93333390

DSC 408
Lecture 9 :
Recurrences
T T T T T Tt T T T

93333390

Recurrence Relations
-ttt

Recurrence Relations

e Last Lecture: We found

T(n/2)+06(1),

T(n)=[e(1)

e This is a recurrence relation.

11113999

T ————
.............................

Solving Recurrences

e We want simple, non-recursive formula for T(n) so we can
see how fast T(n) grows.
o lIs it ©(n)? O(n?)? Something else?

e Obtaining a simple formula is called solving the recurrence.

11113999

T ————
.............................

Example: Getting Rich

e Suppose on day 1 of job, you are paid S$3.

e Each day thereafter, your pay is doubled.
e Let S(n) be your pay on day n:

2:5(n-1), n=2

S(n) = lB, n="1

11113999

T ————
.............................

0 A
- -

2:5(n-1), n=2
Example: Unrolling S(n) = 3 n=1

e How much are you paid on day 47?

e 5(4) = 2-5(3)

= 2.2.5(2)
= 2.2.2:5(1) S(n) = 271 - 3
= 2.2.2.3

= 24

11113999

T ————
.............................

Solving Recurrences in general

We'll use a four-step process to solve recurrences:
1. *Unroll” several times to find a pattern.

2. Write general formula for kth unroll.

3. Solve for # of unrolls needed to reach base case.

4. Plug this number into general formula.

133193149

T ————
.............................

pttppp.n

Step 1: Unroll several times s(n)

pttppp.n

Step 1: Unroll several times s(n)

pttppp.n

Step 1: Unroll several times s(n)

pttppp.n

2:2:2-2-5(n-4)

Step 1: Unroll several times s(n)

pttppp.n

#tk=3

2-2-2-5(n-3)
2:2:2-2-5(n-4)

Step 2: Find general formula

93333399

=4

Find general formula
#k=3

2-2-2-S(n-3)
2-2-2-2-S(n-4)#k

S(n) = 2:S(n-1)

Step 2
-ttt

pttppp.n

25 - S(n - k).

Step 3: Find step # of base case
e When do we see S(1)?

e On step k, S(n)

pttppp.n

2K - S(n - k).

Step 3: Find step # of base case
e Onstepk, S(n) =
e When do we see §(1)?

e Whenn-k =1

Step 3: Find step # of base case

=2k . S(n - k).

e On step k, S(n)

e \When do we see S(1)?

=>k=n-1

e Whenn-k =1

-wp_.pp.p-.rpb.

g
)
m
I
I
i

Step 4: Plug into general formula

e From step 2: S(n) = 2F - S(n - k).

e From step 3: Base case of S(1) reached whenk =n - 1.

e SO

11113999

T ————
.............................

Step 4: Plug into general formula

e From step 2: S(n) = 2% - S(n - k).

e From step 3: Base case of §(1) reached whenk =n - 1.

e So S(n)=2""- S - (n-1))

11113999

T ————
.............................

Step 4: Plug into general formula

e From step 2: S(n) = 2% - S(n - k).

e From step 3: Base case of §(1) reached whenk =n - 1.

e So S(n)=2""- S - (n-1))

— 2n—1 . S(1)

11113999

T ————
.............................

Step 4: Plug into general formula

e From step 2: S(n) = 2¢ - S(n - k).
e From step 3: Base case of §(1) reached whenk =n - 1.
e So S(n)=2""-Sn-(n-1))
= 2" §(1)
=2 -3 2-5(n-1), n22
3, n="1

S(n) = [

11113999

T ————
.............................

Solving the Recurrence

e \We have solved the recurrence: S(n) = 3 - 2"

e This is the exact solution. The asymptotic solution is
S(n) = O(2").

ceece

.p e We’ll call this method “solving by unrolling”.
.P e Take the job? Yes! On day 20 you will get ~ 1.5 mill.$

T ————
e

93333390

Binary Search Recurrence
T T 1T Tt Tt rrr T TP T TP i rrr i1

Binary Search

e What is the time complexity of binary_search?
e Best case: O(1).
e Worst case:

T(n/2)+06(1), n=22

T(n) = [9(1), n=1

11113999

T ————
.............................

==llllllllllllllllllllllll=l=
.-

.I.__.
= Simplification

| e When solving, we can replace O(f(n)) with f(n):

T(n) = [:(n/2)+ K z i?

I e As long as we state final answer using © notation!

B ————T
.............................

pttppp.n

e When solving, we can assume n is a8 power of 2.

Another Simplification

==llllllllllllllllllllllll=ll

II.__,
= Step 1: Unroll several times

o
< =8

B ————T
e

==llllllllllllllllllllllll=ll

II.__,
= Step 1: Unroll several times

T ————
.............................

==llllllllllllllllllllllll=ll

II.__,
= Step 1: Unroll several times

.P = [T(n/4) +11+1=T
= =

B ————T
.............................

