,  101, 77]
                0        1     2      3        4         5

Simplification: start by moving pivot to the end of the list

   pivot_ix = 2



❖

Loop Invariants

●  After each iteration:
○ everything in arr[start:middle_barrier] is < pivot.
○ everything in arr[middle_barrier:end_barrier] is ≥ 

pivot.
○ everything in arr[end_barrier:stop] is “unprocessed”



❖
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Efficiency

●  Also takes Θ(𝑛) time.

●  No auxiliary memory required.



❖

Time Complexity Analysis



❖

Time Complexity

●  What is time complexity of quickselect?



❖

Problem

●  We don’t know the size of the subproblem.
○ Is random, can be anywhere from 1 to 𝑛 − 1.

●  Difficult to write recurrence relation.



❖

Good and Bad Pivots

●  Some pivots are better than others.

●  Good: splits array into roughly balanced halves.

●  Bad: splits array into wildly unbalanced pieces.



❖

Exercise

Suppose we’re searching for the minimum. What would be 
the worst possible pivot?

[77, 42, 11, 99, 101] A: 77

B:  42

C:  11

D:  99

E:  101



❖

Exercise

Suppose we’re searching for the minimum. What would be 
the worst possible pivot?

[77, 42, 11, 99, 101]

[77, 42, 11, 99] 101

A: 77

B:  42

C:  11

D:  99

E:  101
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Exercise
Suppose we’re searching for the minimum. What would be 
the worst possible pivot?

[77, 42, 11, 99, 101]
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Exercise
Suppose we’re searching for the minimum. What would be 
the worst possible pivot?

[77, 42, 11, 99, 101]

[77, 42, 11, 99]  if pivot is 99
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Exercise
Suppose we’re searching for the minimum. What would be 
the worst possible pivot?

[77, 42, 11, 99, 101]

[77, 42, 11, 99]  if pivot is 99

[77, 42, 11]  if pivot is 77   ->   [42, 11, 77]

 



❖

Exercise
Suppose we’re searching for the minimum. What would be 
the worst possible pivot?

[77, 42, 11, 99, 101]

[77, 42, 11, 99]  if pivot is 99

[77, 42, 11]  if pivot is 77 ->   [42, 11, 77]

[42, 11] if pivot is 42 -> [11, 42]



❖

Exercise
Suppose we’re searching for the minimum. What would be 
the worst possible pivot?

[77, 42, 11, 99, 101]

[77, 42, 11, 99]  if pivot is 99

[77, 42, 11]  if pivot is 77 ->   [42, 11, 77]

[42, 11] if pivot is 42 -> [11, 42]

[11]



❖

Worst Case

●  Suppose we’re searching for 𝑘 = 1 (minimum).

●  Worst pivot: the maximum.

●  Worst case: use max as pivot every time.

●  Subproblem size: 𝑛 − 1.



❖

Worst Case
●  Every recursive call is on problem of size 𝑛 − 1.
●  𝑇(𝑛) = 𝑇(𝑛 − 1) + Θ(𝑛).

○ Solution: Θ(𝑛2).
●  Intuitively, randomly choosing largest number as pivot 

every time is very unlikely!



❖

Equally Unlikely

●  Pivot falls exactly in the middle, every time.

●  Subproblems are of size 𝑛/2.

●  𝑇(𝑛) = 𝑇(𝑛/2) + Θ(𝑛).
○ Solution: Θ(𝑛).
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Typically

● Pivot falls somewhere in the middle.

● Sometimes good, sometimes bad.

● But good pivots reduce problem size by so much that 
they make up for bad pivots.



❖

Analogy

● You’re 100 miles away from home.

● You have a button that, if you press it, teleports you         
1 mile closer to home.

● How many times must you press it before you are 1 mile 
away from home?

● 99



❖

Analogy

● You’re 100 miles away from home.

● You have a button that, if you press it, teleports you         
half the distance closer to home.

● How many times must you press it before you are < 1 mile 
away from home?

● Log2100 ~ 6.64



❖

Analogy

● You’re 100 miles away from home.

● You have a button that, if you press it, teleports you half 
the distance to home with probability 1/2, does nothing 
with probability 1/2.

● How many times do you expect to press it before you are 
< 1 mile away from home?

● 2 * log2100 ~ 13.28



❖

Quickselect

●  The same reasoning applies to quickselect.

●  If we always get a good pivot, time taken is Θ(𝑛).
●  If half the time we get a bad pivot, we expect:

○ To make twice as many recursive calls.
○ Take twice as much time as before.

●  But 2 Θ(𝑛) = Θ(𝑛).



❖

Quickselect

●  Expected time complexity: Θ(𝑛).
●  Worst case: Θ(𝑛2), but very unlikely.



❖

Median

● We can find the median in expected linear time with 
quickselect.



❖

QuickSort
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Last Time

●  We saw mergesort.

●  Divide: split list directly down the middle

●  Conquer: sort each half

●  Combine: merge sorted halves together



❖

merge does all the work

●  In mergesort, we are lazy when we divide.
●  So we have to work to combine.

    [4,1,3,2] → [4,1], [3,2] 
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merge does all the work

●  In mergesort, we are lazy when we divide.
●  So we have to work to combine.

    [4,1,3,2] → [4,1], [3,2] → [4,3], [2,3]



❖

merge does all the work

●  In mergesort, we are lazy when we divide.
●  So we have to work to combine.

    [4,1,3,2] → [4,1], [3,2] → [4,3], [2,3] → [1,2,3,4]



❖

What if?

●  Suppose we divide so that everything in left is smaller than 
everything in right:

●  After sorting, no need for merge.

●  [5,1,3,8,6,2] → [1,3,2], [5,8,6]

●  This is what partition does!



❖

Quicksort



❖

Time Complexity

●  Average case: Θ(𝑛 log 𝑛)

●  Worst case: Θ(𝑛2).

●  Like with quickselect, worst case is very rare.
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Mergesort vs Quicksort

●  Mergesort has better worst case complexity.

●  But in practice, Quicksort is often faster.

●  Takes less memory, too.



❖

Memory Requirements

●  merges requires output array, Θ(𝑛) additional space.

●  partition works in-place, requires no additional space

○ Call stack for quicksort requires Θ(log 𝑛) additional 
space.

●  Example: sorting 3 GB of data with 4 GB of RAM.
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Python sort, what does it use?

Python’s default sort uses Tim Sort, which is a combination 
of both mergesort and insertion sort.



❖

Do you have any questions?

Thank you!

CampusWire!


