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 Imagine you are maintaining a database indexed by some keys (real values), and you 
hope to support the following operations: 

 Search 
 Maximum
 Minimum
 Successor
 Predecessor

 Insert
 Delete 
 Extract-Max
 Increase-key

 Θ lg𝑛𝑛
 Θ 1
 Θ 1
 Θ 1
 Θ 1



 Θ 𝑛𝑛
 Θ 𝑛𝑛


(Dynamic) Set operations

First approach: sort the array of keys

How to have a good data 
structure so we can support 

all these operations 
efficiently? 

Dynamic 
operations! 

Using a sorted array can 
handle all static operations 

efficientlyStatic 
operations! 



Today
 Binary search tree 
 support all the operations from previous slide 

 in time proportional to height of tree

 (Review): how to implement key operations, and time complexity
 search,  insert (and delete) 

 Extension to balanced binary search tree 

 Select query:  augmenting data structure 
 median, order statistics



Part A:
What is binary search tree? 



First: Binary tree  
 A binary tree is a rooted tree
 where each node has at most 2 children 

 Represented by a linked data structure

 Each node contains at least fields:
 Key  
 Left
 Right
 Parent

3

2 4



Example
 From root, following left pointers, we will visit
 13, 6, 3, 2,𝑁𝑁𝑁𝑁𝑙𝑙
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Binary tree 
 A binary tree is a rooted tree where
 each node has at most 2 children 

 A node is the root of the tree
 if its parent is Nil

 A node is a leaf 
 if both children are Nil 

 Left sub-tree, right sub-tree

 A complete binary tree is a binary tree
 where each node has two children other than leaves 
 and each level (except possibly last level) is filled, and all nodes are as left as possible. 
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Binary search tree (BST) 

 Binary-search-tree property
 For any node 𝑥𝑥 ∈ 𝑇𝑇,  

 𝑥𝑥.𝐾𝐾𝐾𝐾𝐾𝐾 ≥ 𝑦𝑦.𝐾𝐾𝐾𝐾𝐾𝐾 if 𝑦𝑦 is in the left subtree of 𝑥𝑥; and
 𝑥𝑥.𝐾𝐾𝐾𝐾𝐾𝐾 ≤ 𝑦𝑦.𝐾𝐾𝐾𝐾𝐾𝐾 if 𝑦𝑦 is in the right subtree of 𝑥𝑥

 A binary tree 𝑇𝑇 is a binary search tree (BST) if 
 it satisfies the binary search tree property



Example
 A valid BST
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Example
 ?
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Properties
 Given the same set of elements
 there are many possible BSTs over them 

 Minimum? 
 Does it have to be a leaf? 
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Properties
 Given the same set of elements
 there are many possible BSTs over them 

 Minimum? 
 Does it have to be a leaf? 

 Maximum? 

 Given 𝑛𝑛 nodes, 
 Tallest possible BST tree has height ℎ = __________
 Shortest possible BST tree has height ℎ = __________
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log2 𝑛𝑛 = Θ(lg𝑛𝑛)



Part B:
Operations in BST 



Search operation
 A BST 𝑇𝑇 with 𝑛𝑛 nodes can be viewed as a way to store 𝑛𝑛 keys in a smart way, so that 

queries among these keys become easy. 

 Tree-search(𝑥𝑥,𝑘𝑘)
 Input: given a tree node 𝑥𝑥 and a query key 𝑘𝑘
 Output: search whether 𝑘𝑘 is in the tree rooted at 𝑥𝑥

 if it is in, return a node 𝑦𝑦 s.t. 𝑦𝑦. 𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑘𝑘
 otherwise, returns 𝑁𝑁𝑁𝑁𝑁𝑁
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𝑥𝑥

Tree-search(𝑥𝑥, 4) 

Tree-search(𝑥𝑥, 5) 



Tree-search algorithm, recursive version

 Given an input tree 𝑇𝑇 and a key 𝑘𝑘
 we will start by calling  Tree-search(𝑇𝑇.root, 𝑘𝑘)

Tree-search ( x, k)
if x = Nil or k = x.key

then return x
if k < x.key

then return Tree-search( x.left, k )
else  return Tree-search( x.right, k )
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Tree-search algorithm, recursive version

