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Recurrence Relations
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Recurrence Relations

●  Last Lecture: We found 

●  This is a recurrence relation.
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Solving Recurrences

●  We want simple, non-recursive formula for 𝑇(𝑛) so we can 
see how fast 𝑇(𝑛) grows.
○ Is it Θ(𝑛)? Θ(𝑛2)? Something else?

● Obtaining a simple formula is called solving the recurrence.



❖

Example: Getting Rich

● Suppose on day 1 of job, you are paid $3.

● Each day thereafter, your pay is doubled.

● Let 𝑆(𝑛) be your pay on day 𝑛:
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Example: Unrolling

● How much are you paid on day 4?

● S(4) = 2·S(3)

       = 2·2·S(2)

       = 2·2·2·S(1)

       = 2·2·2·3

  = 24

S(n) = 2n-1  · 3
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Solving Recurrences in general

We’ll use a four-step process to solve recurrences:

1. “Unroll” several times to find a pattern.

2. Write general formula for 𝑘th unroll.

3. Solve for # of unrolls needed to reach base case.

4. Plug this number into general formula.
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Step 1: Unroll several times

S(n) = 2·S(n-1)
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Step 1: Unroll several times

S(n) = 2·S(n-1)

       = 2·2·S(n-2)
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Step 1: Unroll several times

S(n) = 2·S(n-1)

        = 2·2·S(n-2)

   = 2·2·2·S(n-3)
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Step 1: Unroll several times

S(n) = 2·S(n-1)

        = 2·2·S(n-2)

   = 2·2·2·S(n-3)

    = 2·2·2·2·S(n-4)

    …… 
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Step 2: Find general formula

S(n) = 2·S(n-1)           #k=1

        = 2·2·S(n-2)       #k=2

   = 2·2·2·S(n-3)    #k=3

    = 2·2·2·2·S(n-4)

On step k: 
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Step 2: Find general formula

S(n) = 2·S(n-1)           #k=1

        = 2·2·S(n-2)       #k=2

   = 2·2·2·S(n-3)    #k=3

    = 2·2·2·2·S(n-4)#k=4

On step k: 

S(n) = 2k ·S(n-k)
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Step 3: Find step # of base case

● On step 𝑘, 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● When do we see 𝑆(1)?
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Step 3: Find step # of base case

● On step 𝑘, 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● When do we see 𝑆(1)?

● When n - k =1
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Step 3: Find step # of base case

● On step 𝑘, 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● When do we see 𝑆(1)?

● When n - k =1   => k = n - 1 
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Step 4: Plug into general formula

● From step 2: 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● From step 3: Base case of 𝑆(1) reached when 𝑘 = 𝑛 − 1.

● So



❖

Step 4: Plug into general formula

● From step 2: 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● From step 3: Base case of 𝑆(1) reached when 𝑘 = 𝑛 − 1.

● So   S(n) = 2n-1 ⋅ 𝑆(𝑛 − (n-1))
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Step 4: Plug into general formula

● From step 2: 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● From step 3: Base case of 𝑆(1) reached when 𝑘 = 𝑛 − 1.

● So   S(n) = 2n-1 ⋅ 𝑆(𝑛 − (n-1))

              = 2n-1 ⋅ 𝑆(1)
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Step 4: Plug into general formula

● From step 2: 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● From step 3: Base case of 𝑆(1) reached when 𝑘 = 𝑛 − 1.

● So   S(n) = 2n-1 ⋅ 𝑆(𝑛 − (n-1))

              = 2n-1 ⋅ 𝑆(1)

              = 2n-1 ⋅ 3
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Solving the Recurrence

●  We have solved the recurrence: 𝑆(𝑛) = 3 ⋅ 2𝑛−1

●  This is the exact solution. The asymptotic solution is 

                       𝑆(𝑛) = Θ(2𝑛).

