
DSC40B:
Theoretical Foundations of Data

Science II

Lecture 8: Binary search tree

Instructor: Yusu Wang

 Imagine you are maintaining a database indexed by some keys (real values), and you
hope to support the following operations:

 Search
 Maximum
 Minimum
 Successor
 Predecessor

 Insert
 Delete
 Extract-Max
 Increase-key

 Θ lg𝑛𝑛
 Θ 1
 Θ 1
 Θ 1
 Θ 1



 Θ 𝑛𝑛
 Θ 𝑛𝑛


(Dynamic) Set operations

First approach: sort the array of keys

How to have a good data
structure so we can support

all these operations
efficiently?

Dynamic
operations!

Using a sorted array can
handle all static operations

efficientlyStatic
operations!

Today
 Binary search tree
 support all the operations from previous slide

 in time proportional to height of tree

 (Review): how to implement key operations, and time complexity
 search, insert (and delete)

 Extension to balanced binary search tree

 Select query: augmenting data structure
 median, order statistics

Part A:
What is binary search tree?

First: Binary tree
 A binary tree is a rooted tree
 where each node has at most 2 children

 Represented by a linked data structure

 Each node contains at least fields:
 Key
 Left
 Right
 Parent

3

2 4

Example
 From root, following left pointers, we will visit
 13, 6, 3, 2,𝑁𝑁𝑁𝑁𝑙𝑙

13

18

3

2

6

4

7

139

17 20

Binary tree
 A binary tree is a rooted tree where
 each node has at most 2 children

 A node is the root of the tree
 if its parent is Nil

 A node is a leaf
 if both children are Nil

 Left sub-tree, right sub-tree

 A complete binary tree is a binary tree
 where each node has two children other than leaves
 and each level (except possibly last level) is filled, and all nodes are as left as possible.

3

2 4

5 12 1 6

Binary search tree (BST)

 Binary-search-tree property
 For any node 𝑥𝑥 ∈ 𝑇𝑇,

 𝑥𝑥.𝐾𝐾𝐾𝐾𝐾𝐾 ≥ 𝑦𝑦.𝐾𝐾𝐾𝐾𝐾𝐾 if 𝑦𝑦 is in the left subtree of 𝑥𝑥; and
 𝑥𝑥.𝐾𝐾𝐾𝐾𝐾𝐾 ≤ 𝑦𝑦.𝐾𝐾𝐾𝐾𝐾𝐾 if 𝑦𝑦 is in the right subtree of 𝑥𝑥

 A binary tree 𝑇𝑇 is a binary search tree (BST) if
 it satisfies the binary search tree property

Example
 A valid BST

13

18

3

2

6

4

7

139

17 20

Example
 ?

13

18

3

2

6

8

7

139

19 20

Properties
 Given the same set of elements
 there are many possible BSTs over them

 Minimum?
 Does it have to be a leaf?

3

2

6

4

7

9

Properties
 Given the same set of elements
 there are many possible BSTs over them

 Minimum?
 Does it have to be a leaf?

 Maximum?

 Given 𝑛𝑛 nodes,
 Tallest possible BST tree has height ℎ = __________
 Shortest possible BST tree has height ℎ = __________

3

7

6

4

8

9

𝑛𝑛
log2 𝑛𝑛 = Θ(lg𝑛𝑛)

Part B:
Operations in BST

Search operation
 A BST 𝑇𝑇 with 𝑛𝑛 nodes can be viewed as a way to store 𝑛𝑛 keys in a smart way, so that

queries among these keys become easy.

 Tree-search(𝑥𝑥,𝑘𝑘)
 Input: given a tree node 𝑥𝑥 and a query key 𝑘𝑘
 Output: search whether 𝑘𝑘 is in the tree rooted at 𝑥𝑥

 if it is in, return a node 𝑦𝑦 s.t. 𝑦𝑦. 𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑘𝑘
 otherwise, returns 𝑁𝑁𝑁𝑁𝑁𝑁

3

7

6

4

8

9

Tree-search(𝑥𝑥, 8)

𝑥𝑥

Tree-search(𝑥𝑥, 4)

Tree-search(𝑥𝑥, 5)

Tree-search algorithm, recursive version

 Given an input tree 𝑇𝑇 and a key 𝑘𝑘
 we will start by calling Tree-search(𝑇𝑇.root, 𝑘𝑘)

Tree-search (x, k)
if x = Nil or k = x.key

then return x
if k < x.key

then return Tree-search(x.left, k)
else return Tree-search(x.right, k)

3

7

6

4

8

9

Tree-search algorithm, recursive version

 Time complexity analysis
 let 𝑇𝑇 𝑛𝑛 denote the worst case time complexity of procedure Tree-search() on any

tree of 𝑛𝑛 nodes

Tree-search (x, k)
if x = Nil or k = x.key

then return x
if k < x.key

then return Tree-search(x.left, k)
else return Tree-search(x.right, k)