 Time complexity analysis
 let 𝑇𝑇 𝑛𝑛 denote the worst case time complexity of procedure Tree-search() on any 

tree of 𝑛𝑛 nodes  

Tree-search ( x, k)
if x = Nil or k = x.key

then return x
if k < x.key

then return Tree-search( x.left, k )
else  return Tree-search( x.right, k )
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Tree-search algorithm, recursive version

 Time complexity analysis
 other than recursive call, Θ 1 within each Tree-search call 
 thus,  𝑇𝑇 𝑛𝑛 is proportional to the number of nodes 𝑥𝑥 we will call Tree-search on
 𝑇𝑇 𝑛𝑛 = Θ(tree-height) = O(𝑛𝑛)

Tree-search ( x, k)
if x = Nil or k = x.key

then return x
if k < x.key

then return Tree-search( x.left, k )
else  return Tree-search( x.right, k )
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Tree-search: iterative version



Minimum / Maximum
 Tree-minimum(𝑥𝑥)
 Input: a node 𝑥𝑥 of a BST 𝑇𝑇
 Output: return the node containing minimum key in the subtree rooted at 𝑥𝑥
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Minimum / Maximum
 Tree-minimum(𝑥𝑥)
 Input: a node 𝑥𝑥 of a BST 𝑇𝑇
 Output: return the node containing a minimum key in the subtree rooted at 𝑥𝑥
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Tree-minimum(x)
while ( x.left ≠ Nil)

do   x = x.left;
return x; 

 Time complexity
 𝑇𝑇 𝑛𝑛 = Θ(ℎ) where ℎ is height of input tree 



Minimum / Maximum
 Tree-maximum(𝑥𝑥)
 Input: a node 𝑥𝑥 of a BST 𝑇𝑇
 Output: return the node containing a maximum key in the subtree rooted at 𝑥𝑥
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Tree-maximum(x)
while ( x.right ≠ Nil)

do   x = x.right;
return x; 

 Time complexity
 𝑇𝑇 𝑛𝑛 = Θ(ℎ) where ℎ is height of input tree 



Tree-insert 
 Tree-insert(𝑥𝑥, 𝑘𝑘)
 Input:   a BST tree node 𝑥𝑥 and a key 𝑘𝑘
 Output:  insert 𝑘𝑘 to the tree rooted at 𝑥𝑥 such that the resulting tree is still a binary 

search tree



Examples
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Tree-Insert(T.root, 8)

T.root

Tree-Insert(T.root, 6.5)

Use tree-search ! 



Tree-insert 
Tree-insert(𝑇𝑇, 𝑘𝑘)

y = Nil;   x = T.root
z.key = 𝑘𝑘; z.left = Nil; z.right=Nil 
while (x ≠  Nil)  do

y = x
if  ( z.key < x.key )

then  x = x.left
else  x = x.right

z.parent = y
if  (y = Nil)  then T.root = z
else  if   (z.key < y.key)

then y.left = z
else     y.right = z

• z is the new node to be inserted

• Locate potential parent y of z. 

• Set up z as appropriate child of y



Tree-insert 
Tree-insert(𝑇𝑇, 𝑘𝑘)

y = Nil;   x = T.root
z.key = 𝑘𝑘; z.left = Nil; z.right=Nil 
while (x ≠  Nil)  do

y = x
if  ( z.key < x.key )

then  x = x.left
else  x = x.right

z.parent = y
if  (y = Nil)  then T.root = z
else  if   (z.key < y.key)

then y.left = z
else     y.right = z

 Time complexity
 𝑇𝑇 𝑛𝑛 = Θ(ℎ), where ℎ

is height of input tree



Summary: BST is good for both static and dynamic operations

 Suppose 𝑛𝑛 input keys are already stored in a BST of height ℎ

 Search 
 Maximum
 Minimum
 Successor
 Predecessor

 Insert
 Delete 
 Extract-Max
 Increase-key

Time complexity

Θ(ℎ)
Θ(ℎ)
Θ(ℎ)

Θ(ℎ)
Θ(ℎ)
Θ(ℎ)
Θ(ℎ)

Θ(ℎ)
Θ(ℎ)

• However, performance 
depending on height! 

• Height ℎ = 𝑂𝑂 𝑛𝑛 and 
ℎ = Ω(lg𝑛𝑛)

• To have good 
performance, we want 
to keep the tree height 
low! 



