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Recurrence Relations

e Last Lecture: We found

T(n/2)+06(1),

T(n)=[e(1)

e This is a recurrence relation.
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Solving Recurrences

e We want simple, non-recursive formula for T(n) so we can
see how fast T(n) grows.
o lIs it ©(n)? O(n?)? Something else?

e Obtaining a simple formula is called solving the recurrence.
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Example: Getting Rich

e Suppose on day 1 of job, you are paid S$3.

e Each day thereafter, your pay is doubled.
e Let S(n) be your pay on day n:

2:5(n-1), n=2

S(n) = lB, n="1
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2:5(n-1), n=2
Example: Unrolling  S(n) = 3 n=1

e How much are you paid on day 47?

e 5(4) = 2-5(3)

= 2.2.5(2)
= 2.2.2:5(1) S(n) = 271 - 3
= 2.2.2.3

= 24
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Solving Recurrences in general

We'll use a four-step process to solve recurrences:
1. *Unroll” several times to find a pattern.

2. Write general formula for kth unroll.

3. Solve for # of unrolls needed to reach base case.

4. Plug this number into general formula.
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pttppp.n

Step 1: Unroll several times s(n)



pttppp.n

Step 1: Unroll several times s(n)



pttppp.n

Step 1: Unroll several times s(n)



pttppp.n

2:2:2-2-5(n-4)

Step 1: Unroll several times s(n)



pttppp.n

#tk=3

2-2-2-5(n-3)
2:2:2-2-5(n-4)

Step 2: Find general formula
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Find general formula
#k=3

2-2-2-S(n-3)
2-2-2-2-S(n-4)#k

S(n) = 2:S(n-1)

Step 2
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pttppp.n

25 - S(n - k).

Step 3: Find step # of base case
e When do we see S(1)?

e On step k, S(n)




pttppp.n

2K - S(n - k).

Step 3: Find step # of base case
e Onstepk, S(n) =
e When do we see §(1)?

e Whenn-k =1




Step 3: Find step # of base case

=2k . S(n - k).

e On step k, S(n)

e \When do we see S(1)?

=>k=n-1

e Whenn-k =1
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Step 4: Plug into general formula

e From step 2: S(n) = 2F - S(n - k).

e From step 3: Base case of S(1) reached whenk =n - 1.

e SO
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Step 4: Plug into general formula

e From step 2: S(n) = 2% - S(n - k).

e From step 3: Base case of §(1) reached whenk =n - 1.

e So S(n)=2""- S - (n-1))
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Step 4: Plug into general formula

e From step 2: S(n) = 2% - S(n - k).

e From step 3: Base case of §(1) reached whenk =n - 1.

e So S(n)=2""- S - (n-1))

— 2n—1 . S(1)

11113999

T ————
.............................



Step 4: Plug into general formula

e From step 2: S(n) = 2¢ - S(n - k).
e From step 3: Base case of §(1) reached whenk =n - 1.
e So S(n)=2""-Sn-(n-1))
= 2" §(1)
=2 -3 2-5(n-1), n22
3, n="1

S(n) = [
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Solving the Recurrence

e \We have solved the recurrence: S(n) = 3 - 2"

e This is the exact solution. The asymptotic solution is
S(n) = O(2").

ceece

.p e We’ll call this method “solving by unrolling”.
.P e Take the job? Yes! On day 20 you will get ~ 1.5 mill.$
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Binary Search

e What is the time complexity of binary_search?
e Best case: O(1).
e Worst case:

T(n/2)+06(1), n=22

T(n) = [9(1), n=1
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= Simplification

| e When solving, we can replace O(f(n)) with f(n):

T(n) = [:(n/2)+ K z i?

I e As long as we state final answer using © notation!
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pttppp.n

e When solving, we can assume n is a8 power of 2.