● We’ll call this method “solving by unrolling”.
● Take the job? Yes! On day 20 you will get ~ 1.5 mill.$
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Binary Search Recurrence
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Binary Search

●  What is the time complexity of binary_search?
●  Best case: Θ(1).
●  Worst case:
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Simplification

● When solving, we can replace Θ(𝑓(𝑛)) with 𝑓(𝑛):
 

● As long as we state final answer using Θ notation!
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Another Simplification

● When solving, we can assume 𝑛 is a power of 2.
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Step 1: Unroll several times

T(n) = T(n/2) + 1
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Step 1: Unroll several times

T(n) = T(n/2) + 1
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Step 1: Unroll several times

T(n) = T(n/2) + 1

        = [T(n/4) + 1] + 1 = T(n/4) + 2
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Step 1: Unroll several times

T(n) = T(n/2) + 1

        = [T(n/4) + 1] + 1 = T(n/4) + 2

        = [T(n/8) + 1 ] + 2 = T(n/8) + 3



❖

Step 2: Find general formula

T(n) = T(n/2) + 1    #k=1

        = T(n/4) + 2   #k=2

        = T(n/8) + 3   #k=3

On step k:
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Step 2: Find general formula

T(n) = T(n/2) + 1    #k=1

        = T(n/4) + 2   #k=2

        = T(n/8) + 3   #k=3

On step k:

T(n) =  ?  + k 
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Step 2: Find general formula

T(n) = T(n/2) + 1    #k=1

        = T(n/4) + 2   #k=2

        = T(n/8) + 3   #k=3

On step k:



❖

Step 3: Find step # of base case

● On step 𝑘, 
● When do we see 𝑇(1)?
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Step 3: Find step # of base case

● On step 𝑘, 
● When do we see 𝑇(1)?
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Step 3: Find step # of base case

● On step 𝑘, 
● When do we see 𝑇(1)?
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Step 3: Find step # of base case

● On step 𝑘, 
● When do we see 𝑇(1)?
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Step 3: Find step # of base case

● On step 𝑘, 
● When do we see 𝑇(1)?
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Step 4: Plug into general formula

●  

● Base case of 𝑇(1) reached when 𝑘 = log2 𝑛.



❖

Step 4: Plug into general formula

●  

● Base case of 𝑇(1) reached when 𝑘 = log2 𝑛.



❖

Step 4: Plug into general formula

●  

● Base case of 𝑇(1) reached when 𝑘 = log2 𝑛.
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Step 4: Plug into general formula

●  

● Base case of 𝑇(1) reached when 𝑘 = log2 𝑛.
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Step 4: Plug into general formula

●  

● Base case of 𝑇(1) reached when 𝑘 = log2 𝑛.
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Reminder
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Reminder

Constant
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Reminder

●  So we don’t write Θ(log2 𝑛)
●  Instead, just: Θ(log 𝑛)

Constant
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Time Complexity of Binary Search

●  Best case: Θ(1)

●  Worst case: Θ(log 𝑛)



❖

Is binary search fast?

● Suppose all 1019 grains of sand are assigned a unique 
number, sorted from least to greatest.

●  Goal: find a particular grain.

●  Assume one basic operation takes 1 nanosecond.
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Is binary search fast?

●  Suppose all 1019 grains of sand are assigned a unique 
number, sorted from least to greatest.

●  Goal: find a particular grain.

●  Assume one basic operation takes 1 nanosecond.

● Linear search: ?



❖

Is binary search fast?

●  Suppose all 1019 grains of sand are assigned a unique 
number, sorted from least to greatest.

●  Goal: find a particular grain.

●  Assume one basic operation takes 1 nanosecond.

● Linear search: 317 years. 
● Binary search:≈ 60 nanoseconds.
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Think!

Binary search seems so much faster than linear search. 
What’s the caveat?
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Caveat

● The array must be sorted.

● This takes Ω(𝑛) time.
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Why use binary search?

● If data is not sorted, sorting + binary search takes longer 
than linear search.

●  But if doing multiple queries, looking for nearby elements, 
sort once and use binary search after.
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Theoretical Lower Bounds

● A tight lower bound for searching a sorted list is Ω(log 𝑛).
● This means that binary search has optimal worst case 

time complexity.
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Do you have any questions?

Thank you!

CampusWire!