Part C:
Balanced binary search tree



Good tree 
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Bad Tree



Balanced binary search tree
 It turns out that there are ways to add extra conditions to binary search trees, 

so that their height is Θ(lg𝑛𝑛)
 E.g,  red-black tree,  AVL tree, etc

 Once such a tree is created, 
 it can support search, minimum, maximum etc in Θ ℎ = Θ(lg𝑛𝑛) time using the same 

algorithms described before
 the extra work comes at handling dynamic operations: insertion, deletion, and so on.  

Re-balancing is needed 
 however, for standard balanced BSTs, all these operations can be handled in 
Θ(lg𝑛𝑛) time. 



Rotation operation
 Left rotation or Right rotation to keep tree height low
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With balanced BST 
 Suppose 𝑛𝑛 input keys are already stored in a balanced BST

 Search 
 Maximum
 Minimum
 Successor
 Predecessor

 Insert
 Delete 
 Extract-Max
 Increase-key

Time complexity

Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)

Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)

Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)

• Height of tree will be 
Θ(lg𝑛𝑛), where 𝑛𝑛 is 
number of nodes in the 
tree 



Part D: 
Select queries

augmenting data structure 



 What if we also want to perform Select operation

 BST-Select ( x, k ):   
 Given a list of records whose keys are stored in a tree rooted at x, return the node whose key has 

rank k. 

 We can use QuickSelect to do this in linear time.. Why are we not satisfied? 
 What if we have to do it many times? 

 Sort it first

 But what if we also have dynamic changes? 
 Need a data structure that can support Select under dynamic changes



BST
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 What if we also want to perform Select operation

 BST-Select ( x, k ):   
 Given a list of records whose keys are stored in a tree rooted at x, return the node 

whose key has rank k. 

 We can do linear search to find it. But can we do better? 

 Goal: 
 Augment the binary search tree data structure so as to support Select ( x, k ) 

efficiently



In particular, 
 BST-Select ( x, k ) 
 Goal: 
 Augment the binary search tree data structure so as to support BST-Select ( x, k ) 

efficiently

 Ordinary binary search tree T
 O(h) time for BST-Select(T.root, k) where h is height of tree T

 Using balanced search tree)
 O(lg n) time for BST-Select(T.root, k) 



How do we augment a BST T? 
 At each node x of the tree T
 store x.size = # nodes in the subtree rooted at x

 Include x itself
 If a node (leaf) is NIL, its size is 0. 

 Space of an augmented tree:
 Θ 𝑛𝑛



An example 

M
9

C
5

A
1

F
3

D
1

H
1

P
3

T
2

Q
1



How do we augment a BST T? 
 At each node x of the tree T
 store x.size = # nodes in the subtree rooted at x

 Include x itself
 If a node (leaf) is NIL, its size is 0. 

 Space of an augmented tree:
 Θ 𝑛𝑛

 Basic property:
 𝑥𝑥. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑥𝑥. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1



How to set up size information ? 
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How to setup size information? 
 procedure AugmentSize( 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑥𝑥 )

If (𝑥𝑥 ≠ 𝑁𝑁𝑁𝑁𝑁𝑁 ) then 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = AugmentSize( 𝑥𝑥. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 );
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = AugmentSize( 𝑥𝑥. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟);
𝑥𝑥. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 1; 
Return( 𝑥𝑥. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ); 

end
Return (0);

Postorder traversal
of the tree !

Time complexity for Augmentsize: 
Θ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡



How to perform select with aug-BST? 
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Select element 
with rank 6? 



 Let T be an augmented binary search tree
 BST-Select(x, k):
 Return the k-th smallest element in the subtree rooted at x
 BST-Select(T.root, k) returns the k-th smallest elements in the entire tree. 

 Using ideas just described, BST-Select(x, k) can be implemented to have 
Θ(ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) time complexity
 which is Θ lg𝑛𝑛 for a balanced binary tree. 
 See homework. 



Are we done? 
 Need to maintain the augmented information under dynamic changes of the 

tree! 
 i.e, under insertions / deletions 
 in this case, just adjusting this size count as we update nodes, or under rotations, and 

it does not increase asymptotic time complexity of these operations 

 Remark:
 Select() in an sorted array can be done in Θ 1 time. 
 However, an array does not support dynamic operations (insert/delete) efficiently.  

That’s augmented BST is a better data structure in this case. 



Summary 
 Simple example of augmenting data structures
 In general, the augmented information can be quite complicated
 Can be a separate data structure! 

 Need to consider how to maintain such information under dynamic changes



FIN
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