
❖

DSC 40B
Lecture 10 : Sorting

❖

HW3: change
git

❖

Sorting

❖

Sorting

● Sorting is a very common operation.

● But why is it important?

● A e s t h e t i c reasons?

● Sorting makes some problems easier to solve.

❖

Today (and Friday)

● How do we sort?

● How fast can we sort?

● How do we use sorted structure to write faster algorithms?

● Also: how to understand complex loops with loop invariants.

❖

Selection Sort

❖

Selection Sort

● Repeatedly remove smallest element.

● Put it at the beginning of new list.

❖

Example

Example: arr = [7, 8, 5, 3, 1]

❖

Example

Example: arr = [7, 8, 5, 3, 1]

● []

❖

Example

Example: arr = [7, 8, 5, 3, 1]

● [1,]

❖

Example

Example: arr = [7, 8, 5, 3, 1]

● [1,]

❖

Example

Example: arr = [7, 8, 5, 3, 1]

● [1, 3,]

❖

Example

Example: arr = [7, 8, 5, 3, 1]

● [1, 3,]

❖

Example

Example: arr = [7, 8, 5, 3, 1]

● [1, 3, 5,]

❖

Example

Example: arr = [7, 8, 5, 3, 1]

● [1, 3, 5,]

❖

Example

Example: arr = [7, 8, 5, 3, 1]

● [1, 3, 5, 7,]

❖

Example

Example: arr = [7, 8, 5, 3, 1]

● [1, 3, 5, 7,]

❖

Example

Example: arr = [7, 8, 5, 3, 1]

● [1, 3, 5, 7, 8]

❖

Example

Example: arr = [7, 8, 5, 3, 1]

● [1, 3, 5, 7, 8]

❖

In-place Selection Sort

● We don’t need a separate list.
○ We can swap elements until sorted.

● Store “new” list at the beginning of input list.

● Separate the old and new with a barrier.

❖

Example: sorting in-place

Example: arr = [7, 8, 5, 3, 1]

❖

Example: sorting in-place

Example: arr = [7, 8, 5, 3, 1]

 [7, 8, 5, 3, 1]

❖

Example: sorting in-place

Example: arr = [7, 8, 5, 3, 1]

 [7, 8, 5, 3, 1]

Left: sorted.

Right: needs to be sorted

❖

Example: sorting in-place

Example: arr = [7, 8, 5, 3, 1]

 [7, 8, 5, 3, 1]

Left: sorted.

Right: needs to be sorted

#swap, move the barrier

❖

Example: sorting in-place

Example: arr = [7, 8, 5, 3, 1]

 [7, 8, 5, 3, 1]

Left: sorted.

Right: needs to be sorted

#swap, move the barrier

❖

Example: sorting in-place

Example: arr = [7, 8, 5, 3, 1]

 [1, 8, 5, 3, 7]

Left: sorted.

Right: needs to be sorted

#swap, move the barrier

❖

Example: sorting in-place

Example: arr = [7, 8, 5, 3, 1]

 [1, 8, 5, 3, 7]

Left: sorted.

Right: needs to be sorted

#swap, move the barrier

❖

Example: sorting in-place

Example: arr = [7, 8, 5, 3, 1]

 [1, 8, 5, 3, 7]

Left: sorted.

Right: needs to be sorted

#swap, move the barrier

❖

Example: sorting in-place

Example: arr = [7, 8, 5, 3, 1]

 [1, 3, 5, 8, 7]

Left: sorted.

Right: needs to be sorted

#swap, move the barrier

❖

Example: sorting in-place

Example: arr = [7, 8, 5, 3, 1]

 [1, 3, 5, 8, 7]

Left: sorted.

Right: needs to be sorted

#swap, move the barrier

❖

Example: sorting in-place

Example: arr = [7, 8, 5, 3, 1]

 [1, 3, 5, 8, 7]

Left: sorted.

Right: needs to be sorted

#swap, move the barrier

❖

Example: sorting in-place

Example: arr = [7, 8, 5, 3, 1]

 [1, 3, 5, 8, 7]

Left: sorted.

