
❖

DSC 40B
Lecture 8 : Binary 

Search, Recurrences



❖

Searching a Database



❖

Next in DSC 40B...

● How do we analyze the time complexity of recursive 
algorithms?

● How do we know that our recursive code is correct?



❖

Databases

● Large data sets are often stored in databases.



❖

Query

What is the name of the student with PID A8172?



❖

Linear Search

●  We could answer this with a linear search.

●  Recall worst-case time complexity: Θ(𝑛).
●  Is there a better way?



❖

Theoretical Lower Bounds

●  Given: an array arr and a target t, determine the index 
of t in the array.

●  Lower bound: Ω(𝑛)
○  linear_search has the best possible worst-case 

complexity!



❖

Theoretical Lower Bounds

● Given: an sorted array arr and a target t, determine the 
index of t in the array.

●  This is an easier problem.

●  Theoretical Lower bound: Ω(?)



❖

Binary Search



❖



❖



❖

Game Show

●  Goal: guess the door with number 42 behind it.

●  Caution: with every wrong guess, your winnings are 
reduced.



❖



❖

Strategy

● Can’t do much better than linear search.
○ “Is it door A?”
○ “OK, is it door B?”
○ “Door C?”

●  After an incorrect first guess, the  first guess, the right 
door could be any of the other 𝑛 − 1 doors!



❖

But now...

Suppose the host tells you that the numbers are sorted in 
increasing order.



❖

Sorted!

Which door do you pick first?

A: A

B: G

C: D

D: Does not matter

E: Some other 
logical choice



❖

Sorted!

Which door do you pick first?

A: A

B: G

C: D

D: Does not matter

E: Some other 
logical choice



❖



❖

 22



❖

 22



❖

 22  84



❖

 22  84



❖

 22  84



❖

 22  8442



❖

Strategy

●  First pick the middle door.

●  Allows you to rule out half of the other doors.

●  Pick door in the middle of what remains.

●  Repeat, recursively.



❖

Binary Search in Code: fill in the blanks



❖

The middle element

● What is the index of the middle element of arr[start : stop]

-20 -13 3 6 10 12 15 34 56 76 89

0 1 2 3 4 5 6 7 8 9 10



❖

The middle element

● What is the index of the middle element of arr[start : stop]

-20 -13 3 6 10 12 15 34 56 76 89

0 1 2 3 4 5 6 7 8 9 10

start = 0
stop = 11



❖

The middle element

● What is the index of the middle element of arr[start : stop]

-20 -13 3 6 10 12 15 34 56 76 89

0 1 2 3 4 5 6 7 8 9 10

start = 0
stop = 11

middle = (stop-start)/2



❖

The middle element

● What is the index of the middle element of arr[start : stop]

-20 -13 3 6 10 12 15 34 56 76 89

0 1 2 3 4 5 6 7 8 9 10

start = 0
stop = 11

middle = (stop-start)/2
issue?



❖

The middle element

● What is the index of the middle element of arr[start : stop]

-20 -13 3 6 10 12 15 34 56 76 89

0 1 2 3 4 5 6 7 8 9 10

start = 0
stop = 11

middle = (stop-start)/2 + start



❖

The middle element

● What is the index of the middle element of arr[start : stop]

-20 -13 3 6 10 12 15 34 56 76 89

0 1 2 3 4 5 6 7 8 9 10

start = 0
stop = 11

middle = (stop + start)/2



❖

Definition

The floor of a real number 𝑥, denoted ⌊𝑥⌋, is the  largest 
integer that is ≤ 𝑥.
● Examples: 

○ ⌊3.14⌋ = 3 
○ ⌊−4.5⌋ = −5 
○ ⌊10⌋ = 10



❖

Definition

The floor of a real number 𝑥, denoted ⌈𝑥⌉, is the  smallest 
integer that is ≥ 𝑥.
● Examples: 

○ ⌈3.14⌉ = 4 
○ ⌈−4.5⌉ = −4 
○ ⌈10⌉ = 10



❖

Binary Search



❖

-20 -13 3 6 10 12 15 34 56 76 89

0 1 2 3 4 5 6 7 8 9 10

start = 0
stop = 11



❖

-20 -13 3 6 10 12 15 34 56 76 89

0 1 2 3 4 5 6 7 8 9 10

start = 0
stop = 11

middle=5

bs(0, 11)



❖

-20 -13 3 6 10 12 15 34 56 76 89

0 1 2 3 4 5 6 7 8 9 10

start = 0
stop = 11

middle=5
middle=8

bs(0, 11)
  bs(6, 11)
    



❖

-20 -13 3 6 10 12 15 34 56 76 89

0 1 2 3 4 5 6 7 8 9 10

start = 0
stop = 11

middle=5
middle=8

bs(0, 11)
  bs(6, 11)
    bs(6, 8)



