
DSC40B:
Theoretical Foundations of Data

Science II

Lecture 8: Binary search tree

Instructor: Yusu Wang

 Imagine you are maintaining a database indexed by some keys (real values), and you
hope to support the following operations:

 Search
 Maximum
 Minimum
 Successor
 Predecessor

 Insert
 Delete
 Extract-Max
 Increase-key

 Θ lg𝑛𝑛
 Θ 1
 Θ 1
 Θ 1
 Θ 1

 Θ 𝑛𝑛
 Θ 𝑛𝑛

(Dynamic) Set operations

First approach: sort the array of keys

How to have a good data
structure so we can support

all these operations
efficiently?

Dynamic
operations!

Using a sorted array can
handle all static operations

efficientlyStatic
operations!

Today
 Binary search tree
 support all the operations from previous slide

 in time proportional to height of tree

 (Review): how to implement key operations, and time complexity
 search, insert (and delete)

 Extension to balanced binary search tree

 Select query: augmenting data structure
 median, order statistics

Part A:
What is binary search tree?

First: Binary tree
 A binary tree is a rooted tree
 where each node has at most 2 children

 Represented by a linked data structure

 Each node contains at least fields:
 Key
 Left
 Right
 Parent

3

2 4

Example
 From root, following left pointers, we will visit
 13, 6, 3, 2,𝑁𝑁𝑁𝑁𝑙𝑙

13

18

3

2

6

4

7

139

17 20

Binary tree
 A binary tree is a rooted tree where
 each node has at most 2 children

 A node is the root of the tree
 if its parent is Nil

 A node is a leaf
 if both children are Nil

 Left sub-tree, right sub-tree

 A complete binary tree is a binary tree
 where each node has two children other than leaves
 and each level (except possibly last level) is filled, and all nodes are as left as possible.

3

2 4

5 12 1 6

Binary search tree (BST)

 Binary-search-tree property
 For any node 𝑥𝑥 ∈ 𝑇𝑇,

 𝑥𝑥.𝐾𝐾𝐾𝐾𝐾𝐾 ≥ 𝐾𝐾.𝐾𝐾𝐾𝐾𝐾𝐾 if 𝐾𝐾 is in the left subtree of 𝑥𝑥; and
 𝑥𝑥.𝐾𝐾𝐾𝐾𝐾𝐾 ≤ 𝐾𝐾.𝐾𝐾𝐾𝐾𝐾𝐾 if 𝐾𝐾 is in the right subtree of 𝑥𝑥

 A binary tree 𝑇𝑇 is a binary search tree (BST) if
 it satisfies the binary search tree property

Example
 A valid BST

13

18

3

2

6

4

7

139

17 20

Example
 ?

13

18

3

2

6

8

7

139

19 20

Properties
 Given the same set of elements
 there are many possible BSTs over them

 Minimum?
 Does it have to be a leaf?

3

2

6

4

7

9

Properties
 Given the same set of elements
 there are many possible BSTs over them

 Minimum?
 Does it have to be a leaf?

 Maximum?

 Given 𝑛𝑛 nodes,
 Tallest possible BST tree has height ℎ = __________
 Shortest possible BST tree has height ℎ = __________

3

7

6

4

8

9

𝑛𝑛
log2 𝑛𝑛 = Θ(lg𝑛𝑛)

Part B:
Operations in BST

Search operation
 A BST 𝑇𝑇 with 𝑛𝑛 nodes can be viewed as a way to store 𝑛𝑛 keys in a smart way, so that

queries among these keys become easy.

