
❖

DSC 40B
Lecture 11 : The

Median and Order
Statistics

❖

The Median mic

● How fast can we find a median of 𝑛 numbers?

❖

Modify selection_sort so that it computes a median of the input
array. What is the time complexity?

Modify selection_sort so that it computes a me-
dian of the input array. What is the time complex-
ity?

❖

Algorithms

● We have seen several ways of computing a median:
○ Alg. 1: Minimize absolute error, brute force.
○ Alg. 2: Use definition (half ≤, half ≥).
○ …

❖

Best so far...

● Sort the list with mergesort, return middle element.

● Time complexity: Θ(𝑛 log 𝑛).

❖

Is sorting necessary?

● Need to sort the whole list just to find middle?

● Seems like more work than necessary.

❖

Today

● We’ll design an algorithm which runs in Θ(𝑛) expected
time.

● Much more useful than just finding median...

❖

Order Statistics, definition

● The median is an example of an order statistic.

● Given 𝑛 numbers, the 𝑘th order statistic is the 𝑘th smallest
number in the collection.

❖

Example

[99, 42, -77, -12, 101]

● 1st order statistic: ?

● 2nd order statistic: ?

● 4th order statistic: ?

❖

Example

[99, 42, -77, -12, 101]

● 1st order statistic: -77

● 2nd order statistic: ?

● 4th order statistic: ?

❖

Example

[99, 42, -77, -12, 101]

● 1st order statistic: -77

● 2nd order statistic: -12

● 4th order statistic: ?

❖

Example

[99, 42, -77, -12, 101]

● 1st order statistic: -77

● 2nd order statistic: -12

● 4th order statistic: 99

❖

Exercise

Some special cases of order statistics go by different names.
Can you think of some?

❖

Special Cases

● 1st order statistic: ?

● 𝑛th order statistic: ?

● ⌈𝑛/2⌉th order statistic: ?

○ What if n is even?

● ⌈ 𝑝 100 ⋅ 𝑛⌉th order statistic: ?

❖

Special Cases

● 1st order statistic: minimum

● 𝑛th order statistic: ?

● ⌈𝑛/2⌉th order statistic: ?

○ What if n is even?

● ⌈ 𝑝 100 ⋅ 𝑛⌉th order statistic: ?

❖

Special Cases

● 1st order statistic: minimum

● 𝑛th order statistic: maximum

● ⌈𝑛/2⌉th order statistic: ?

○ What if n is even?

● ⌈ 𝑝 100 ⋅ 𝑛⌉th order statistic: ?

❖

Special Cases

● 1st order statistic: minimum

● 𝑛th order statistic: maximum

● ⌈𝑛/2⌉th order statistic: median

○ What if n is even?

● ⌈ 𝑝 100 ⋅ 𝑛⌉th order statistic: ?

❖

Special Cases

● 1st order statistic: minimum

● 𝑛th order statistic: maximum

● ⌈𝑛/2⌉th order statistic: median

○ What if n is even?

● ⌈ 𝑝 100 ⋅ 𝑛⌉th order statistic: 𝑝th percentile

❖

Goal

● Fast algorithm for computing any order statistic.

● Interestingly, some seem easier than others.

● Our algorithm will find any order statistic in Θ(𝑛).

❖

Approach #1

● We can modify selection_sort to find the 𝑘th order
statistic.

● Loop invariant: after 𝑘th iteration, first 𝑘 elements are in
final sorted order.

❖

❖

❖

Approach #1

● 1st order statistic: Θ(𝑛).

● 𝑛th order statistic: Θ(𝑛2).

● Median: Θ(𝑛2).

● 𝑘th order statistic: Θ(𝑘𝑛).

❖

Exercise

● Describe how to find any order statistic in Θ(𝑛 log 𝑛) time.

❖

Approach #2

● Sort with mergesort, return arr[k-1]

● Θ(𝑛 log 𝑛) time. Could be better...

❖

Quickselect

❖

The Goal

● Given a collection of 𝑛 numbers and an order, 𝑘.

● Find the 𝑘th smallest number in the collection.