3

7

6

4

8

9

Tree-search algorithm, recursive version

 Time complexity analysis
 other than recursive call, Θ 1 within each Tree-search call
 thus, 𝑇𝑇 𝑛𝑛 is proportional to the number of nodes 𝑥𝑥 we will call Tree-search on
 𝑇𝑇 𝑛𝑛 = Θ(tree-height) = O(𝑛𝑛)

Tree-search (x, k)
if x = Nil or k = x.key

then return x
if k < x.key

then return Tree-search(x.left, k)
else return Tree-search(x.right, k)

3

7

6

4

8

9

Tree-search: iterative version

Minimum / Maximum
 Tree-minimum(𝑥𝑥)
 Input: a node 𝑥𝑥 of a BST 𝑇𝑇
 Output: return the node containing minimum key in the subtree rooted at 𝑥𝑥

3

7

6

4

8

9

𝑥𝑥

𝑦𝑦

Minimum / Maximum
 Tree-minimum(𝑥𝑥)
 Input: a node 𝑥𝑥 of a BST 𝑇𝑇
 Output: return the node containing a minimum key in the subtree rooted at 𝑥𝑥

3

7

6

4

8

9

Tree-minimum(x)
while (x.left ≠ Nil)

do x = x.left;
return x;

 Time complexity
 𝑇𝑇 𝑛𝑛 = Θ(ℎ) where ℎ is height of input tree

Minimum / Maximum
 Tree-maximum(𝑥𝑥)
 Input: a node 𝑥𝑥 of a BST 𝑇𝑇
 Output: return the node containing a maximum key in the subtree rooted at 𝑥𝑥

3

7

6

4

8

9

Tree-maximum(x)
while (x.right ≠ Nil)

do x = x.right;
return x;

 Time complexity
 𝑇𝑇 𝑛𝑛 = Θ(ℎ) where ℎ is height of input tree

Tree-insert
 Tree-insert(𝑥𝑥, 𝑘𝑘)
 Input: a BST tree node 𝑥𝑥 and a key 𝑘𝑘
 Output: insert 𝑘𝑘 to the tree rooted at 𝑥𝑥 such that the resulting tree is still a binary

search tree

Examples

15

3

2

6

4

7

13

9

Tree-Insert(T.root, 8)

T.root

Tree-Insert(T.root, 6.5)

Use tree-search !

Tree-insert
Tree-insert(𝑇𝑇, 𝑘𝑘)

y = Nil; x = T.root
z.key = 𝑘𝑘; z.left = Nil; z.right=Nil
while (x ≠ Nil) do

y = x
if (z.key < x.key)

then x = x.left
else x = x.right

z.parent = y
if (y = Nil) then T.root = z
else if (z.key < y.key)

then y.left = z
else y.right = z

• z is the new node to be inserted

• Locate potential parent y of z.

• Set up z as appropriate child of y

Tree-insert
Tree-insert(𝑇𝑇, 𝑘𝑘)

y = Nil; x = T.root
z.key = 𝑘𝑘; z.left = Nil; z.right=Nil
while (x ≠ Nil) do

y = x
if (z.key < x.key)

then x = x.left
else x = x.right

z.parent = y
if (y = Nil) then T.root = z
else if (z.key < y.key)

then y.left = z
else y.right = z

 Time complexity
 𝑇𝑇 𝑛𝑛 = Θ(ℎ), where ℎ

is height of input tree

Summary: BST is good for both static and dynamic operations

 Suppose 𝑛𝑛 input keys are already stored in a BST of height ℎ

 Search
 Maximum
 Minimum
 Successor
 Predecessor

 Insert
 Delete
 Extract-Max
 Increase-key

Time complexity

Θ(ℎ)
Θ(ℎ)
Θ(ℎ)

Θ(ℎ)
Θ(ℎ)
Θ(ℎ)
Θ(ℎ)

Θ(ℎ)
Θ(ℎ)

• However, performance
depending on height!

• Height ℎ = 𝑂𝑂 𝑛𝑛 and
ℎ = Ω(lg𝑛𝑛)

• To have good
performance, we want
to keep the tree height
low!

Part C:
Balanced binary search tree

Good tree

13

18

3

2

6

4

7

139

17 20

6 19

Bad Tree

Balanced binary search tree
 It turns out that there are ways to add extra conditions to binary search trees,

so that their height is Θ(lg𝑛𝑛)
 E.g, red-black tree, AVL tree, etc

 Once such a tree is created,
 it can support search, minimum, maximum etc in Θ ℎ = Θ(lg𝑛𝑛) time using the same

algorithms described before
 the extra work comes at handling dynamic operations: insertion, deletion, and so on.

Re-balancing is needed
 however, for standard balanced BSTs, all these operations can be handled in
Θ(lg𝑛𝑛) time.