 Tree-search(𝑥𝑥,𝑘𝑘)
 Input: given a tree node 𝑥𝑥 and a query key 𝑘𝑘
 Output: search whether 𝑘𝑘 is in the tree rooted at 𝑥𝑥

 if it is in, return a node 𝐾𝐾 s.t. 𝐾𝐾. 𝑘𝑘𝐾𝐾𝐾𝐾 = 𝑘𝑘
 otherwise, returns 𝑁𝑁𝑁𝑁𝑁𝑁

3

7

6

4

8

9

Tree-search(𝑥𝑥, 8)

𝑥𝑥

Tree-search(𝑥𝑥, 4)

Tree-search(𝑥𝑥, 5)

Tree-search algorithm, recursive version

 Given an input tree 𝑇𝑇 and a key 𝑘𝑘
 we will start by calling Tree-search(𝑇𝑇.root, 𝑘𝑘)

Tree-search (x, k)
if x = Nil or k = x.key

then return x
if k < x.key

then return Tree-search(x.left, k)
else return Tree-search(x.right, k)

3

7

6

4

8

9

Tree-search algorithm, recursive version

 Time complexity analysis
 let 𝑇𝑇 𝑛𝑛 denote the worst case time complexity of procedure Tree-search() on any

tree of 𝑛𝑛 nodes

Tree-search (x, k)
if x = Nil or k = x.key

then return x
if k < x.key

then return Tree-search(x.left, k)
else return Tree-search(x.right, k)

3

7

6

4

8

9

Tree-search algorithm, recursive version

 Time complexity analysis
 other than recursive call, Θ 1 within each Tree-search call
 thus, 𝑇𝑇 𝑛𝑛 is proportional to the number of nodes 𝑥𝑥 we will call Tree-search on
 𝑇𝑇 𝑛𝑛 = Θ(tree-height) = O(𝑛𝑛)

Tree-search (x, k)
if x = Nil or k = x.key

then return x
if k < x.key

then return Tree-search(x.left, k)
else return Tree-search(x.right, k)

3

7

6

4

8

9

Tree-search: iterative version

Minimum / Maximum
 Tree-minimum(𝑥𝑥)
 Input: a node 𝑥𝑥 of a BST 𝑇𝑇
 Output: return the node containing minimum key in the subtree rooted at 𝑥𝑥

3

7

6

4

8

9

𝑥𝑥

𝐾𝐾

Minimum / Maximum
 Tree-minimum(𝑥𝑥)
 Input: a node 𝑥𝑥 of a BST 𝑇𝑇
 Output: return the node containing a minimum key in the subtree rooted at 𝑥𝑥

3

7

6

4

8

9

Tree-minimum(x)
while (x.left ≠ Nil)

do x = x.left;
return x;

 Time complexity
 𝑇𝑇 𝑛𝑛 = Θ(ℎ) where ℎ is height of input tree

Minimum / Maximum
 Tree-maximum(𝑥𝑥)
 Input: a node 𝑥𝑥 of a BST 𝑇𝑇
 Output: return the node containing a maximum key in the subtree rooted at 𝑥𝑥

3

7

6

4

8

9

Tree-maximum(x)
while (x.right ≠ Nil)

do x = x.right;
return x;

 Time complexity
 𝑇𝑇 𝑛𝑛 = Θ(ℎ) where ℎ is height of input tree

Tree-insert
 Tree-insert(𝑥𝑥, 𝑘𝑘)
 Input: a BST tree node 𝑥𝑥 and a key 𝑘𝑘
 Output: insert 𝑘𝑘 to the tree rooted at 𝑥𝑥 such that the resulting tree is still a binary

search tree

Examples

15

3

2

6

4

7

13

9

Tree-Insert(T.root, 8)

T.root

Tree-Insert(T.root, 6.5)

Use tree-search !

Tree-insert
Tree-insert(𝑇𝑇, 𝑘𝑘)

y = Nil; x = T.root
z.key = 𝑘𝑘; z.left = Nil; z.right=Nil
while (x ≠ Nil) do

y = x
if (z.key < x.key)

then x = x.left
else x = x.right

z.parent = y
if (y = Nil) then T.root = z
else if (z.key < y.key)

then y.left = z
else y.right = z

• z is the new node to be inserted

• Locate potential parent y of z.

