
❖

DSC 40B
Lecture 12 :

Partition and
QuickSort

❖

Agenda

❖

Partition

❖

Partitioning

● Given an array of 𝑛 numbers and the index of a pivot p.

● Rearrange elements so that:
○ Everything < 𝑝 is first.
○ Everything = 𝑝 is next.
○ Everything > 𝑝 is last.

,
● Return index of first element ≥ 𝑝.

❖

Approach #1

● [77, 42, 11, 99, 0, 101], pivot is 11.
● [, , , , ,]
● [, , , , , 77]
● [, , , , 42, 77]
● skip for now
● [, , , 99, 42, 77]
● [0, , , 99, 42, 77]
● [0, , 101, 99, 42, 77]
● [0, 11, 101, 99, 42, 77]

❖

Approach #1

● [77, 42, 11, 99, 0, 101], pivot is 11.
● [, , , , ,]
● [, , , , , 77]
● [, , , , 42, 77]
● skip for now
● [, , , 99, 42, 77]
● [0, , , 99, 42, 77]
● [0, , 101, 99, 42, 77]
● [0, 11, 101, 99, 42, 77]

How long does it
take?

A: Constant

B: Log

C: Linear

D: n log n

E: n2

❖

Approach #1

● [77, 42, 11, 99, 0, 101], pivot is 11.
● [, , , , ,]
● [, , , , , 77]
● [, , , , 42, 77]
● skip for now
● [, , , 99, 42, 77]
● [0, , , 99, 42, 77]
● [0, , 101, 99, 42, 77]
● [0, 11, 101, 99, 42, 77]

Issue: Not in-place.

❖

Partition

● partition takes Θ(𝑛) time.
● This is optimal.
● But we can use memory more efficiently.

❖

Approach #2. Motivation

● Similar to selection sort, we’ll use two barriers:

● “Middle” barrier:
○ Separates things < pivot from things ≥
○ Index of first thing in “right”

● “End” barrier:
○ Separates processed from processed.
○ Index of first “unprocessed” thing.

[< | middle ≥ | end ?]

❖

Example.

arr = [77, 42, 11, 99, 0, 101]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 1

❖

Example.

arr = [77, 42, 11, 99, 0, 101]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 1

❖

Example.

arr = [77, 42, 11, 99, 0, 101]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 1

❖

Example.

arr = [77, 101, 11, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [77, 101, 11, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [77, 101, 11, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [77, 101, 11, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [77, 101, 11, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

 Swap!

❖

Example.

arr = [11, 101, 77, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [11, 101, 77, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [11, 101, 77, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [11, 101, 77, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [11, 101, 77, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [11, 101, 77, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [11, 0, 77, 99, 101, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [11, 0, 77, 99, 101, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [11, 0, 77, 99, 101, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

What to do with the pivot?

❖

Example.

arr = [11, 0, 42, 99, 101, 77]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 2

Swap!

❖

Example.

arr = [11, 0, 42, 99, 101, 77]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

 pivot_ix = 2

❖

Loop Invariants

● After each iteration:
○ everything in arr[start:middle_barrier] is < pivot.
○ everything in arr[middle_barrier:end_barrier] is ≥

pivot.
○ everything in arr[end_barrier:stop] is “unprocessed”

❖

❖

Efficiency

● Also takes Θ(𝑛) time.

● No auxiliary memory required.

❖

Time Complexity Analysis

❖

Time Complexity

● What is time complexity of quickselect?

❖

Problem

● We don’t know the size of the subproblem.
○ Is random, can be anywhere from 1 to 𝑛 − 1.

● Difficult to write recurrence relation.

❖

Good and Bad Pivots

● Some pivots are better than others.

● Good: splits array into roughly balanced halves.

● Bad: splits array into wildly unbalanced pieces.

❖

Exercise

Suppose we’re searching for the minimum. What would be
the worst possible pivot?

[77, 42, 11, 99, 101] A: 77

B: 42

C: 11

D: 99

E: 101

❖

Exercise

Suppose we’re searching for the minimum. What would be
the worst possible pivot?

[77, 42, 11, 99, 101]

[77, 42, 11, 99] 101

A: 77

B: 42

C: 11

D: 99

E: 101

❖

Exercise
Suppose we’re searching for the minimum. What would be
the worst possible pivot?

[77, 42, 11, 99, 101]

❖

Exercise
Suppose we’re searching for the minimum. What would be
the worst possible pivot?

[77, 42, 11, 99, 101]

[77, 42, 11, 99] if pivot is 99

❖

Exercise
Suppose we’re searching for the minimum. What would be
the worst possible pivot?