❖

❖

❖

❖

Game Show

● Goal: tell the host the largest number.

● Caution: with every door opened, your money is reduced.

● Twist: After opening a door, the host tells you:
○ which doors are smaller.
○ which doors are larger.
○ they partition the doors into higher and lower by moving

them.

❖

❖

❖

❖

❖

 <= 20

❖

 <= 20 >= 20

❖

❖

❖

Main Idea

● After partitioning, the just-opened door is in the correct
place in the sorted order (but the other doors may not be).

● But, every door to the left is smaller (≤), every door to the
right is larger (≥).

❖

In general...

● Let’s generalize strategy for 𝑘th order statistic.

● Example: 𝑘 = 2.

❖

❖

❖

❖

❖

❖

Strategy

● Open an arbitrary door (that hasn’t been ruled out).

● Partition the doors around this number:
○ Move doors smaller than this to the left,
○ Larger than this to the right.

● Let 𝑝 be our door’s new position, 𝑘 be the order we want.
○ If 𝑝 = 𝑘, return this door.
○ If 𝑝 < 𝑘, rule out doors to left.
○ If 𝑝 > 𝑘, rule out doors to right.

● Repeat recursively.

❖

❖

Example, k = 3

arr = [77, 42, 11, 99, 0, 101]
 0 1 2 3 4 5

❖

Example, k = 3

arr = [77, 42, 11, 99, 0, 101]
 0 1 2 3 4 5

qs(arr, 3, 0, 6)

❖

Example, k = 3

arr = [77, 42, 11, 99, 0, 101]
 0 1 2 3 4 5

qs(arr, 3, 0, 6)

pivot_index = ?

❖

Example, k = 3

arr = [77, 42, 11, 99, 0, 101]
 0 1 2 3 4 5

qs(arr, 3, 0, 6)

pivot_index = 3, partition

❖

Example, k = 3

arr = [77, 42, 11, 99, 0, 101]
 0 1 2 3 4 5

arr = [77, 42, 11, 0, 99, 101]
 0 1 2 3 4 5

qs(arr, 3, 0, 6)

pivot_index = 3, partition

❖

Example, k = 3

arr = [77, 42, 11, 99, 0, 101]
 0 1 2 3 4 5

arr = [77, 42, 11, 0, 99, 101]
 0 1 2 3 4 5

qs(arr, 3, 0, 6)

pivot_index = 3, partition

pivot_index = 4

❖

Example, k = 3

arr = [77, 42, 11, 99, 0, 101]
 0 1 2 3 4 5

arr = [77, 42, 11, 0, 99, 101]
 0 1 2 3 4 5

qs(arr, 3, 0, 6)

pivot_index = 3, partition

pivot_index = 4

❖

Example, k = 3

arr = [77, 42, 11, 99, 0, 101]
 0 1 2 3 4 5

arr = [77, 42, 11, 0, 99, 101]
 0 1 2 3 4 5

qs(arr, 3, 0, 6)

pivot_index = 3, partition

pivot_index = 4

qs(arr, 3, 0, 4)

❖

Example, k = 3

arr = [77, 42, 11, 0, 99, 101]
 0 1 2 3 4 5

qs(arr, 3, 0, 6)

pivot_index = ?
qs(arr, 3, 0, 4)

❖

Example, k = 3

arr = [77, 42, 11, 0, 99, 101]
 0 1 2 3 4 5

arr = [0, 42, 11, 77, 99, 101]
 0 1 2 3 4 5

qs(arr, 3, 0, 6)

pivot_index = 3, partition

pivot_index = 0

qs(arr, 3, 0, 4)

❖

Example, k = 3

arr = [77, 42, 11, 0, 99, 101]
 0 1 2 3 4 5

arr = [0, 42, 11, 77, 99, 101]
 0 1 2 3 4 5

qs(arr, 3, 0, 6)

pivot_index = 3, partition

pivot_index = 0

qs(arr, 3, 0, 4)

qs(arr, 3, ?, ?)

