
❖

DSC 40B
Lecture 9 :

Recurrences

❖

Recurrence Relations

❖

Recurrence Relations

● Last Lecture: We found

● This is a recurrence relation.

❖

Solving Recurrences

● We want simple, non-recursive formula for 𝑇(𝑛) so we can
see how fast 𝑇(𝑛) grows.
○ Is it Θ(𝑛)? Θ(𝑛2)? Something else?

● Obtaining a simple formula is called solving the recurrence.

❖

Example: Getting Rich

● Suppose on day 1 of job, you are paid $3.

● Each day thereafter, your pay is doubled.

● Let 𝑆(𝑛) be your pay on day 𝑛:

❖

Example: Unrolling

● How much are you paid on day 4?

● S(4) = 2·S(3)

 = 2·2·S(2)

 = 2·2·2·S(1)

 = 2·2·2·3

 = 24

S(n) = 2n-1 · 3

❖

Solving Recurrences in general

We’ll use a four-step process to solve recurrences:

1. “Unroll” several times to find a pattern.

2. Write general formula for 𝑘th unroll.

3. Solve for # of unrolls needed to reach base case.

4. Plug this number into general formula.

❖

Step 1: Unroll several times

S(n) = 2·S(n-1)

❖

Step 1: Unroll several times

S(n) = 2·S(n-1)

 = 2·2·S(n-2)

❖

Step 1: Unroll several times

S(n) = 2·S(n-1)

 = 2·2·S(n-2)

 = 2·2·2·S(n-3)

❖

Step 1: Unroll several times

S(n) = 2·S(n-1)

 = 2·2·S(n-2)

 = 2·2·2·S(n-3)

 = 2·2·2·2·S(n-4)

 ……

❖

Step 2: Find general formula

S(n) = 2·S(n-1) #k=1

 = 2·2·S(n-2) #k=2

 = 2·2·2·S(n-3) #k=3

 = 2·2·2·2·S(n-4)

On step k:

❖

Step 2: Find general formula

S(n) = 2·S(n-1) #k=1

 = 2·2·S(n-2) #k=2

 = 2·2·2·S(n-3) #k=3

 = 2·2·2·2·S(n-4)#k=4

On step k:

S(n) = 2k ·S(n-k)

❖

Step 3: Find step # of base case

● On step 𝑘, 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● When do we see 𝑆(1)?

❖

Step 3: Find step # of base case

● On step 𝑘, 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● When do we see 𝑆(1)?

● When n - k =1

❖

Step 3: Find step # of base case

● On step 𝑘, 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● When do we see 𝑆(1)?

● When n - k =1 => k = n - 1

❖

Step 4: Plug into general formula

● From step 2: 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● From step 3: Base case of 𝑆(1) reached when 𝑘 = 𝑛 − 1.

● So

❖

Step 4: Plug into general formula

● From step 2: 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● From step 3: Base case of 𝑆(1) reached when 𝑘 = 𝑛 − 1.

● So S(n) = 2n-1 ⋅ 𝑆(𝑛 − (n-1))

❖

Step 4: Plug into general formula

● From step 2: 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● From step 3: Base case of 𝑆(1) reached when 𝑘 = 𝑛 − 1.

● So S(n) = 2n-1 ⋅ 𝑆(𝑛 − (n-1))

 = 2n-1 ⋅ 𝑆(1)

❖

Step 4: Plug into general formula

● From step 2: 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● From step 3: Base case of 𝑆(1) reached when 𝑘 = 𝑛 − 1.

● So S(n) = 2n-1 ⋅ 𝑆(𝑛 − (n-1))

 = 2n-1 ⋅ 𝑆(1)

 = 2n-1 ⋅ 3

❖

Solving the Recurrence

● We have solved the recurrence: 𝑆(𝑛) = 3 ⋅ 2𝑛−1

● This is the exact solution. The asymptotic solution is

 𝑆(𝑛) = Θ(2𝑛).