[77, 42, 11, 99, 101]

[77, 42, 11, 99] if pivot is 99

[77, 42, 11] if pivot is 77 -> [42, 11, 77]

❖

Exercise
Suppose we’re searching for the minimum. What would be
the worst possible pivot?

[77, 42, 11, 99, 101]

[77, 42, 11, 99] if pivot is 99

[77, 42, 11] if pivot is 77 -> [42, 11, 77]

[42, 11] if pivot is 42 -> [11, 42]

❖

Exercise
Suppose we’re searching for the minimum. What would be
the worst possible pivot?

[77, 42, 11, 99, 101]

[77, 42, 11, 99] if pivot is 99

[77, 42, 11] if pivot is 77 -> [42, 11, 77]

[42, 11] if pivot is 42 -> [11, 42]

[11]

❖

Worst Case

● Suppose we’re searching for 𝑘 = 1 (minimum).

● Worst pivot: the maximum.

● Worst case: use max as pivot every time.

● Subproblem size: 𝑛 − 1.

❖

Worst Case
● Every recursive call is on problem of size 𝑛 − 1.
● 𝑇(𝑛) = 𝑇(𝑛 − 1) + Θ(𝑛).

○ Solution: Θ(𝑛2).
● Intuitively, randomly choosing largest number as pivot

every time is very unlikely!

❖

Equally Unlikely

● Pivot falls exactly in the middle, every time.

● Subproblems are of size 𝑛/2.

● 𝑇(𝑛) = 𝑇(𝑛/2) + Θ(𝑛).
○ Solution: Θ(𝑛).

❖

Typically

● Pivot falls somewhere in the middle.

● Sometimes good, sometimes bad.

● But good pivots reduce problem size by so much that
they make up for bad pivots.

❖

Analogy

● You’re 100 miles away from home.

● You have a button that, if you press it, teleports you
1 mile closer to home.

● How many times must you press it before you are 1 mile
away from home?

● 99

❖

Analogy

● You’re 100 miles away from home.

● You have a button that, if you press it, teleports you
half the distance closer to home.

● How many times must you press it before you are < 1 mile
away from home?

● Log2100 ~ 6.64

❖

Analogy

● You’re 100 miles away from home.

● You have a button that, if you press it, teleports you half
the distance to home with probability 1/2, does nothing
with probability 1/2.

● How many times do you expect to press it before you are
< 1 mile away from home?

● 2 * log2100 ~ 13.28

❖

Quickselect

● The same reasoning applies to quickselect.

● If we always get a good pivot, time taken is Θ(𝑛).
● If half the time we get a bad pivot, we expect:

○ To make twice as many recursive calls.
○ Take twice as much time as before.

● But 2 Θ(𝑛) = Θ(𝑛).

❖

Quickselect

● Expected time complexity: Θ(𝑛).
● Worst case: Θ(𝑛2), but very unlikely.

❖

Median

● We can find the median in expected linear time with
quickselect.

❖

QuickSort

❖

Last Time

● We saw mergesort.

● Divide: split list directly down the middle

● Conquer: sort each half

● Combine: merge sorted halves together

❖

merge does all the work

● In mergesort, we are lazy when we divide.
● So we have to work to combine.

 [4,1,3,2] → [4,1], [3,2]

❖

merge does all the work

● In mergesort, we are lazy when we divide.
● So we have to work to combine.

 [4,1,3,2] → [4,1], [3,2] → [4,3], [2,3]

❖

merge does all the work

● In mergesort, we are lazy when we divide.
● So we have to work to combine.

 [4,1,3,2] → [4,1], [3,2] → [4,3], [2,3] → [1,2,3,4]

❖

What if?

● Suppose we divide so that everything in left is smaller than
everything in right:

● After sorting, no need for merge.

● [5,1,3,8,6,2] → [1,3,2], [5,8,6]

● This is what partition does!

❖

Quicksort

❖

Time Complexity

● Average case: Θ(𝑛 log 𝑛)

● Worst case: Θ(𝑛2).

● Like with quickselect, worst case is very rare.

❖

Mergesort vs Quicksort

● Mergesort has better worst case complexity.

● But in practice, Quicksort is often faster.

● Takes less memory, too.

❖

Memory Requirements

● merges requires output array, Θ(𝑛) additional space.

● partition works in-place, requires no additional space

○ Call stack for quicksort requires Θ(log 𝑛) additional
space.

● Example: sorting 3 GB of data with 4 GB of RAM.

❖

Python sort, what does it use?

Python’s default sort uses Tim Sort, which is a combination
of both mergesort and insertion sort.

❖

Do you have any questions?

Thank you!

CampusWire!