❖

-20 -13 3 6 10 12 15 34 56 76 89

0 1 2 3 4 5 6 7 8 9 10

start = 0
stop = 11

middle=5
middle=8
middle=7

bs(0, 11)
  bs(6, 11)
    bs(6, 8)



❖

-20 -13 3 6 10 12 15 34 56 76 89

0 1 2 3 4 5 6 7 8 9 10

start = 0
stop = 11

middle=5
middle=8
middle=7

bs(0, 11)
  bs(6, 11)
    bs(6, 8)
          7



❖

-20 -13 3 6 10 12 15 34 56 76 89

0 1 2 3 4 5 6 7 8 9 10

start = 0
stop = 11

middle=5
middle=8
middle=7

bs(0, 11)
  bs(6, 11)
    bs(6, 8)
          7



❖

Aside: Default Arguments



❖

Aside: Default Arguments Can’t use stop = len(arr)



❖

Other Uses of Binary Search

● Binary search is a useful strategy in “real life”.

● Example: finding a bug in your code.
○ You have made 100 git commits (i.e., 100 changes).
○  You know the bug is introduced in one of them.
○ “Rewind” to commit #50.

■ If it bug is there, check in #25;
○  Otherwise, check in #75.
○ The git bisect command does this for you.



❖

Thinking Inductively



❖

Recursion

● Recursive algorithms can almost look like magic.

● How can we be sure that binary_search works?



❖

Tips

1. Make sure algorithm works in the base case.

2. Check that all recursive calls are on smaller problems.

3. Assuming that the recursive calls work, does the whole 
algorithm work?



❖

Base Case

●  Smallest input for which you can easily see that the 
algorithm works.

●  Recursion works by making problem smaller until base 
case is reached.

●  Usually 𝑛 = 0 or 𝑛 = 1 (or even both!)



❖

Base Case: 𝑛 = 0

●  Suppose arr[start:stop] is empty.

●  In this case, the function returns None.

○ Correct!



❖

Base Case: 𝑛 = 1

● Suppose arr[start:stop] has one element.

●  If that element is the target, the algorithm will find it!
○ Correct!

●  If it isn’t, the algorithm will recurse on a problem of size 0 
and return None.
○  Correct!



❖

Recursive Calls

●  Recursive calls must be on smaller problems.
○ Otherwise, base case never reached. Infinite recursion!



❖



❖



❖

Leap of Faith

●  Assume the recursive calls work.

●  Does the overall algorithm work, then?



❖



❖

Does this code work? Why or why not?

import math
def summation(numbers):

n = len(numbers)
if n == 0:

return 0
middle = math.floor(n / 2)
return (

summation(numbers[:middle])
+
summation(numbers[middle:]

)

A:  Yes

B: No (base case)

C: No (rec. call issue)

D: No, issue with putting 
solution together.



❖

Does this code work? Why or why not?

import math
def summation(numbers):

n = len(numbers)
if n == 0:

return 0
middle = math.floor(n / 2)
return (

summation(numbers[:middle])
+
summation(numbers[middle:]

)



❖

Induction

●  These steps can be turned into a formal proof by  induction.

●  For us, less necessary to prove to other people.

●  Instead, prove to yourself that your code works.

●  We won’t be doing formal inductive proofs.



❖

Recurrence Relations



❖

Time Complexity of Binary Search

● What is the time complexity of binary_search?

● No loops!



❖

Best case?



❖

Best case?
Theta(1)



❖

Worst Case



❖

Worst Case T(n) = 

Θ(?)



❖

Worst Case T(n) = 

Θ(1)



❖

Worst Case T(n) = Θ(1) + time taken for recursive calls

Θ(1)



❖

Worst Case T(n) = Θ(1) + time taken for recursive calls

Θ(1)

What is the input size for this call?



❖

Worst Case T(n) = Θ(1) + time taken for recursive calls

Θ(1)

        n/2  since we split in the middle



❖

Worst Case T(n) = Θ(1) + time taken for recursive calls

Θ(1)

     Time taken is T( n/2)



❖

Worst Case T(n) = Θ(1) + time taken for recursive calls

Θ(1)

     Same for the second one T( n/2)



❖

Worst Case T(n) = Θ(1) + T(n/2)

Θ(1)

     Same for the second one T( n/2)



❖

Recurrence Relations

●  We found 

●  This is a recurrence relation.



❖

Solving Recurrences

●  We want simple, non-recursive formula for 𝑇(𝑛) so we can 
see how fast 𝑇(𝑛) grows.
○ Is it Θ(𝑛)? Θ(𝑛2)? Something else?