❖

Example, k = 3

arr = [77, 42, 11, 0, 99, 101]
 0 1 2 3 4 5

arr = [0, 42, 11, 77, 99, 101]
 0 1 2 3 4 5

qs(arr, 3, 0, 6)

pivot_index = 3, partition

pivot_index = 0

qs(arr, 3, 0, 4)

qs(arr, 3, 1, 4)

❖

Example, k = 3. If we want to be done?

arr = [0, 42, 11, 77, 99, 101]
 0 1 2 3 4 5

qs(arr, 3, 0, 6)

pivot_index = ?
qs(arr, 3, 0, 4)

qs(arr, 3, 1, 4)

❖

Example, k = 3. If we want to be done?

arr = [0, 42, 11, 77, 99, 101]
 0 1 2 3 4 5

arr = [0, 11, 42, 77, 99, 101]
 0 1 2 3 4 5

qs(arr, 3, 0, 6)

pivot_index = 1, partition

pivot_index = 2

qs(arr, 3, 0, 4)

qs(arr, 3, 1, 4)

❖

Example, k = 3. If we want to be done?

arr = [0, 42, 11, 77, 99, 101]
 0 1 2 3 4 5

arr = [0, 11, 42, 77, 99, 101]
 0 1 2 3 4 5

qs(arr, 3, 0, 6)

pivot_index = 1, partition

pivot_index = 02

qs(arr, 3, 0, 4)

qs(arr, 3, 1, 4)

return 42

❖

Partition

❖

Partitioning

● Given an array of 𝑛 numbers and the index of a pivot p.

● Rearrange elements so that:
○ Everything < 𝑝 is first.
○ Everything = 𝑝 is next.
○ Everything > 𝑝 is last.

,
● Return index of first element ≥ 𝑝.

❖

Approach #1

● [77, 42, 11, 99, 0, 101], pivot is 11.
● [, , , , ,]
● [, , , , , 77]
● [, , , , 42, 77]
● skip for now
● [, , , 99, 42, 77]
● [0, , , 99, 42, 77]
● [0, , 101, 99, 42, 77]
● [0, 11, 101, 99, 42, 77]

❖

Approach #1

● [77, 42, 11, 99, 0, 101], pivot is 11.
● [, , , , ,]
● [, , , , , 77]
● [, , , , 42, 77]
● skip for now
● [, , , 99, 42, 77]
● [0, , , 99, 42, 77]
● [0, , 101, 99, 42, 77]
● [0, 11, 101, 99, 42, 77]

Issue: Not in-place.

❖

Partition

● partition takes Θ(𝑛) time.
● This is optimal.
● But we can use memory more efficiently.

❖

Approach #2. Motivation

● Similar to selection sort, we’ll use two barriers:

● “Middle” barrier:
○ Separates things < pivot from things ≥
○ Index of first thing in “right”

● “End” barrier:
○ Separates processed from processed.
○ Index of first “unprocessed” thing.

[< | middle ≥ | end ?]

❖

Example.

arr = [77, 42, 11, 99, 0, 101]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 1

❖

Example.

arr = [77, 42, 11, 99, 0, 101]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 1

❖

Example.

arr = [77, 42, 11, 99, 0, 101]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 1

❖

Example.

arr = [77, 101, 11, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [77, 101, 11, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [77, 101, 11, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [77, 101, 11, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [77, 101, 11, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

 Swap!

❖

Example.

arr = [11, 101, 77, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [11, 101, 77, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [11, 101, 77, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [11, 101, 77, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [11, 101, 77, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [11, 101, 77, 99, 0, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [11, 0, 77, 99, 101, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [11, 0, 77, 99, 101, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

❖

Example.

arr = [11, 0, 77, 99, 101, 42]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 5

What to do with the pivot?

❖

Example.

arr = [11, 0, 42, 99, 101, 77]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

pivot_ix = 2

Swap!

❖

Example.

arr = [11, 0, 42, 99, 101, 77]
 0 1 2 3 4 5

Simplification: start by moving pivot to the end of the list

 pivot_ix = 2

❖

Loop Invariants

● After each iteration:
○ everything in arr[start:middle_barrier] is < pivot.
○ everything in arr[middle_barrier:end_barrier] is ≥

pivot.
○ everything in arr[end_barrier:stop] is “unprocessed”

❖

❖

Efficiency

● Also takes Θ(𝑛) time.

