DSC40B:

Theoretical Foundations of Data
Science II

Lecture 8: Binary search tree

Instructor: Yusu Wang

(Dynamic) Set operations

Imagine you are maintaining a database indexed by some keys (real values), and you
hope to support the following operations:

First approach: sort the array of keys

» Search » 9(lgn) .
» Maximum . 9(1) Using a sortc.ad array can
.. Stati handle all static operations
operations!
» Successor v 0(1)
» Predecessor » (1)
4
Insert How to have a good data
Delete Dynamic » 0(n) structure so we can support
Extract-Max operations! » O(n) all these operations
) efficiently?

Increase-key

Today

» Binary search tree

support all the operations from previous slide

in time proportional to height of tree

» (Review): how to implement key operations, and time complexity
search, insert (and delete)

» Extension to balanced binary search tree

» Select query: augmenting data structure

median, order statistics

Part A:
What is binary search tree?

First: Binary tree

» A binary tree is a rooted tree

where each node has at most 2 children

» Represented by a linked data structure

» Each node contains at least fields:
Key
Left
Right
Parent

Example

» From root, following left pointers, we will visit
13,6,3,2, Nil

/@
/\ \/\
® @
/\ \ o
oo ® @

Binary tree

» A binary tree is a rooted tree where

each node has at most 2 children @
» A node is the root of the tree
if its parent is Nil / \

» A node is a leaf @ @

if both children are Nil / \

» Left sub-tree, right sub-tree @ é é @

» A complete binary tree is a binary tree
where each node has two children other than leaves

and each level (except possibly last level) is filled, and all nodes are as left as possible.

Binary search tree (BST)

» Binary-search-tree property

For any node x € T,
x.Key = y.Key if y is in the left subtree of x; and
x.Key < y.Key if yis in the right subtree of x

» A binary tree T is a binary search tree (BST) if

it satisfies the binary search tree property

Example

» A valid BST

E
Ex
ample

y ?

Properties

» Given the same set of elements

there are many possible BSTs over them

» Minimum!?

Does it have to be a leaf?

Properties

» Given the same set of elements

there are many possible BSTs over them

» Minimum? / \
Does it have to be a leaf?

» Maximum!? \

» Given n nodes, @

Tallest possible BST tree has height h = n

Shortest possible BST tree has height h = log, n = O(lgn)

Part B:
Operations in BST

Search operation

» A BST T with n nodes can be viewed as a way to store 1 keys in a smart way, so that
queries among these keys become easy.

» Tree-search(x, k)
Input: given a tree node x and a query key k

Output: search whether k is in the tree rooted at x
ifitis in,return a node ys.t.y.key =k

otherwise, returns NIL @ X

Tree-search(x, 8) @
Tree-search(x, 4) \ \

Tree-search(x, 5)

Tree-search algorithm, recursive version

Tree-search (x, k)

(6)
if x = Nil or k = x.key / S

then return x

if £ <x.key @\ \
then return Tree-search(x.left, k) é
(4 (o)

else return Tree-search(x.right, k)

» Given an input tree T and a key k
we will start by calling Tree-search(T.root, k)

Tree-search algorithm, recursive version

Tree-search (x, k)

(6)
if x = Nil or k = x.key / N

then return x

if £ <x.key @\ \
then return Tree-search(x.left, k) d
(4 (o)

else return Tree-search(x.right, k)

» Time complexity analysis

let T(n) denote the worst case time complexity of procedure Tree-search() on any
tree of n nodes

Tree-search algorithm, recursive version

Tree-search (x, k)

(6)
if x = Nil or k = x.key / N

then return x

if £ <x.key @\ \
then return Tree-search(x.left, k) d
(4 (o)

else return Tree-search(x.right, k)

» Time complexity analysis
other than recursive call, (1) within each Tree-search call
thus, T'(n) is proportional to the number of nodes x we will call Tree-search on

T(n) = O(tree-height) = 0(n)

