DSC40B: Theoretical Foundations of Data Science II

Lecture 8: Binary search tree

Instructor: Yusu Wang

(Dynamic) Set operations

Imagine you are maintaining a database indexed by some keys (real values), and you hope to support the following operations:

Today

Binary search tree

- support all the operations from previous slide
 - in time proportional to height of tree
- (Review): how to implement key operations, and time complexity
 - search, insert (and delete)
- Extension to balanced binary search tree
- Select query: augmenting data structure
 - median, order statistics

Part A: What is binary search tree?

D

First: Binary tree

- A binary tree is a rooted tree
 - where each node has at most 2 children
- Represented by a linked data structure
- Each node contains at least fields:
 - ► Key
 - ► Left
 - ► Right
 - Parent

Example

From root, following left pointers, we will visit

▶ 13, 6, 3, 2, *Nil*

Binary tree

- A binary tree is a rooted tree where
 - each node has at most 2 children
- A node is the root of the tree
 - if its parent is Nil
- A node is a leaf
 - if both children are Nil
- Left sub-tree, right sub-tree

- A complete binary tree is a binary tree
 - where each node has two children other than leaves
 - > and each level (except possibly last level) is filled, and all nodes are as left as possible.

Binary search tree (BST)

- Binary-search-tree property
 - For any node $x \in T$,
 - $x.Key \ge y.Key$ if y is in the left subtree of x; and
 - ▶ $x.Key \le y.Key$ if y is in the right subtree of x
- A binary tree T is a binary search tree (BST) if
 - it satisfies the binary search tree property

Example

A valid BST

Example

▶ ?

Properties

- Given the same set of elements
 - there are many possible BSTs over them
- Minimum?
 - Does it have to be a leaf?

Properties

- Given the same set of elements
 - there are many possible BSTs over them
- Minimum?
 - Does it have to be a leaf?
- Maximum?

- ▶ Given *n* nodes,
 - Tallest possible BST tree has height $h = \frac{n}{2}$
 - Shortest possible BST tree has height $h = \frac{\log_2 n}{\log_2 n} = \Theta(\log n)$

Part B: Operations in BST

Search operation

- A BST T with n nodes can be viewed as a way to store n keys in a smart way, so that queries among these keys become easy.
- Tree-search(x, k)
 - Input: given a tree node x and a query key k
 - Output: search whether k is in the tree rooted at x
 - if it is in, return a node y s.t. y. key = k
 - otherwise, returns *NIL*

Tree-search(x, 8) Tree-search(x, 4) Tree-search(x, 5)

Tree-search algorithm, recursive version

Tree-search (x, k)if x = Nil or k = x.keythen return xif k < x.keythen return Tree-search(x.left, k)else return Tree-search(x.right, k)

- Given an input tree T and a key k
 - we will start by calling Tree-search(T.root, k)

Tree-search algorithm, recursive version

Tree-search (x, k)
if $x = Nil ext{ or } k = x.key
then return <math>x$
if k < x.key
then return Tree-search <math>(x.left, k)
else return Tree-search (x.right, k)63847

Time complexity analysis

Int T(n) denote the worst case time complexity of procedure Tree-search() on any tree of n nodes

9

Tree-search algorithm, recursive version

Tree-search (x, k)if x = Nil or k = x.key then return xif k < x.key then return Tree-search(x.left, k)else return Tree-search(x.right, k)4

Time complexity analysis

- other than recursive call, $\Theta(1)$ within each Tree-search call
- thus, T(n) is proportional to the number of nodes x we will call Tree-search on
- $T(n) = \Theta(\text{tree-height}) = O(n)$

procedure IterativeTreeSearch(x,K) 1 while (x = NIL) and $(K \neq x.key)$ do $if (K \le x.key) then$ $x \leftarrow x.left;$ $\mathbf{2}$ 3 \mathbf{else} 4 $x \leftarrow x.\mathsf{right};$ $\mathbf{5}$ end 6 7 end s return (x);

Minimum / Maximum

- Tree-minimum(x)
 - Input: a node x of a BST T
 - Output: return the node containing minimum key in the subtree rooted at x

Minimum / Maximum

- Tree-minimum(x)
 - Input: a node x of a BST T
 - Output: return the node containing a minimum key in the subtree rooted at x

Tree-minimum(x) while (x.left \neq Nil) do x = x.left; return x;

Time complexity

• $T(n) = \Theta(h)$ where h is height of input tree

Minimum / Maximum

- Tree-maximum(x)
 - Input: a node x of a BST T
 - Output: return the node containing a maximum key in the subtree rooted at x

Tree-maximum(x) while (x.right \neq Nil) do x = x.right; return x;

Time complexity

• $T(n) = \Theta(h)$ where h is height of input tree

Tree-insert

Tree-insert(x, k)

- Input: a BST tree node x and a key k
- Output: insert k to the tree rooted at x such that the resulting tree is still a binary search tree

Examples

Tree-insert

Tree-insert(T, k) y = Nil; x = T.rootz.key = k; z.left = Nil; z.right=Nil while $(x \neq \text{Nil})$ do z is the new node to be inserted ٠ y = xLocate potential parent y of z. ٠ if (z.key < x.key) then x = x.left else x = x.right z.parent = yif (y = Nil) then T.root = z else if (z.key < y.key) • Set up *z* as appropriate child of *y* then y.left = zelse y.right = z