Right: needs to be sorted

#swap, move the barrier

❖

Example: sorting in-place

Example: arr = [7, 8, 5, 3, 1]

 [1, 3, 5, 8, 7]

Left: sorted.

Right: needs to be sorted

#swap, move the barrier

❖

Example: sorting in-place

Example: arr = [7, 8, 5, 3, 1]

 [1, 3, 5, 7, 8]

Left: sorted.

Right: needs to be sorted

#swap, move the barrier

❖

Example: sorting in-place

Example: arr = [7, 8, 5, 3, 1]

 [1, 3, 5, 7, 8]

Left: sorted.

Right: needs to be sorted

#swap, move the barrier

❖

❖

❖

Loop Invariants

● How do we understand an iterative algorithm?

● A loop invariant is a statement that is true after every
iteration.

○ And before the loop begins!

❖

Loop Invariant(s)

● After the 𝛼th iteration of selection sort, each of the first 𝛼
elements is ≤ each of the remaining elements.

Example: arr = [7, 8, 5, 3, 1]

❖

Loop Invariant(s)

● After the 𝛼th iteration of selection sort, each of the first 𝛼
elements is ≤ each of the remaining elements.

● 𝛼 = 0: arr = [7, 8, 5, 3, 1] #empty set. True

● 𝛼 = 1: arr = [1, 8, 5, 3, 7] # 1 is ≤

● 𝛼 = 2: arr = [1, 3, 5, 8, 7] # 1, 3 are ≤

❖

Loop Invariant(s)

● After the 𝛼th iteration of selection sort, each of the first 𝛼
elements is ≤ each of the remaining elements.

● 𝛼 = 0: arr = [7, 8, 5, 3, 1] #empty set. True

● 𝛼 = 1: arr = [1, 8, 5, 3, 7] # 1 is ≤

● 𝛼 = 2: arr = [1, 3, 5, 8, 7] # 1, 3 are ≤

Is it enough to claim that the algorithm works properly?

A: Yes

B: No

❖

Loop Invariant(s)

● After the 𝛼th iteration of selection sort, each of the first 𝛼
elements is ≤ each of the remaining elements.

● 𝛼 = 0: arr = [7, 8, 5, 3, 1] #empty set. True

● 𝛼 = 1: arr = [1, 8, 5, 3, 7] # 1 is ≤

● 𝛼 = 2: arr = [3, 1, 5, 8, 7] # 1, 3 are ≤

❖

Loop Invariant(s)

● After the 𝛼th iteration, the first 𝛼 elements are sorted.

❖

Loop Invariants

● Plug the total number of iterations into the loop invariant
to learn about the results
○ selection_sort makes 𝑛 − 1 iterations:

○ After the (𝑛 − 1)th iteration, the first (𝑛 − 1) elements
are sorted.

○ After the (𝑛 − 1)th iteration, each of the first (𝑛 − 1)
elements is ≤ each of the remaining elements.

❖

(n-1) +

❖

(n-1) + (n-2)

❖

(n-1) + (n-2) + (n-3)

❖

(n-1) + (n-2) + (n-3) +...+ 1

❖

(n-1) + (n-2) + (n-3) +...+ 1 =
 Θ(𝑛2)

❖

Time Complexity

● Selection sort takes Θ(𝑛2) time.

❖

Time Complexity

● How about sorted array input?

A: Θ(1) time.

B: Θ(𝑛) time.

C: Θ(𝑛2) time.

D: Something else

❖

Modify selection_sort so that it computes a median of the input
array. What is the time complexity?

Modify selection_sort so that it computes a me-
dian of the input array. What is the time complex-
ity?

❖

MergeSort

mic

❖

Can we sort faster?

● The tight theoretical lower bound for comparison sorting
is Θ(𝑛 log 𝑛).

● Selection sort is quadratic.

● How do we sort in Θ(𝑛 log 𝑛) time?

❖

Mergesort

● Mergesort is a fast sorting algorithm.

● Has best possible (worst-case) time complexity: Θ(𝑛 log 𝑛).
● Implements divide/conquer/recombine strategy.

