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 Imagine you are maintaining a database indexed by some keys (real values), and you 
hope to support the following operations: 

 Search 
 Maximum
 Minimum
 Successor
 Predecessor

 Insert
 Delete 
 Extract-Max
 Increase-key

 Θ lg𝑛𝑛
 Θ 1
 Θ 1
 Θ 1
 Θ 1



 Θ 𝑛𝑛
 Θ 𝑛𝑛


(Dynamic) Set operations

First approach: sort the array of keys

How to have a good data 
structure so we can support 

all these operations 
efficiently? 

Dynamic 
operations! 

Using a sorted array can 
handle all static operations 

efficientlyStatic 
operations! 



Today
 Binary search tree 
 support all the operations from previous slide 

 in time proportional to height of tree

 (Review): how to implement key operations, and time complexity
 search,  insert (and delete) 

 Extension to balanced binary search tree 

 Select query:  augmenting data structure 
 median, order statistics



Part A:
What is binary search tree? 



First: Binary tree  
 A binary tree is a rooted tree
 where each node has at most 2 children 

 Represented by a linked data structure

 Each node contains at least fields:
 Key  
 Left
 Right
 Parent
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Example
 From root, following left pointers, we will visit
 13, 6, 3, 2,𝑁𝑁𝑁𝑁𝑙𝑙
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Binary tree 
 A binary tree is a rooted tree where
 each node has at most 2 children 

 A node is the root of the tree
 if its parent is Nil

 A node is a leaf 
 if both children are Nil 

 Left sub-tree, right sub-tree

 A complete binary tree is a binary tree
 where each node has two children other than leaves 
 and each level (except possibly last level) is filled, and all nodes are as left as possible. 
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Binary search tree (BST) 

 Binary-search-tree property
 For any node 𝑥𝑥 ∈ 𝑇𝑇,  

 𝑥𝑥.𝐾𝐾𝐾𝐾𝐾𝐾 ≥ 𝐾𝐾.𝐾𝐾𝐾𝐾𝐾𝐾 if 𝐾𝐾 is in the left subtree of 𝑥𝑥; and
 𝑥𝑥.𝐾𝐾𝐾𝐾𝐾𝐾 ≤ 𝐾𝐾.𝐾𝐾𝐾𝐾𝐾𝐾 if 𝐾𝐾 is in the right subtree of 𝑥𝑥

 A binary tree 𝑇𝑇 is a binary search tree (BST) if 
 it satisfies the binary search tree property



Example
 A valid BST
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Example
 ?
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Properties
 Given the same set of elements
 there are many possible BSTs over them 

 Minimum? 
 Does it have to be a leaf? 
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Properties
 Given the same set of elements
 there are many possible BSTs over them 

 Minimum? 
 Does it have to be a leaf? 

 Maximum? 

 Given 𝑛𝑛 nodes, 
 Tallest possible BST tree has height ℎ = __________
 Shortest possible BST tree has height ℎ = __________
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𝑛𝑛
log2 𝑛𝑛 = Θ(lg𝑛𝑛)



Part B:
Operations in BST 



Search operation
 A BST 𝑇𝑇 with 𝑛𝑛 nodes can be viewed as a way to store 𝑛𝑛 keys in a smart way, so that 

queries among these keys become easy. 

 Tree-search(𝑥𝑥,𝑘𝑘)
 Input: given a tree node 𝑥𝑥 and a query key 𝑘𝑘
 Output: search whether 𝑘𝑘 is in the tree rooted at 𝑥𝑥

 if it is in, return a node 𝐾𝐾 s.t. 𝐾𝐾. 𝑘𝑘𝐾𝐾𝐾𝐾 = 𝑘𝑘
 otherwise, returns 𝑁𝑁𝑁𝑁𝑁𝑁

3

7

6

4

8

9

Tree-search(𝑥𝑥, 8) 

𝑥𝑥

Tree-search(𝑥𝑥, 4) 

Tree-search(𝑥𝑥, 5) 



Tree-search algorithm, recursive version

 Given an input tree 𝑇𝑇 and a key 𝑘𝑘
 we will start by calling  Tree-search(𝑇𝑇.root, 𝑘𝑘)

Tree-search ( x, k)
if x = Nil or k = x.key

then return x
if k < x.key

then return Tree-search( x.left, k )
else  return Tree-search( x.right, k )
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Tree-search algorithm, recursive version

 Time complexity analysis
 let 𝑇𝑇 𝑛𝑛 denote the worst case time complexity of procedure Tree-search() on any 

tree of 𝑛𝑛 nodes  

Tree-search ( x, k)
if x = Nil or k = x.key

then return x
if k < x.key

then return Tree-search( x.left, k )
else  return Tree-search( x.right, k )
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Tree-search algorithm, recursive version