Tree-search: iterative version

1

8

procedure IterativeTreeSearch(z,K)
while (2 = NIL) and (K # 2.key) do
if (K < x.key) then

‘ x — a.left:
else

‘ xr «— x.right:

end
end

return (z):

Minimum / Maximum

» Tree-minimum(x)
Input: anode x of aBST T
Output: return the node containing minimum key in the subtree rooted at x

\
/)

\&\

Minimum / Maximum

» Tree-minimum(x)
Input: anode x of aBST T

Output: return the node containing a minimum key in the subtree rooted at x

Tree-minimum(x)

while (x.left # Nil) /@\

do x = x.left;

return Xx;

(®)
AN

T(n) = O(h) where h is height of input tree

Minimum / Maximum

» Tree-maximum(x)
Input: anode x of aBST T

Output: return the node containing a maximum key in the subtree rooted at x

Tree-maximum(x)

while (x.right # Nil) /@\

do x = x.right;

return Xx;

(®)
AN

T(n) = O(h) where h is height of input tree

Tree-insert

» Tree-insert(x, k)
Input: a BST tree node x and a key k

Output: insert k to the tree rooted at x such that the resulting tree is still a binary
search tree

Examples

Tree-insert

Tree-insert(T, k)
y = Nil; x = Troot

z.key = k; z.left = Nil; z.right=Nlil

while (x # Nil) do « zis the new node to be inserted
y=x
» Locate potential parent y of z.

if (z.key < x.key)

then x = x.left

else x = x.right

z.parent =y
if (y = Nil) then Troot =z
else if (z.key <y.key)

then yleft=z « Set up z as appropriate child of y

else y.right =z

Tree-insert

Tree-insert(T, k)
y = Nil; x = Troot
z.key = k; z.left = Nil; z.right=Nlil
while (x # Nil) do
y =X
if (z.key < x.key)
then x = x.left
else x = x.right
z.parent =y
if (y = Nil) then Troot =z
else if (z.key <y.key)
then yleft=z

else y.right =z

» Time complexity

T(n) = 0(h),where h
is height of input tree

Summary: BST is good for both static and dynamic operations

» Suppose 7 input keys are already stored in a BST of height h

Time complexity

Search O(h)
Maximum O(h) - However, performance
Minimum O(h) depending on height!

« Height h = 0(n) and
Successor O(h) h = Q(gn)
Predecessor O(h)

« To have good
Insert O(h) performance, we want
Delete O(h) to keep the tree height
Extract-Max O(h) low!

Increase-key O(h)

Part C:
Balanced binary search tree

Good tree

®)

(3

/
)

\
©

—®—

\ /
@/@@

Bad Tree

Balanced binary search tree

» It turns out that there are ways to add extra conditions to binary search trees,
so that their height is ©@(Ign)

E.g, red-black tree, AVL tree, etc

» Once such a tree is created,

it can support search, minimum, maximum etc in @(h) = O(Ign) time using the same
algorithms described before

the extra work comes at handling dynamic operations: insertion, deletion, and so on.
Re-balancing is needed

however, for standard balanced BSTs, all these operations can be handled in
O(lgn) time.

Rotation operation

» Left rotation or Right rotation to keep tree height low

N N
)

@/ \ / \@
right rotati(;n
/ \ © . 4 / \
left rotation
A B
B

With balanced BST

» Suppose n input keys are already stored in a balanced BST

Time complexity

Search 0(lgn)

Maximum 0(lgn)

Minimum O(lgn)

Successor O(lgn) |° Height of tree will be

Pred o(lgn) O(lgn), where n is

reqecessor sn number of nodes in the
tree

Insert O(lgn)

Delete @(lgn)

Extract-Max Ogn)

Increase-key O(gn)

Part D:
Select queries
augmenting data structure

» What if we also want to perform Select operation

» BST-Select (x, k):

Given a list of records whose keys are stored in a tree rooted at x, return the node whose key has
rank k.