• Set up z as appropriate child of y

Tree-insert
Tree-insert(𝑇𝑇, 𝑘𝑘)

y = Nil; x = T.root
z.key = 𝑘𝑘; z.left = Nil; z.right=Nil
while (x ≠ Nil) do

y = x
if (z.key < x.key)

then x = x.left
else x = x.right

z.parent = y
if (y = Nil) then T.root = z
else if (z.key < y.key)

then y.left = z
else y.right = z

 Time complexity
 𝑇𝑇 𝑛𝑛 = Θ(ℎ), where ℎ

is height of input tree

Summary: BST is good for both static and dynamic operations

 Suppose 𝑛𝑛 input keys are already stored in a BST of height ℎ

 Search
 Maximum
 Minimum
 Successor
 Predecessor

 Insert
 Delete
 Extract-Max
 Increase-key

Time complexity

Θ(ℎ)
Θ(ℎ)
Θ(ℎ)

Θ(ℎ)
Θ(ℎ)
Θ(ℎ)
Θ(ℎ)

Θ(ℎ)
Θ(ℎ)

• However, performance
depending on height!

• Height ℎ = 𝑂𝑂 𝑛𝑛 and
ℎ = Ω(lg𝑛𝑛)

• To have good
performance, we want
to keep the tree height
low!

Part C:
Balanced binary search tree

Good tree

13

18

3

2

6

4

7

139

17 20

6 19

Bad Tree

Balanced binary search tree
 It turns out that there are ways to add extra conditions to binary search trees,

so that their height is Θ(lg𝑛𝑛)
 E.g, red-black tree, AVL tree, etc

 Once such a tree is created,
 it can support search, minimum, maximum etc in Θ ℎ = Θ(lg𝑛𝑛) time using the same

algorithms described before
 the extra work comes at handling dynamic operations: insertion, deletion, and so on.

Re-balancing is needed
 however, for standard balanced BSTs, all these operations can be handled in
Θ(lg𝑛𝑛) time.

Rotation operation
 Left rotation or Right rotation to keep tree height low

x

y

A B

C

y

x
A

B C

right rotation

left rotation

With balanced BST
 Suppose 𝑛𝑛 input keys are already stored in a balanced BST

 Search
 Maximum
 Minimum
 Successor
 Predecessor

 Insert
 Delete
 Extract-Max
 Increase-key

Time complexity

Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)

Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)

Θ(lg𝑛𝑛)
Θ(lg𝑛𝑛)

• Height of tree will be
Θ(lg𝑛𝑛), where 𝑛𝑛 is
number of nodes in the
tree

Part D:
Select queries

augmenting data structure

 What if we also want to perform Select operation

 BST-Select (x, k):
 Given a list of records whose keys are stored in a tree rooted at x, return the node whose key has

rank k.

 We can use QuickSelect to do this in linear time.. Why are we not satisfied?
 What if we have to do it many times?

 Sort it first

 But what if we also have dynamic changes?
 Need a data structure that can support Select under dynamic changes

BST

13

18

3

2

6

4

7

139

17 20

6 19

 What if we also want to perform Select operation

 BST-Select (x, k):
 Given a list of records whose keys are stored in a tree rooted at x, return the node

whose key has rank k.

 We can do linear search to find it. But can we do better?

 Goal:
 Augment the binary search tree data structure so as to support Select (x, k)

efficiently

In particular,
 BST-Select (x, k)
 Goal:
 Augment the binary search tree data structure so as to support BST-Select (x, k)

efficiently

 Ordinary binary search tree T
 O(h) time for BST-Select(T.root, k) where h is height of tree T

 Using balanced search tree)
 O(lg n) time for BST-Select(T.root, k)

How do we augment a BST T?
 At each node x of the tree T
 store x.size = # nodes in the subtree rooted at x

 Include x itself
 If a node (leaf) is NIL, its size is 0.

 Space of an augmented tree:
 Θ 𝑛𝑛

An example

M
9

C
5

A
1

F
3

D
1

H
1

P
3

T
2

Q
1

How do we augment a BST T?
 At each node x of the tree T
 store x.size = # nodes in the subtree rooted at x

 Include x itself
 If a node (leaf) is NIL, its size is 0.