 Time complexity analysis
 other than recursive call, Θ 1 within each Tree-search call 
 thus,  𝑇𝑇 𝑛𝑛 is proportional to the number of nodes 𝑥𝑥 we will call Tree-search on
 𝑇𝑇 𝑛𝑛 = Θ(tree-height) = O(𝑛𝑛)

Tree-search ( x, k)
if x = Nil or k = x.key

then return x
if k < x.key

then return Tree-search( x.left, k )
else  return Tree-search( x.right, k )
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Tree-search: iterative version



Minimum / Maximum
 Tree-minimum(𝑥𝑥)
 Input: a node 𝑥𝑥 of a BST 𝑇𝑇
 Output: return the node containing minimum key in the subtree rooted at 𝑥𝑥
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Minimum / Maximum
 Tree-minimum(𝑥𝑥)
 Input: a node 𝑥𝑥 of a BST 𝑇𝑇
 Output: return the node containing a minimum key in the subtree rooted at 𝑥𝑥
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Tree-minimum(x)
while ( x.left ≠ Nil)

do   x = x.left;
return x; 

 Time complexity
 𝑇𝑇 𝑛𝑛 = Θ(ℎ) where ℎ is height of input tree 



Minimum / Maximum
 Tree-maximum(𝑥𝑥)
 Input: a node 𝑥𝑥 of a BST 𝑇𝑇
 Output: return the node containing a maximum key in the subtree rooted at 𝑥𝑥
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Tree-maximum(x)
while ( x.right ≠ Nil)

do   x = x.right;
return x; 

 Time complexity
 𝑇𝑇 𝑛𝑛 = Θ(ℎ) where ℎ is height of input tree 



Tree-insert 
 Tree-insert(𝑥𝑥, 𝑘𝑘)
 Input:   a BST tree node 𝑥𝑥 and a key 𝑘𝑘
 Output:  insert 𝑘𝑘 to the tree rooted at 𝑥𝑥 such that the resulting tree is still a binary 

search tree



Examples
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Tree-Insert(T.root, 8)

T.root

Tree-Insert(T.root, 6.5)

Use tree-search ! 



Tree-insert 
Tree-insert(𝑇𝑇, 𝑘𝑘)

y = Nil;   x = T.root
z.key = 𝑘𝑘; z.left = Nil; z.right=Nil 
while (x ≠  Nil)  do

y = x
if  ( z.key < x.key )

then  x = x.left
else  x = x.right

z.parent = y
if  (y = Nil)  then T.root = z
else  if   (z.key < y.key)

then y.left = z
else     y.right = z

• z is the new node to be inserted

• Locate potential parent y of z. 

• Set up z as appropriate child of y



Tree-insert 
Tree-insert(𝑇𝑇, 𝑘𝑘)

y = Nil;   x = T.root
z.key = 𝑘𝑘; z.left = Nil; z.right=Nil 
while (x ≠  Nil)  do

y = x
if  ( z.key < x.key )

then  x = x.left
else  x = x.right

z.parent = y
if  (y = Nil)  then T.root = z
else  if   (z.key < y.key)

then y.left = z
else     y.right = z

 Time complexity
 𝑇𝑇 𝑛𝑛 = Θ(ℎ), where ℎ

is height of input tree



Summary: BST is good for both static and dynamic operations

 Suppose 𝑛𝑛 input keys are already stored in a BST of height ℎ

 Search 
 Maximum
 Minimum
 Successor
 Predecessor

 Insert
 Delete 
 Extract-Max
 Increase-key

Time complexity

Θ(ℎ)
Θ(ℎ)
Θ(ℎ)

Θ(ℎ)
Θ(ℎ)
Θ(ℎ)
Θ(ℎ)

Θ(ℎ)
Θ(ℎ)

• However, performance 
depending on height! 

• Height ℎ = 𝑂𝑂 𝑛𝑛 and 
ℎ = Ω(lg𝑛𝑛)

• To have good 
performance, we want 
to keep the tree height 
low! 



Part C:
Balanced binary search tree



Good tree 
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Bad Tree



Balanced binary search tree
 It turns out that there are ways to add extra conditions to binary search trees, 

so that their height is Θ(lg𝑛𝑛)
 E.g,  red-black tree,  AVL tree, etc

 Once such a tree is created, 
 it can support search, minimum, maximum etc in Θ ℎ = Θ(lg𝑛𝑛) time using the same 

algorithms described before
 the extra work comes at handling dynamic operations: insertion, deletion, and so on.  

Re-balancing is needed 
 however, for standard balanced BSTs, all these operations can be handled in 
Θ(lg𝑛𝑛) time. 