● Obtaining a simple formula is called solving the recurrence.



❖

Example: Getting Rich

● Suppose on day 1 of job, you are paid $3.

● Each day thereafter, your pay is doubled.

● Let 𝑆(𝑛) be your pay on day 𝑛:



❖

Example: Unrolling

● How much are you paid on day 4?
A:  $12

B:  $8

C:  $24

D: $16

E:  Something 
else



❖

Example: Unrolling

● How much are you paid on day 4?

● S(4) = 2 ·S(3)



❖

Example: Unrolling

● How much are you paid on day 4?

● S(4) = 2·S(3)

       = 2·2·S(2)



❖

Example: Unrolling

● How much are you paid on day 4?

● S(4) = 2·S(3)

       = 2·2·S(2)

       = 2·2·2·S(1)



❖

Example: Unrolling

● How much are you paid on day 4?

● S(4) = 2·S(3)

       = 2·2·S(2)

       = 2·2·2·S(1)

       = 2·2·2·3

  = 24



❖

Example: Unrolling

● How much are you paid on day 4?

● S(4) = 2·S(3)

       = 2·2·S(2)

       = 2·2·2·S(1)

       = 2·2·2·3

  = 24

S(n) = 2?  + 3



❖

Example: Unrolling

● How much are you paid on day 4?

● S(4) = 2·S(3)

       = 2·2·S(2)

       = 2·2·2·S(1)

       = 2·2·2·3

  = 24

S(n) = 2n-1  · 3



❖

Solving Recurrences

We’ll use a four-step process to solve recurrences:

1. “Unroll” several times to find a pattern.

2. Write general formula for 𝑘th unroll.

3. Solve for # of unrolls needed to reach base case.

4. Plug this number into general formula.



❖

Step 1: Unroll several times

S(n) = 2·S(n-1)



❖

Step 1: Unroll several times

S(n) = 2·S(n-1)

       = 2·2·S(n-2)



❖

Step 1: Unroll several times

S(n) = 2·S(n-1)

        = 2·2·S(n-2)

   = 2·2·2·S(n-3)



❖

Step 1: Unroll several times

S(n) = 2·S(n-1)

        = 2·2·S(n-2)

   = 2·2·2·S(n-3)

    = 2·2·2·2·S(n-4)

    …… 



❖

Step 2: Find general formula

S(n) = 2·S(n-1)           #k=1

        = 2·2·S(n-2)       #k=2

   = 2·2·2·S(n-3)    #k=3

    = 2·2·2·2·S(n-4)

On step k: 



❖

Step 2: Find general formula

S(n) = 2·S(n-1)           #k=1

        = 2·2·S(n-2)       #k=2

   = 2·2·2·S(n-3)    #k=3

    = 2·2·2·2·S(n-4)#k=4

On step k: 

S(n) = 2k ·S(n-k)



❖

Step 3: Find step # of base case

● On step 𝑘, 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● When do we see 𝑆(1)?



❖

Step 3: Find step # of base case

● On step 𝑘, 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● When do we see 𝑆(1)?

● When n - k =1



❖

Step 3: Find step # of base case

● On step 𝑘, 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● When do we see 𝑆(1)?

● When n - k =1   => k = n - 1 



❖

Step 4: Plug into general formula

● From step 2: 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● From step 3: Base case of 𝑆(1) reached when 𝑘 = 𝑛 − 1.

● So



❖

Step 4: Plug into general formula

● From step 2: 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● From step 3: Base case of 𝑆(1) reached when 𝑘 = 𝑛 − 1.

● So   S(n) = 2n-1 ⋅ 𝑆(𝑛 − (n-1))



❖

Step 4: Plug into general formula

● From step 2: 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● From step 3: Base case of 𝑆(1) reached when 𝑘 = 𝑛 − 1.

● So   S(n) = 2n-1 ⋅ 𝑆(𝑛 − (n-1))

              = 2n-1 ⋅ 𝑆(1)



❖

Step 4: Plug into general formula

● From step 2: 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).

● From step 3: Base case of 𝑆(1) reached when 𝑘 = 𝑛 − 1.

● So   S(n) = 2n-1 ⋅ 𝑆(𝑛 − (n-1))

              = 2n-1 ⋅ 𝑆(1)

              = 2n-1 ⋅ 3



❖

Solving the Recurrence

●  We have solved the recurrence: 𝑆(𝑛) = 3 ⋅ 2𝑛−1

●  This is the exact solution. The asymptotic solution is 

                       𝑆(𝑛) = Θ(2𝑛).

● We’ll call this method “solving by unrolling”.
● Take the job? Yes! On day 20 you will get ~ 1.5 mill.$



❖

Do you have any questions?

Thank you!

CampusWire!