Rotation operation
 Left rotation or Right rotation to keep tree height low

x

y

A B

C

y

x
A

B C

right rotation

left rotation

With balanced BST
 Suppose 𝑛𝑛 input keys are already stored in a balanced BST

 Search
 Maximum
 Minimum
 Successor
 Predecessor

 Insert
 Delete
 Extract-Max
 Increase-key

Time complexity

Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)

Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)

Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)

• Height of tree will be
Θ(lg𝑛𝑛), where 𝑛𝑛 is
number of nodes in the
tree

Part D:
Select queries

augmenting data structure

 What if we also want to perform Select operation

 BST-Select (x, k):
 Given a list of records whose keys are stored in a tree rooted at x, return the node whose key has

rank k.

 We can use QuickSelect to do this in linear time.. Why are we not satisfied?
 What if we have to do it many times?

 Sort it first

 But what if we also have dynamic changes?
 Need a data structure that can support Select under dynamic changes

BST

13

18

3

2

6

4

7

139

17 20

6 19

 What if we also want to perform Select operation

 BST-Select (x, k):
 Given a list of records whose keys are stored in a tree rooted at x, return the node

whose key has rank k.

 We can do linear search to find it. But can we do better?

 Goal:
 Augment the binary search tree data structure so as to support Select (x, k)

efficiently

In particular,
 BST-Select (x, k)
 Goal:
 Augment the binary search tree data structure so as to support BST-Select (x, k)

efficiently

 Ordinary binary search tree T
 O(h) time for BST-Select(T.root, k) where h is height of tree T

 Using balanced search tree)
 O(lg n) time for BST-Select(T.root, k)

How do we augment a BST T?
 At each node x of the tree T
 store x.size = # nodes in the subtree rooted at x

 Include x itself
 If a node (leaf) is NIL, its size is 0.

 Space of an augmented tree:
 Θ 𝑛𝑛

An example

M
9

C
5

A
1

F
3

D
1

H
1

P
3

T
2

Q
1

How do we augment a BST T?
 At each node x of the tree T
 store x.size = # nodes in the subtree rooted at x

 Include x itself
 If a node (leaf) is NIL, its size is 0.

 Space of an augmented tree:
 Θ 𝑛𝑛

 Basic property:
 𝑥𝑥. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑥𝑥. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1

How to set up size information ?

M
9

C
5

A
1

F
3

D
1

H
1

P
3

T
2

Q
1

How to setup size information?
 procedure AugmentSize(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑥𝑥)

If (𝑥𝑥 ≠ 𝑁𝑁𝑁𝑁𝑁𝑁) then
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = AugmentSize(𝑥𝑥. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙);
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = AugmentSize(𝑥𝑥. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟);
𝑥𝑥. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 1;
Return(𝑥𝑥. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠);

end
Return (0);

Postorder traversal
of the tree !

Time complexity for Augmentsize:
Θ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

How to perform select with aug-BST?

M
9

C
5

A
1

F
3

D
1

H
1

P
3

T
2

Q
1

Select element
with rank 3?

Select element
with rank 7?

Select element
with rank 6?

 Let T be an augmented binary search tree
 BST-Select(x, k):
 Return the k-th smallest element in the subtree rooted at x
 BST-Select(T.root, k) returns the k-th smallest elements in the entire tree.

 Using ideas just described, BST-Select(x, k) can be implemented to have
Θ(ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) time complexity
 which is Θ lg𝑛𝑛 for a balanced binary tree.
 See homework.

Are we done?
 Need to maintain the augmented information under dynamic changes of the

tree!
 i.e, under insertions / deletions
 in this case, just adjusting this size count as we update nodes, or under rotations, and

it does not increase asymptotic time complexity of these operations

 Remark:
 Select() in an sorted array can be done in Θ 1 time.
 However, an array does not support dynamic operations (insert/delete) efficiently.

That’s augmented BST is a better data structure in this case.

Summary
 Simple example of augmenting data structures
 In general, the augmented information can be quite complicated
 Can be a separate data structure!

 Need to consider how to maintain such information under dynamic changes

FIN

	DSC40B:�Theoretical Foundations of Data Science II
	(Dynamic) Set operations
	Today
	Part A:�What is binary search tree?
	First: Binary tree
	Example
	Binary tree
	Binary search tree (BST)
	Example
	Example
	Properties
	Properties
	Part B:�Operations in BST
	Search operation
	Tree-search algorithm, recursive version
	Tree-search algorithm, recursive version
	Tree-search algorithm, recursive version
	Tree-search: iterative version
	Minimum / Maximum
	Minimum / Maximum
	Minimum / Maximum
	Tree-insert
	Examples
	Tree-insert
	Tree-insert
	Summary: BST is good for both static and dynamic operations
	Part C:�Balanced binary search tree
	Good tree
	Bad Tree
	Balanced binary search tree
	Rotation operation
	With balanced BST
	Part D: �Select queries�augmenting data structure
	Slide Number 34
	BST
	Slide Number 36
	In particular,
	How do we augment a BST T?
	An example
	How do we augment a BST T?
	How to set up size information ?
	How to setup size information?
	How to perform select with aug-BST?
	Slide Number 44
	Are we done?
	Summary
	FIN