● No auxiliary memory required.

❖

Time Complexity Analysis

❖

Time Complexity

● What is time complexity of quickselect?

❖

Problem

● We don’t know the size of the subproblem.
○ Is random, can be anywhere from 1 to 𝑛 − 1.

● Difficult to write recurrence relation.

❖

Good and Bad Pivots

● Some pivots are better than others.

● Good: splits array into roughly balanced halves.

● Bad: splits array into wildly unbalanced pieces.

❖

Exercise
Suppose we’re searching for the minimum. What would be
the worst possible pivot?

[77, 42, 11, 99, 101]

❖

Exercise
Suppose we’re searching for the minimum. What would be
the worst possible pivot?

[77, 42, 11, 99, 101]

[77, 42, 11, 99] if pivot is 99

❖

Exercise
Suppose we’re searching for the minimum. What would be
the worst possible pivot?

[77, 42, 11, 99, 101]

[77, 42, 11, 99] if pivot is 99

[77, 42, 11] if pivot is 77 -> [42, 11, 77]

❖

Exercise
Suppose we’re searching for the minimum. What would be
the worst possible pivot?

[77, 42, 11, 99, 101]

[77, 42, 11, 99] if pivot is 99

[77, 42, 11] if pivot is 77 -> [42, 11, 77]

[42, 11] if pivot is 42 -> [11, 42]

❖

Exercise
Suppose we’re searching for the minimum. What would be
the worst possible pivot?

[77, 42, 11, 99, 101]

[77, 42, 11, 99] if pivot is 99

[77, 42, 11] if pivot is 77 -> [42, 11, 77]

[42, 11] if pivot is 42 -> [11, 42]

[11]

❖

Worst Case

● Suppose we’re searching for 𝑘 = 1 (minimum).

● Worst pivot: the maximum.

● Worst case: use max as pivot every time.

● Subproblem size: 𝑛 − 1.

❖

Worst Case
● Every recursive call is on problem of size 𝑛 − 1.
● 𝑇(𝑛) = 𝑇(𝑛 − 1) + Θ(𝑛).

○ Solution: Θ(𝑛2).
● Intuitively, randomly choosing largest number as pivot

every time is very unlikely!

❖

Equally Unlikely

● Pivot falls exactly in the middle, every time.

● Subproblems are of size 𝑛/2.

● 𝑇(𝑛) = 𝑇(𝑛/2) + Θ(𝑛).
○ Solution: Θ(𝑛).

❖

Typically

● Pivot falls somewhere in the middle.

● Sometimes good, sometimes bad.

● But good pivots reduce problem size by so much that
they make up for bad pivots.

❖

Analogy

● You’re 100 miles away from home.

● You have a button that, if you press it, teleports you
1 mile closer to home.

● How many times must you press it before you are 1 mile
away from home?

● 99

❖

Analogy

● You’re 100 miles away from home.

● You have a button that, if you press it, teleports you
half the distance closer to home.

● How many times must you press it before you are < 1 mile
away from home?

● Log2100 ~ 6.64

❖

Analogy

● You’re 100 miles away from home.

● You have a button that, if you press it, teleports you half
the distance to home with probability 1/2, does nothing
with probability 1/2.

● How many times do you expect to press it before you are
< 1 mile away from home?

● 2 * log2100 ~ 13.28

❖

Quickselect

● The same reasoning applies to quickselect.

● If we always get a good pivot, time taken is Θ(𝑛).
● If half the time we get a bad pivot, we expect:

○ To make twice as many recursive calls.
○ Take twice as much time as before.

● But 2 Θ(𝑛) = Θ(𝑛).

❖

Quickselect

● Expected time complexity: Θ(𝑛).
● Worst case: Θ(𝑛2), but very unlikely.

❖

Median

● We can find the median in expected linear time with
quickselect.

❖

Do you have any questions?

Thank you!

CampusWire!