» We can use QuickSelect to do this in linear time..Why are we not satisfied?
What if we have to do it many times?
Sort it first
But what if we also have dynamic changes?

Need a data structure that can support Select under dynamic changes

BST

©
SN N
A
® ©® © @

» What if we also want to perform Select operation

» BST-Select (x, k):

Given a list of records whose keys are stored in a tree rooted at x, return the node
whose key has rank k.

» We can do linear search to find it. But can we do better?

» Goal:

Augment the binary search tree data structure so as to support Select (x, k)
efficiently

In particular,

» BST-Select (x, k)
» Goal:

Augment the binary search tree data structure so as to support BST-Select (x, k)
efficiently

» Ordinary binary search tree T

O(h) time for BST-Select(T.root, k) where h is height of tree T
» Using balanced search tree)

O(lg n) time for BST-Select(T.root, k)

How do we augment a BST T?

» At each node x of the tree T

store x.size = # nodes in the subtree rooted at x

Include x itself
If a node (leaf) is NIL, its size is 0.

» Space of an augmented tree:
O(n)

An example

_U’\whﬂ/ \

How do we augment a BST T?

» At each node x of the tree T

store x.size = # nodes in the subtree rooted at x

Include x itself
If a node (leaf) is NIL, its size is 0.

» Space of an augmented tree:
O(n)

» Basic property:
x.size = x.left.size + x.right.size + 1

How to set up size information ?

I

How to setup size information?

» procedure AugmentSize(treenode x)
If (x # NIL) then
Lsize = AugmentSize(x.left);
Rsize = AugmentSize(x.right);
x.Size = Lsize + Rsize + 1;
Return(x. size);

end
Return (0);

Postorder traversal
of the tree !

Time complexity for Augmentsize:
O(size of tree)

How to perform select with aug-BST?

M Select element
with rank 37
9
Select element
/ \ with rank 7?
C P
5 3 Select element
\ with rank 67
A F
1 3 2

» Let T be an augmented binary search tree

» BST-Select(x, k):
Return the k-th smallest element in the subtree rooted at x
BST-Select(T:root, k) returns the k-th smallest elements in the entire tree.

» Using ideas just described, BST-Select(x, k) can be implemented to have
O(height of tree) time complexity
which is @(Ign) for a balanced binary tree.

See homework.

Are we done?

» Need to maintain the augmented information under dynamic changes of the
tree!
i.e, under insertions / deletions

in this case, just adjusting this size count as we update nodes, or under rotations, and
it does not increase asymptotic time complexity of these operations

» Remark:
Select() in an sorted array can be done in ©(1) time.

However, an array does not support dynamic operations (insert/delete) efficiently.
That’s augmented BST is a better data structure in this case.

Summary

» Simple example of augmenting data structures
» In general, the augmented information can be quite complicated

Can be a separate data structure!

» Need to consider how to maintain such information under dynamic changes

	DSC40B:�Theoretical Foundations of Data Science II
	(Dynamic) Set operations
	Today
	Part A:�What is binary search tree?
	First: Binary tree
	Example
	Binary tree
	Binary search tree (BST)
	Example
	Example
	Properties
	Properties
	Part B:�Operations in BST
	Search operation
	Tree-search algorithm, recursive version
	Tree-search algorithm, recursive version
	Tree-search algorithm, recursive version
	Tree-search: iterative version
	Minimum / Maximum
	Minimum / Maximum
	Minimum / Maximum
	Tree-insert
	Examples
	Tree-insert
	Tree-insert
	Summary: BST is good for both static and dynamic operations
	Part C:�Balanced binary search tree
	Good tree
	Bad Tree
	Balanced binary search tree
	Rotation operation
	With balanced BST
	Part D: �Select queries�augmenting data structure
	Slide Number 34
	BST
	Slide Number 36
	In particular,
	How do we augment a BST T?
	An example
	How do we augment a BST T?
	How to set up size information ?
	How to setup size information?
	How to perform select with aug-BST?
	Slide Number 44
	Are we done?
	Summary
	FIN