❖

The Idea

● Divide: split the array into halves
○ [6,1,9,2,4,3] → [6,1,9], [2,4,3]

● Conquer: sort each half, recursively
○ [6,1,9] → [1,6,9] and [2,4,3] → [2,3,4]

● Combine: merge sorted halves together

○ [1,6,9], [2,3,4] → [1,2,3,4,6,9]

❖

Aside: splitting arrays

● Splitting an array in half by slicing:

>>> arr = [9, 1, 4, 2, 5]
>>> middle = math.floor(len(arr) / 2)
>>> arr[:middle]
[9, 1]
>>> arr[middle:]
[4, 2, 5]

● Warning! Creates a copy!

❖

❖

Mergesort

def mergesort(arr):
if len(arr) > 1:

middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
mergesort(left)
mergesort(right)
merge(left, right, arr)

❖

The Idea

ms([7, 3, 1, 6, 2, 5, 8, 4])

❖

The Idea

ms([7, 3, 1, 6, 2, 5, 8, 4])

❖

The Idea

ms([7, 3, 1, 6, 2, 5, 8, 4])

 ms([7, 3, 1, 6])

❖

The Idea

ms([7, 3, 1, 6, 2, 5, 8, 4])

 ms([7, 3, 1, 6])

 ms([7, 3])

❖

The Idea

ms([7, 3, 1, 6, 2, 5, 8, 4])

 ms([7, 3, 1, 6])

 ms([7, 3])

 ms([7])

❖

The Idea

ms([7, 3, 1, 6, 2, 5, 8, 4])

 ms([7, 3, 1, 6])

 ms([7, 3])

 ms([7])

 ms([3])

❖

The Idea

ms([7, 3, 1, 6, 2, 5, 8, 4])

 ms([7, 3, 1, 6])

 ms([7, 3])

 ms([7])

 ms([3])

 merge([7], [3])

❖

Mergesort: tip for tracing

def mergesort(arr):
 print(arr)

if len(arr) > 1:
middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
mergesort(left)
mergesort(right)
merge(left, right, arr)

❖

Understanding Mergesort

1. What is the base case?

2. Are the recursive problems smaller?

3. Assuming the recursive calls work, does the whole algorithm work?

❖

1. Base Case: 𝑛 = 1

● Arrays of size one are trivially sorted.

● Returns immediately: Correct!

❖

2. Smaller Problems?

● Are arr[:middle] and arr[middle:] always smaller
than arr?

● Try it for len(arr) == 2.

● Correct!

❖

3. Does it Work?

● Assume mergesort works on arrays of size < 𝑛.

● Does it work on arrays of size 𝑛?

❖

Mergesort

def mergesort(arr):
if len(arr) > 1:

middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
mergesort(left)
mergesort(right)
merge(left, right, arr)

Does it work
properly?

❖

Merge

❖

Merging

● We have sorted each half.

● Now we need to merge together into a sorted array.

● Note: this is an example of a problem that is made
easier by sorting.

❖

Merge. Stack of cards in SORTED order

❖

merge

❖

merge

❖

merge

❖

merge

❖

merge

❖

merge

❖

merge
def merge(left, right, out):
”””Merge sorted arrays, store in out.”””

left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0

for ix in range(len(out)):
if left[left_ix] < right[right_ix]:

out[ix] = left[left_ix]
left_ix += 1

else:
out[ix] = right[right_ix]
right_ix += 1

❖

merge
def merge(left, right, out):
”””Merge sorted arrays, store in out.”””

left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0

for ix in range(len(out)):
if left[left_ix] < right[right_ix]:

out[ix] = left[left_ix]
left_ix += 1

else:
out[ix] = right[right_ix]
right_ix += 1

[5, 7, 9, 10]

❖

merge
def merge(left, right, out):
”””Merge sorted arrays, store in out.”””

left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0

for ix in range(len(out)):
if left[left_ix] < right[right_ix]:

out[ix] = left[left_ix]
left_ix += 1

else:
out[ix] = right[right_ix]
right_ix += 1

[5, 7, 9, 10, ‘inf’]

❖

merge
def merge(left, right, out):
”””Merge sorted arrays, store in out.”””

left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0

for ix in range(len(out)):
if left[left_ix] < right[right_ix]:

out[ix] = left[left_ix]
left_ix += 1

else:
out[ix] = right[right_ix]
right_ix += 1

left = [5, 7, 9, 10, ‘inf’]