 Space of an augmented tree:
 Θ 𝑛𝑛

 Basic property:
 𝑥𝑥. 𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 = 𝑥𝑥. 𝑙𝑙𝐾𝐾𝑙𝑙𝑙𝑙. 𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 + 𝑥𝑥. 𝑟𝑟𝑁𝑁𝑟𝑟ℎ𝑙𝑙. 𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 + 1

How to set up size information ?

M
9

C
5

A
1

F
3

D
1

H
1

P
3

T
2

Q
1

How to setup size information?
 procedure AugmentSize(𝑙𝑙𝑟𝑟𝐾𝐾𝐾𝐾𝑛𝑛𝑡𝑡𝑡𝑡𝐾𝐾 𝑥𝑥)

If (𝑥𝑥 ≠ 𝑁𝑁𝑁𝑁𝑁𝑁) then
𝑁𝑁𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 = AugmentSize(𝑥𝑥. 𝑙𝑙𝐾𝐾𝑙𝑙𝑙𝑙);
𝑅𝑅𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 = AugmentSize(𝑥𝑥. 𝑟𝑟𝑁𝑁𝑟𝑟ℎ𝑙𝑙);
𝑥𝑥. 𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 = 𝑁𝑁𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 + 𝑅𝑅𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 + 1;
Return(𝑥𝑥. 𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾);

end
Return (0);

Postorder traversal
of the tree !

Time complexity for Augmentsize:
Θ 𝑠𝑠𝑁𝑁𝑠𝑠𝐾𝐾 𝑡𝑡𝑙𝑙 𝑙𝑙𝑟𝑟𝐾𝐾𝐾𝐾

How to perform select with aug-BST?

M
9

C
5

A
1

F
3

D
1

H
1

P
3

T
2

Q
1

Select element
with rank 3?

Select element
with rank 7?

Select element
with rank 6?

 Let T be an augmented binary search tree
 BST-Select(x, k):
 Return the k-th smallest element in the subtree rooted at x
 BST-Select(T.root, k) returns the k-th smallest elements in the entire tree.

 Using ideas just described, BST-Select(x, k) can be implemented to have
Θ(ℎ𝐾𝐾𝑁𝑁𝑟𝑟ℎ𝑙𝑙 𝑡𝑡𝑙𝑙 𝑙𝑙𝑟𝑟𝐾𝐾𝐾𝐾) time complexity
 which is Θ lg𝑛𝑛 for a balanced binary tree.
 See homework.

Are we done?
 Need to maintain the augmented information under dynamic changes of the

tree!
 i.e, under insertions / deletions
 in this case, just adjusting this size count as we update nodes, or under rotations, and

it does not increase asymptotic time complexity of these operations

 Remark:
 Select() in an sorted array can be done in Θ 1 time.
 However, an array does not support dynamic operations (insert/delete) efficiently.

That’s augmented BST is a better data structure in this case.

Summary
 Simple example of augmenting data structures
 In general, the augmented information can be quite complicated
 Can be a separate data structure!

 Need to consider how to maintain such information under dynamic changes

FIN

	DSC40B:�Theoretical Foundations of Data Science II
	(Dynamic) Set operations
	Today
	Part A:�What is binary search tree?
	First: Binary tree
	Example
	Binary tree
	Binary search tree (BST)
	Example
	Example
	Properties
	Properties
	Part B:�Operations in BST
	Search operation
	Tree-search algorithm, recursive version
	Tree-search algorithm, recursive version
	Tree-search algorithm, recursive version
	Tree-search: iterative version
	Minimum / Maximum
	Minimum / Maximum
	Minimum / Maximum
	Tree-insert
	Examples
	Tree-insert
	Tree-insert
	Summary: BST is good for both static and dynamic operations
	Part C:�Balanced binary search tree
	Good tree
	Bad Tree
	Balanced binary search tree
	Rotation operation
	With balanced BST
	Part D: �Select queries�augmenting data structure
	Slide Number 34
	BST
	Slide Number 36
	In particular,
	How do we augment a BST T?
	An example
	How do we augment a BST T?
	How to set up size information ?
	How to setup size information?
	How to perform select with aug-BST?
	Slide Number 44
	Are we done?
	Summary
	FIN