Another Simplification
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= Step 1: Unroll several times

o
< =8
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= Step 1: Unroll several times
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= Step 1: Unroll several times

.P = [T(n/4) +11+1=T
= =
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= Step 1: Unroll several times

.P = [T(n/4) + 11 + 1 = T(n/4) + 2
= [T(n/8) +11+2=T(n/8) + 3
= L
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Step 2: Find general formula

=
-

=T(n/2) +1 #k=1 On step k:
=T(n/4) + 2 #k=2
=T(n/8) + 3 #k=3
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Step 2: Find general formula

=
-

=T(n/2) +1 #k=1 On step k:
= T(n/4) + 2 #k=2 T(n) = 2?2 +K

=T(n/8) + 3 #k=3

11113999

T ————
.............................



llllllllllllllll=l=
.-

Step 2: Find general formula

=
-

=T(n/2) +1 #k=1 On step k:

= T(n/4) + 2 #k=2
n
= T(n/8) + 3 #k=3 T(n) — T(?) + k
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.I-’ Step 3: Find step # of base case

T(n) = [T( [2)+1, n=22

n=1

e Onstepk, T(n) = T(ﬁ) + k

e \When do we see 7(1)?
.I
= L
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.I-’ Step 3: Find step # of base case

T(n) - [T(n/Z) +1, n22

1, n=1

e Onstepk, T(n) =

e When do we see T(1
.I
= L
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T(n/2)+1, n2=2

.I-’ Step 3: Find step # of base case T(n - [ o

e On stepk, T(n) = T(%) + k

e \When do we see T(1)?

o
< =8
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o
T(n/2)+1, n22

.I-’ Step 3: Find step # of base case Tn) = I n=1 N

.

B

e On stepk, T(n) = T(%) + k =

e When do we see T(1)? .

.

< -

B

.
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T(n) = [T(n/Z) +1, n22 I-..

. Step 3: Find step # of base case n=1 [
.

B

e Onstepk, T'(n) = T(%) + k =

e When do we see T(1)? .

.
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= log, n.

) + k
\

_n_
2k
e Base case of 7(1) reached when

Step 4: Plug into general formula

o T(n)
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D Step 4: Plug into general formula [
e -
« T(n) = T(Z) + k
a 2 T~ B
. e Base case of 7(1) reached when k = log, n. .
- -
T(n) = T(—.~) + log,n
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Step 4: Plug into general formula

_ A
I
Al

o T(n) =

T + k ~_

e Base case of 7(1) reached when k = log, n.

T(n) = T(——) + log,n

lo,g2 n

C

T(n) = TA) + logzn
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(]
B [Tnj2)+1, n=2 B
b ln) = [1, n=1 b
D Step 4: Plug into general formula [
e -
e T(n) = T(—) + k

a 2 T~ B
. e Base case of 7(1) reached when k = log, n. .
o .
= T(n) = T() + log,n =
& T = T() + log,n B
o rn) = .
= n) =1 + log ,n b
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(]
B [Tnj2)+1, n=2 B
b ln) = [1, n=1 b
D Step 4: Plug into general formula [
e -
e T(n) = T(—) + k

a 2 T~ B
. e Base case of 7(1) reached when k = log, n. .
o .
. T(n) = T(7) + log,n R
=I..) T(n) = T(1) + log,n =

i-'. T(n) =1 + logzn = O(log n) .

T
-ttt



II.__, .
Reminder

logcn

log n

log an o log a o log a c
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Reminder

logcn
logan ~ Toga loga log n

N

Constant
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Constant
So we don’t write O(log, n)

Instead, just: ©(log n)
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Time Complexity of Binary Search

e Best case: O(1)

e \Worst case: O(log n)
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Is binary search fast?

e Suppose all 10" grains of sand are assigned a unique
number, sorted from least to greatest.

e Goal: find a particular grain.

e Assume one basic operation takes 1 nanosecond.
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Is binary search fast?

Suppose all 10" grains of sand are assigned a unique
number, sorted from least to greatest.

Goal: find a particular grain.

Assume one basic operation takes 1 nanosecond.

Linear search: ?
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Is binary search fast?

Suppose all 10" grains of sand are assigned a unique
number, sorted from least to greatest.

Goal: find a particular grain.

Assume one basic operation takes 1 nanosecond.

Linear search: 317 years.
Binary search:= 60 nanoseconds.
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Binary search seems so much faster than linear search.
mudll
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What's the caveat?

Think!
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e The array must be sorted.
-ttt

e This takes Q(n) time.

Caveat
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Why use binary search?

e If data is not sorted, sorting + binary search takes longer
than linear search.

e But if doing multiple queries, looking for nearby elements,
sort once and use binary search after.
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Theoretical Lower Bounds

e A tight lower bound for searching a sorted list is Q(log n).

e This means that binary search has optimal worst case
time complexity.
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---------------------------

Thank you!

.I CampusWire!
=l--

)