Tree-insert

Tree-insert(T, k) y = Nil; x = T.rootz.key = k; z.left = Nil; z.right=Nil while ($x \neq$ Nil) do y = xif (z.key < x.key)then x = x.left else x = x.right z.parent = yif (y = Nil) then T.root = z else if (z.key < y.key)then y.left = zelse y.right = z

Time complexity

T(n) = Θ(h), where h
 is height of input tree

Summary: BST is good for both static and dynamic operations

• Suppose n input keys are already stored in a BST of height h

	Time complexity	
Search	$\Theta(h)$	
Maximum	$\Theta(h)$ • H	owever, performance
Minimum	$\Theta(h)$ de	epending on height!
Successor	$\Theta(h) $ $\begin{vmatrix} \bullet & H \\ h \end{vmatrix}$	eight $h = O(n)$ and = $\Omega(\lg n)$
Predecessor	$\Theta(h)$	
 Insert Delete Extract-Max 	$ \begin{array}{c} \Theta(h) \\ \Theta(h) \\ \Theta(h) \\ \Theta(h) \\ 0 \end{array} $	have good erformance, we want keep the tree height w!
 Increase-key 	$\Theta(h)$	

Part C: Balanced binary search tree

Good tree

Bad Tree

Balanced binary search tree

- It turns out that there are ways to add extra conditions to binary search trees, so that their height is Θ(lg n)
 - E.g, red-black tree, AVL tree, etc
- Once such a tree is created,
 - ▶ it can support search, minimum, maximum etc in Θ(h) = Θ(lg n) time using the same algorithms described before
 - the extra work comes at handling dynamic operations: insertion, deletion, and so on.
 Re-balancing is needed
 - however, for standard balanced BSTs, all these operations can be handled in Θ(lg n) time.

Rotation operation

Left rotation or Right rotation to keep tree height low

With balanced BST

• Suppose n input keys are already stored in a balanced BST

	Time complexity
Search	$\Theta(\lg n)$
Maximum	$\Theta(\lg n)$
Minimum	$\Theta(\lg n)$
Successor	$\Theta(\log n)$ • Height of tree will be
Predecessor	$\Theta(\lg n)$ $\Theta(\lg n)$, where <i>n</i> is number of nodes in the tree
Insert	$\Theta(\lg n)$
Delete	$\Theta(\lg n)$
Extract-Max	$\Theta(\lg n)$
Increase-key	$\Theta(\lg n)$

Part D: Select queries augmenting data structure

What if we also want to perform Select operation

- BST-Select (x, k):
 - Given a list of records whose keys are stored in a tree rooted at *x*, return the node whose key has rank *k*.
- We can use QuickSelect to do this in linear time..Why are we not satisfied?
 - What if we have to do it many times?
 - Sort it first
 - But what if we also have dynamic changes?
 - > Need a data structure that can support Select under dynamic changes

What if we also want to perform Select operation

- BST-Select (x, k):
 - Given a list of records whose keys are stored in a tree rooted at *x*, return the node whose key has rank *k*.
- We can do linear search to find it. But can we do better?
- Goal:
 - Augment the binary search tree data structure so as to support Select (x, k) efficiently

In particular,

- BST-Select (x, k)
- Goal:
 - Augment the binary search tree data structure so as to support BST-Select (x, k) efficiently
- Ordinary binary search tree T
 - ▶ O(h) time for BST-Select(T.root, k) where h is height of tree T
- Using balanced search tree)
 - O(lg n) time for BST-Select(T.root, k)

How do we augment a BST T?

- At each node x of the tree T
 - store x.size = # nodes in the subtree rooted at x
 - Include x itself
 - If a node (leaf) is NIL, its size is 0.
- Space of an augmented tree:
 - $\Theta(n)$

An example

How do we augment a BST T?

- At each node x of the tree T
 - store x.size = # nodes in the subtree rooted at x
 - Include x itself
 - If a node (leaf) is NIL, its size is 0.
- Space of an augmented tree:
 - $\Theta(n)$
- Basic property:
 - x.size = x.left.size + x.right.size + 1

How to set up size information ?

How to setup size information?

Postorder traversal of the tree !

Time complexity for Augmentsize: $\Theta(size \ of \ tree)$

How to perform select with aug-BST?

- ▶ Let T be an augmented binary search tree
- BST-Select(x, k):
 - Return the k-th smallest element in the subtree rooted at x
 - BST-Select(T.root, k) returns the k-th smallest elements in the entire tree.

- Using ideas just described, BST-Select(x, k) can be implemented to have Θ(height of tree) time complexity
 - which is $\Theta(\lg n)$ for a balanced binary tree.
 - See homework.

Are we done?

- Need to maintain the augmented information under dynamic changes of the tree!
 - i.e, under insertions / deletions
 - in this case, just adjusting this size count as we update nodes, or under rotations, and it does not increase asymptotic time complexity of these operations
- Remark:
 - Select() in an sorted array can be done in $\Theta(1)$ time.
 - However, an array does not support dynamic operations (insert/delete) efficiently.
 That's augmented BST is a better data structure in this case.

Summary

- Simple example of augmenting data structures
- In general, the augmented information can be quite complicated
 - Can be a separate data structure!
- Need to consider how to maintain such information under dynamic changes

FIN