● We’ll call this method “solving by unrolling”.
● Take the job? Yes! On day 20 you will get ~ 1.5 mill.$

❖

Binary Search Recurrence

❖

Binary Search

● What is the time complexity of binary_search?
● Best case: Θ(1).
● Worst case:

❖

Simplification

● When solving, we can replace Θ(𝑓(𝑛)) with 𝑓(𝑛):

● As long as we state final answer using Θ notation!

❖

Another Simplification

● When solving, we can assume 𝑛 is a power of 2.

❖

Step 1: Unroll several times

T(n) = T(n/2) + 1

❖

Step 1: Unroll several times

T(n) = T(n/2) + 1

❖

Step 1: Unroll several times

T(n) = T(n/2) + 1

 = [T(n/4) + 1] + 1 = T(n/4) + 2

❖

Step 1: Unroll several times

T(n) = T(n/2) + 1

 = [T(n/4) + 1] + 1 = T(n/4) + 2

 = [T(n/8) + 1] + 2 = T(n/8) + 3

❖

Step 2: Find general formula

T(n) = T(n/2) + 1 #k=1

 = T(n/4) + 2 #k=2

 = T(n/8) + 3 #k=3

On step k:

❖

Step 2: Find general formula

T(n) = T(n/2) + 1 #k=1

 = T(n/4) + 2 #k=2

 = T(n/8) + 3 #k=3

On step k:

T(n) = ? + k

❖

Step 2: Find general formula

T(n) = T(n/2) + 1 #k=1

 = T(n/4) + 2 #k=2

 = T(n/8) + 3 #k=3

On step k:

❖

Step 3: Find step # of base case

● On step 𝑘,
● When do we see 𝑇(1)?

❖

Step 3: Find step # of base case

● On step 𝑘,
● When do we see 𝑇(1)?

❖

Step 3: Find step # of base case

● On step 𝑘,
● When do we see 𝑇(1)?

❖

Step 3: Find step # of base case

● On step 𝑘,
● When do we see 𝑇(1)?

❖

Step 3: Find step # of base case

● On step 𝑘,
● When do we see 𝑇(1)?

❖

Step 4: Plug into general formula

●

● Base case of 𝑇(1) reached when 𝑘 = log2 𝑛.

❖

Step 4: Plug into general formula

●

● Base case of 𝑇(1) reached when 𝑘 = log2 𝑛.

❖

Step 4: Plug into general formula

●

● Base case of 𝑇(1) reached when 𝑘 = log2 𝑛.

❖

Step 4: Plug into general formula

●

● Base case of 𝑇(1) reached when 𝑘 = log2 𝑛.

❖

Step 4: Plug into general formula

●

● Base case of 𝑇(1) reached when 𝑘 = log2 𝑛.

❖

Reminder

❖

Reminder

Constant

❖

Reminder

● So we don’t write Θ(log2 𝑛)
● Instead, just: Θ(log 𝑛)

Constant

❖

Time Complexity of Binary Search

● Best case: Θ(1)

● Worst case: Θ(log 𝑛)

❖

Is binary search fast?

● Suppose all 1019 grains of sand are assigned a unique
number, sorted from least to greatest.

● Goal: find a particular grain.

● Assume one basic operation takes 1 nanosecond.

❖

Is binary search fast?

● Suppose all 1019 grains of sand are assigned a unique
number, sorted from least to greatest.

● Goal: find a particular grain.

● Assume one basic operation takes 1 nanosecond.

● Linear search: ?

❖

Is binary search fast?

● Suppose all 1019 grains of sand are assigned a unique
number, sorted from least to greatest.

● Goal: find a particular grain.

● Assume one basic operation takes 1 nanosecond.

● Linear search: 317 years.
● Binary search:≈ 60 nanoseconds.

❖

Think!

Binary search seems so much faster than linear search.
What’s the caveat?

❖

Caveat

● The array must be sorted.

● This takes Ω(𝑛) time.

❖

Why use binary search?

● If data is not sorted, sorting + binary search takes longer
than linear search.

● But if doing multiple queries, looking for nearby elements,
sort once and use binary search after.

❖

Theoretical Lower Bounds

● A tight lower bound for searching a sorted list is Ω(log 𝑛).
● This means that binary search has optimal worst case

time complexity.

❖

Do you have any questions?

Thank you!

CampusWire!