❖

merge
def merge(left, right, out):
”””Merge sorted arrays, store in out.”””

left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0

for ix in range(len(out)):
if left[left_ix] < right[right_ix]:

out[ix] = left[left_ix]
left_ix += 1

else:
out[ix] = right[right_ix]
right_ix += 1

left = [5, 7, 9, 10, ‘inf’]

right = [2, 4, 6, ‘inf’]

❖

merge
def merge(left, right, out):
”””Merge sorted arrays, store in out.”””

left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0

for ix in range(len(out)):
if left[left_ix] < right[right_ix]:

out[ix] = left[left_ix]
left_ix += 1

else:
out[ix] = right[right_ix]
right_ix += 1

left = [5, 7, 9, 10, ‘inf’]

right = [2, 4, 6, ‘inf’]

❖

merge
def merge(left, right, out):
”””Merge sorted arrays, store in out.”””

left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0

for ix in range(len(out)):
if left[left_ix] < right[right_ix]:

out[ix] = left[left_ix]
left_ix += 1

else:
out[ix] = right[right_ix]
right_ix += 1

left = [5, 7, 9, 10, ‘inf’]

right = [2, 4, 6, ‘inf’]

❖

merge
def merge(left, right, out):
”””Merge sorted arrays, store in out.”””

left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0

for ix in range(len(out)):
if left[left_ix] < right[right_ix]:

out[ix] = left[left_ix]
left_ix += 1

else:
out[ix] = right[right_ix]
right_ix += 1

left = [5, 7, 9, 10, ‘inf’]

right = [2, 4, 6, ‘inf’]

out = [, , , , , ,]

❖

merge
def merge(left, right, out):
”””Merge sorted arrays, store in out.”””

left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0

for ix in range(len(out)):
if left[left_ix] < right[right_ix]:

out[ix] = left[left_ix]
left_ix += 1

else:
out[ix] = right[right_ix]
right_ix += 1

left = [5, 7, 9, 10, ‘inf’]

right = [2, 4, 6, ‘inf’]

out = [2, , , , , ,]

❖

merge
def merge(left, right, out):
”””Merge sorted arrays, store in out.”””

left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0

for ix in range(len(out)):
if left[left_ix] < right[right_ix]:

out[ix] = left[left_ix]
left_ix += 1

else:
out[ix] = right[right_ix]
right_ix += 1

left = [5, 7, 9, 10, ‘inf’]

right = [2, 4, 6, ‘inf’]

out = [2, 4, , , , ,]

❖

merge
def merge(left, right, out):
”””Merge sorted arrays, store in out.”””

left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0

for ix in range(len(out)):
if left[left_ix] < right[right_ix]:

out[ix] = left[left_ix]
left_ix += 1

else:
out[ix] = right[right_ix]
right_ix += 1

left = [5, 7, 9, 10, ‘inf’]

right = [2, 4, 6, ‘inf’]

out = [2, 4, 5, , , ,]

❖

merge
def merge(left, right, out):
”””Merge sorted arrays, store in out.”””

left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0

for ix in range(len(out)):
if left[left_ix] < right[right_ix]:

out[ix] = left[left_ix]
left_ix += 1

else:
out[ix] = right[right_ix]
right_ix += 1

left = [5, 7, 9, 10, ‘inf’]

right = [2, 4, 6, ‘inf’]

out = [2, 4, 5, 6, , ,]

❖

merge
def merge(left, right, out):
”””Merge sorted arrays, store in out.”””

left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0

for ix in range(len(out)):
if left[left_ix] < right[right_ix]:

out[ix] = left[left_ix]
left_ix += 1

else:
out[ix] = right[right_ix]
right_ix += 1

left = [5, 7, 9, 10, ‘inf’]

right = [2, 4, 6, ‘inf’]

out = [2, 4, 5, 6, 7, ,]

❖

merge
def merge(left, right, out):
”””Merge sorted arrays, store in out.”””