==llllllllllllllllllllllll=ll

II.__,
= Step 1: Unroll several times

.P = [T(n/4) + 11 + 1 = T(n/4) + 2
= [T(n/8) +11+2=T(n/8) + 3
= L

B ————T
.............................

llllllllllllllll=l=
.-

Step 2: Find general formula

=
-

=T(n/2) +1 #k=1 On step k:
=T(n/4) + 2 #k=2
=T(n/8) + 3 #k=3

11113999

T ————
.............................

llllllllllllllll=l=
.-

Step 2: Find general formula

=
-

=T(n/2) +1 #k=1 On step k:
= T(n/4) + 2 #k=2 T(n) = 2?2 +K

=T(n/8) + 3 #k=3

11113999

T ————
.............................

llllllllllllllll=l=
.-

Step 2: Find general formula

=
-

=T(n/2) +1 #k=1 On step k:

= T(n/4) + 2 #k=2
n
= T(n/8) + 3 #k=3 T(n) — T(?) + k

11113999

T ————
.............................

==llllllllllllllllllllllll=l=
.-

.I-’ Step 3: Find step # of base case

T(n) = [T([2)+1, n=22

n=1

e Onstepk, T(n) = T(ﬁ) + k

e \When do we see 7(1)?
.I
= L

B ————T
.............................

.I-’ Step 3: Find step # of base case

T(n) - [T(n/Z) +1, n22

1, n=1

e Onstepk, T(n) =

e When do we see T(1
.I
= L

B ————T
.............................

T(n/2)+1, n2=2

.I-’ Step 3: Find step # of base case T(n - [o

e On stepk, T(n) = T(%) + k

e \When do we see T(1)?

o
< =8

B ————T
e

o
T(n/2)+1, n22

.I-’ Step 3: Find step # of base case Tn) = I n=1 N

.

B

e On stepk, T(n) = T(%) + k =

e When do we see T(1)? .

.

< -

B

.

¥ -

= B

T ———— T ———

..............................

T(n) = [T(n/Z) +1, n22 I-..

. Step 3: Find step # of base case n=1 [
.

B

e Onstepk, T'(n) = T(%) + k =

e When do we see T(1)? .

.

.I » .
B

.

=F'. log ,n T
= B
T ———— T ———
..............................

93392290

= log, n.

) + k
\

n
2k
e Base case of 7(1) reached when

Step 4: Plug into general formula

o T(n)

B .
| 4 .
.I.__. L
o .
D Step 4: Plug into general formula [
e -
« T(n) = T(Z) + k
a 2 T~ B
. e Base case of 7(1) reached when k = log, n. .
- -
T(n) = T(—.~) + log,n

O —— -
.I". .
= L

T ——
-ttt

Step 4: Plug into general formula

_ A
I
Al

o T(n) =

T + k ~_

e Base case of 7(1) reached when k = log, n.

T(n) = T(——) + log,n

lo,g2 n

C

T(n) = TA) + logzn

IIIIIIIII%E%EII

T ————
e

EEEEEEEEEE e
(]
B [Tnj2)+1, n=2 B
b ln) = [1, n=1 b
D Step 4: Plug into general formula [
e -
e T(n) = T(—) + k

a 2 T~ B
. e Base case of 7(1) reached when k = log, n. .
o .
= T(n) = T() + log,n =
& T = T() + log,n B
o rn) = .
= n) =1 + log ,n b

T
-ttt

EEEEEEEEEE e
(]
B [Tnj2)+1, n=2 B
b ln) = [1, n=1 b
D Step 4: Plug into general formula [
e -
e T(n) = T(—) + k

a 2 T~ B
. e Base case of 7(1) reached when k = log, n. .
o .
. T(n) = T(7) + log,n R
=I..) T(n) = T(1) + log,n =

i-'. T(n) =1 + logzn = O(log n) .

T
-ttt

II.__, .
Reminder

logcn

log n

log an o log a o log a c
o
o

T ————
e

ll lllllllllllllllllllllll=ll

II.__.
Reminder

logcn
logan ~ Toga loga log n

N

Constant

T ————
e

==llllllllllllllllllllllll=l=
.-

Constant
So we don’t write O(log, n)

Instead, just: ©(log n)

T ————
e

Time Complexity of Binary Search

e Best case: O(1)

e \Worst case: O(log n)

-wp_.pp.p-.rpb.

g
)
m
I
I
i

Is binary search fast?

e Suppose all 10" grains of sand are assigned a unique
number, sorted from least to greatest.

e Goal: find a particular grain.

e Assume one basic operation takes 1 nanosecond.

11113999

T ————
.............................

Is binary search fast?

Suppose all 10" grains of sand are assigned a unique
number, sorted from least to greatest.

Goal: find a particular grain.

Assume one basic operation takes 1 nanosecond.

Linear search: ?

11113999

T ————
.............................

Is binary search fast?

Suppose all 10" grains of sand are assigned a unique
number, sorted from least to greatest.

Goal: find a particular grain.

Assume one basic operation takes 1 nanosecond.

Linear search: 317 years.
Binary search:= 60 nanoseconds.

133193149

T ————
.............................

Binary search seems so much faster than linear search.
mudll
-ttt

What's the caveat?

Think!

CEEREREREY

=l

e The array must be sorted.
-ttt

e This takes Q(n) time.

Caveat

CEEREREREY

Why use binary search?

e If data is not sorted, sorting + binary search takes longer
than linear search.

e But if doing multiple queries, looking for nearby elements,
sort once and use binary search after.

11113999

T ————
.............................

Theoretical Lower Bounds

e A tight lower bound for searching a sorted list is Q(log n).

e This means that binary search has optimal worst case
time complexity.

11113999

T ————
.............................

Thank you!

.I CampusWire!
=l--

)