Rotation operation
 Left rotation or Right rotation to keep tree height low
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right rotation

left rotation



With balanced BST 
 Suppose 𝑛𝑛 input keys are already stored in a balanced BST

 Search 
 Maximum
 Minimum
 Successor
 Predecessor

 Insert
 Delete 
 Extract-Max
 Increase-key

Time complexity

Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)

Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)

Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)

• Height of tree will be 
Θ(lg𝑛𝑛), where 𝑛𝑛 is 
number of nodes in the 
tree 



Part D: 
Select queries

augmenting data structure 



 What if we also want to perform Select operation

 BST-Select ( x, k ):   
 Given a list of records whose keys are stored in a tree rooted at x, return the node whose key has 

rank k. 

 We can use QuickSelect to do this in linear time.. Why are we not satisfied? 
 What if we have to do it many times? 

 Sort it first

 But what if we also have dynamic changes? 
 Need a data structure that can support Select under dynamic changes



BST
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 What if we also want to perform Select operation

 BST-Select ( x, k ):   
 Given a list of records whose keys are stored in a tree rooted at x, return the node 

whose key has rank k. 

 We can do linear search to find it. But can we do better? 

 Goal: 
 Augment the binary search tree data structure so as to support Select ( x, k ) 

efficiently



In particular, 
 BST-Select ( x, k ) 
 Goal: 
 Augment the binary search tree data structure so as to support BST-Select ( x, k ) 

efficiently

 Ordinary binary search tree T
 O(h) time for BST-Select(T.root, k) where h is height of tree T

 Using balanced search tree)
 O(lg n) time for BST-Select(T.root, k) 



How do we augment a BST T? 
 At each node x of the tree T
 store x.size = # nodes in the subtree rooted at x

 Include x itself
 If a node (leaf) is NIL, its size is 0. 

 Space of an augmented tree:
 Θ 𝑛𝑛



An example 
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How do we augment a BST T? 
 At each node x of the tree T
 store x.size = # nodes in the subtree rooted at x

 Include x itself
 If a node (leaf) is NIL, its size is 0. 

 Space of an augmented tree:
 Θ 𝑛𝑛

 Basic property:
 𝑥𝑥. 𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 = 𝑥𝑥. 𝑙𝑙𝐾𝐾𝑙𝑙𝑙𝑙. 𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 + 𝑥𝑥. 𝑟𝑟𝑁𝑁𝑟𝑟ℎ𝑙𝑙. 𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 + 1



How to set up size information ? 
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How to setup size information? 
 procedure AugmentSize( 𝑙𝑙𝑟𝑟𝐾𝐾𝐾𝐾𝑛𝑛𝑡𝑡𝑡𝑡𝐾𝐾 𝑥𝑥 )

If (𝑥𝑥 ≠ 𝑁𝑁𝑁𝑁𝑁𝑁 ) then 
𝑁𝑁𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 = AugmentSize( 𝑥𝑥. 𝑙𝑙𝐾𝐾𝑙𝑙𝑙𝑙 );
𝑅𝑅𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 = AugmentSize( 𝑥𝑥. 𝑟𝑟𝑁𝑁𝑟𝑟ℎ𝑙𝑙);
𝑥𝑥. 𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 = 𝑁𝑁𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 + 𝑅𝑅𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 + 1; 
Return( 𝑥𝑥. 𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 ); 

end
Return (0);

Postorder traversal
of the tree !

Time complexity for Augmentsize: 
Θ 𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 𝑡𝑡𝑙𝑙 𝑙𝑙𝑟𝑟𝐾𝐾𝐾𝐾



How to perform select with aug-BST? 
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Select element 
with rank 3? 

Select element 
with rank 7? 

Select element 
with rank 6? 



 Let T be an augmented binary search tree
 BST-Select(x, k):
 Return the k-th smallest element in the subtree rooted at x
 BST-Select(T.root, k) returns the k-th smallest elements in the entire tree. 

 Using ideas just described, BST-Select(x, k) can be implemented to have 
Θ(ℎ𝐾𝐾𝑁𝑁𝑟𝑟ℎ𝑙𝑙 𝑡𝑡𝑙𝑙 𝑙𝑙𝑟𝑟𝐾𝐾𝐾𝐾) time complexity
 which is Θ lg𝑛𝑛 for a balanced binary tree. 
 See homework. 



Are we done? 
 Need to maintain the augmented information under dynamic changes of the 

tree! 
 i.e, under insertions / deletions 
 in this case, just adjusting this size count as we update nodes, or under rotations, and 

it does not increase asymptotic time complexity of these operations 

 Remark:
 Select() in an sorted array can be done in Θ 1 time. 
 However, an array does not support dynamic operations (insert/delete) efficiently.  

That’s augmented BST is a better data structure in this case. 



Summary 
 Simple example of augmenting data structures
 In general, the augmented information can be quite complicated
 Can be a separate data structure! 

 Need to consider how to maintain such information under dynamic changes



FIN
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