left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0

for ix in range(len(out)):
if left[left_ix] < right[right_ix]:

out[ix] = left[left_ix]
left_ix += 1

else:
out[ix] = right[right_ix]
right_ix += 1

left = [5, 7, 9, 10, ‘inf’]

right = [2, 4, 6, ‘inf’]

out = [2, 4, 5, 6, 7, 9,]

❖

merge
def merge(left, right, out):
”””Merge sorted arrays, store in out.”””

left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0

for ix in range(len(out)):
if left[left_ix] < right[right_ix]:

out[ix] = left[left_ix]
left_ix += 1

else:
out[ix] = right[right_ix]
right_ix += 1

left = [5, 7, 9, 10, ‘inf’]

right = [2, 4, 6, ‘inf’]

out = [2, 4, 5, 6, 7, 9, 10]

❖

Loop Invariant

● Assume left and right are sorted.

● Loop invariant: After 𝛼th iteration, first 𝛼 elements of
out are the smallest 𝛼 elements of those in left and
right, in sorted order.

● That is, after 𝛼th iteration

 out[:𝛼] == sorted(left + right)[:𝛼]

❖

Key of mergesort

● merge is where the actual sorting happens.

● Example: merge([3], [1], ...) results in [1,3]

❖

Time Complexity of
Mergesort

❖

Mergesort: time complexity

def mergesort(arr):
if len(arr) > 1:

middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
mergesort(left)
mergesort(right)
merge(left, right, arr)

T(n) = non_recursive + recursive

❖

Mergesort: time complexity

def mergesort(arr):
if len(arr) > 1:

middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
mergesort(left)
mergesort(right)
merge(left, right, arr)

T(n) = non_recursive + recursive

❖

Mergesort: time complexity

def mergesort(arr):
if len(arr) > 1:

middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
mergesort(left)
mergesort(right)
merge(left, right, arr)

T(n) = non_recursive + recursive

Θ(𝑛)

❖

Mergesort: time complexity

def mergesort(arr):
if len(arr) > 1:

middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
mergesort(left)
mergesort(right)
merge(left, right, arr)

T(n) = Θ(𝑛) + recursive

❖

Mergesort: time complexity

def mergesort(arr):
if len(arr) > 1:

middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
mergesort(left)
mergesort(right)
merge(left, right, arr)

T(n) = Θ(𝑛) + recursive

❖

Mergesort: time complexity

def mergesort(arr):
if len(arr) > 1:

middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
mergesort(left)
mergesort(right)
merge(left, right, arr)

T(n) = Θ(𝑛) + recursive

T(n/2)

T(n/2)

❖

Mergesort: time complexity

def mergesort(arr):
if len(arr) > 1:

middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
mergesort(left)
mergesort(right)
merge(left, right, arr)

T(n) = Θ(𝑛) + 2 T(n/2)

T(n/2)

T(n/2)

❖

Solving the Recurrence

T(n) = 2 T(n/2) + Θ(𝑛)

❖

Solving the Recurrence. Step 2

T(n) = 2 T(n/2) + 𝑛 # k=1

❖

Solving the Recurrence. Step 2

T(n) = 2 T(n/2) + 𝑛 # k=1

❖

Solving the Recurrence. Step 2

T(n) = 2 T(n/2) + 𝑛 # k=1

simplify

❖

Solving the Recurrence. Step 2

T(n) = 2 T(n/2) + 𝑛 # k=1

simplify

k=2

❖

Solving the Recurrence. Step 2

T(n) = 2 T(n/2) + 𝑛 # k=1

simplify

k=2

❖

Solving the Recurrence. Step 2

T(n) = 2 T(n/2) + 𝑛 # k=1

simplify

k=2

❖

Solving the Recurrence. Step 2

T(n) = 2 T(n/2) + 𝑛 # k=1

simplify

k=2

simplify

❖

Solving the Recurrence. Step 2

T(n) = 2 T(n/2) + 𝑛

simplify

k=2

simplify

k=3

k=1

❖

Step 3. Number of steps to Base case.

❖

Step 3. Number of steps to Base case.

❖

Step 4. Substitute

❖

Step 4. Substitute

❖

Step 4. Substitute

❖

Step 4. Substitute

Θ(𝑛 log n)

❖

Optimality

● Theorem: Any (comparison) sorting algorithm’s
worst-case time complexity must be Ω(𝑛 log 𝑛).

● Mergesort is optimal!

❖

Be Careful!

● It is possible for a sorting algorithm to have a best case
time complexity smaller than 𝑛 log 𝑛.

○ Insertion sort, for example.

● Mergesort has best case time complexity of Θ(𝑛 log 𝑛).

● Mergesort is sub-optimal in this sense!

❖

Be Careful!

● The Θ(𝑛 log 𝑛) lower-bound is for comparison sorting.

● It is possible to sort in worst-case Θ(𝑛) time without
comparing.

○ Bucket sort, radix sort, etc.

❖

What if?

● Divide: split the array into halves

● Conquer: sort each half using selection sort

● Combine: merge sorted halves together

❖

mergeselectionsort

❖

Think!

What is the time complexity of this algorithm?

❖

Using Sorted Structure

❖

Sorted structure is useful

● Some problems become much easier if input is sorted.

● For example, median, minimum, maximum.

● Sorting is useful as a preprocessing step.

❖

Recall: The Movie Problem

● You’re on a flight that will last 𝐷 minutes.

● You want to pick two movies to watch.

● You want the total time of the two movies to be as close
as possible to 𝐷.

❖

The Movie Problem

● Brute force algorithm: Θ(𝑛2)

● We can do better, if movie times are sorted.

❖

Example

● Flight duration 𝐷 = 155
● Movie times: 60, 80, 90, 120, 130

60 80 90 120 130

60

80

90

120

130

Best pair:

❖

Example: with brute force only half

● Flight duration 𝐷 = 155
● Movie times: 60, 80, 90, 120, 130

60 80 90 120 130

60

80 x

90 x x

120 x x x

130 x x x x

Best pair:

❖

Example: with brute force only half

● Flight duration 𝐷 = 155
● Movie times: 60, 80, 90, 120, 130

60 80 90 120 130

60 x

80 x x

90 x x x

120 x x x x

130 x x x x x

Best pair:

❖

Example:

● Flight duration 𝐷 = 155
● Movie times: 60, 80, 90, 120, 130

60 80 90 120 130

60 x +35

80 x x

90 x x x

120 x x x x

130 x x x x x

Best pair: 60, 130
 +35 above the target

First step: take
shortest + longest.

❖

Example:

● Flight duration 𝐷 = 155
● Movie times: 60, 80, 90, 120, 130

60 80 90 120 130

60 x +25 +35

80 x x x

90 x x x x

120 x x x x x

130 x x x x x

Best pair: 60, 120
 +25 above the target

First step: take
shortest + longest.

❖

Example:

● Flight duration 𝐷 = 155
● Movie times: 60, 80, 90, 120, 130

60 80 90 120 130

60 x +25 +35

80 x x x x

90 x x x x x

120 x x x x x

130 x x x x x

Best pair: 60, 120
 +25 above the target

First step: take
shortest + longest.

❖

Example:

● Flight duration 𝐷 = 155
● Movie times: 60, 80, 90, 120, 130

60 80 90 120 130

60 x -5 +25 +35

80 x x x x

90 x x x x x

120 x x x x x

130 x x x x x

Best pair: 60, 90
 -5 below the target

First step: take
shortest + longest.

❖

Example:

● Flight duration 𝐷 = 155
● Movie times: 60, 80, 90, 120, 130

60 80 90 120 130

60 x x -5 +25 +35

80 x x x x

90 x x x x x

120 x x x x x

130 x x x x x

Best pair: 60, 90
 -5 below the target

First step: take
shortest + longest.

❖

The Algorithm
● Keep index of shortest and longest remaining movies.

● On every iteration, pair the shortest and longest.

● If this pair is too long, remove longest movie; otherwise
remove shortest.
○ If times are sorted, finding new longest/shortest movie

takes Θ(1) time!

 60, 80, 90, 120, 130

❖

❖

Main Idea

Sorted structure allows you to rule out possibilities without
explicitly checking them. But, it requires you to spend the time
sorting first.

Tip: when designing an algorithm, think about sorting the input
first.

❖

Do you have any questions?

Thank you!

CampusWire!

