
❖ DSC 40B
Lecture 7 :Average, 

Expected, Lower 
Bound theory



❖

Agenda



❖

Plan for the lecture

● Average case, one more example. 
● Expected Time
● Lower Bound Theory (can you do better?)



❖

Average Case Time Complexity

●  The average case time complexity of linear search is Θ(𝑛).
○ Under the assumptions on the input!



❖

Note

●  Hard to make realistic assumptions on input distribution. 

●  Example: linear search. 
○ Is it realistic to assume 𝑡 is in array?

○ If not, what is the probability that it is in the array?



❖

Exercise

● Suppose we change our assumptions: 
○ The target has a 50% chance of being in the array.

●  If it is in the array, it is equally-likely to be any element. 
● What is the average case complexity now?



❖

Average Case in Movie 
Problem



❖

Recall: The Movie Problem

● Given: an array movies of movie durations, and the 
flight duration t 

● Find: two movies whose durations add to t. 
○ If no two movies sum to t, return None.



❖



❖

Time Complexity

●  Best case: Θ(1) 
○ When the first pair of movies checked equals target. 

● Worst case: Θ(𝑛2 ) 
○ When no pair of movies equals target.



❖

“Average” Case?

● The best and worst cases are extremes.

●  How much time is taken, typically? 
○ That is, when the target pair is not the first checked nor 

the last, but somewhere in the middle.



❖

Exercise

● How much time do you expect find_movies to take on a typical 
input?

A: Θ(1) 

B: Θ(𝑛2 ) 

C: Something in between, 
like Θ(𝑛)



❖

The Movie Problem



❖

Step 0: Assume input distribution

●  Suppose we are told that: 
○ There is a unique pair of movies that add to 𝑡. 
○ All pairs are equally likely.



❖

Step 1: Determine the Cases

●  Case 𝛼: the 𝛼th pair checked sums to 𝑡. 

●  Each pair of movies is a case. 

● There are          cases (pairs of movies)



❖

Step 2: Case Probabilities

● Assume: there is a unique pair that adds to t. 

● Assume: all pairs are equally likely. 

● Probability of any case: 



❖

Step 3: Case Time

● How much time is taken for a particular case? 

● Example, suppose the movies 𝑎 and 𝑏 sum to the target. 

●  How long does it take to find this pair?



❖

Exercise
Roughly how much time is taken (how many times does line 5 
run) if the 𝛼th pair checked sums to the target?



❖

Exercise
𝛼     T

(m1, m2) 



❖

Exercise
𝛼     T

(m1, m2) 

     1                   1



❖

Exercise
𝛼     T

(m1, m3) 

     1                  1

  2                 2



❖

Exercise
𝛼     T

(m1, m4) 

     1                  1

  2                 2

  3                 3



❖

Exercise
𝛼     T

     1                  1

  2                 2

  3                 3

  4                 4



❖

Exercise
𝛼     T

     1                  1

  2                 2

  3                 3

  4                 4

Roughly how much time is taken (how many times does line 5 run) 
if the 𝛼th pair checked sums to the target?  T(case 𝛼) = 𝛼



❖

Step 4: Compute Expectation



❖

Step 4: Compute Expectation



❖

Step 4: Compute Expectation



❖

Step 4: Compute Expectation



❖

Step 4: Compute Expectation



❖



❖



❖



❖



❖



❖



❖



❖



❖



❖



❖



❖



❖



❖



❖

Average Case

● The average case time complexity of find_movies is Θ(𝑛2 ).

●  Same as the worst case!



❖

Note

● We’ve seen two algorithms where the average case = the 
worst case.

● Not always the case! 
● Interpretation: the worst case is not too extreme.



❖

T/F?     

𝑂(⋅) is worst case, 

Ω(⋅) is best case,

Θ(⋅) is average case.
A: True

B: False



❖

A Common Mistake

●  You’ll sometimes see people equate:
○ 𝑂(⋅) with worst case, 
○ Ω(⋅) with best case,
○ Θ(⋅) with average case.

●  This isn’t right!



❖

Note!

● 𝑂(⋅) expresses ignorance about a lower bound.
○ 𝑂(⋅) is like ≤  (“at most”)

●  Ω(⋅) expresses ignorance about an upper bound.
○ Ω(⋅) is like ≥  (“at least”)

●  Θ(⋅) expresses ignorance about an upper bound.
○ Θ(⋅) is like = (“roughly the same”)



❖

Example

●  Suppose we said: “the worst case time complexity of 
find_movies is 𝑂(𝑛2).”

●  Technically true, but not precise.

●  This is like saying: “I don’t know how bad it actually is, but 
it can’t be worse than quadratic.”
○ It could still be linear!

●  Better: the worst case time complexity is Θ(𝑛2).



❖

Example

●  Suppose we said: “the best case time complexity of 
find_movies is Ω(1).”

●  This is like saying: “I don’t know how good it actually is, 
but it can’t be better than constant.”

○ It could be linear!

●  Correct: the best case time complexity is Θ(1).



❖

Put Another Way...

● It isn’t technically wrong to say worst case for 
find_movies is 𝑂(𝑛2)...

●  ...but it isn’t technically wrong to say it is 𝑂(𝑛100), either!



❖

Yet another way

● Best, worst, and average cases can each have their own 
bouds
○ Upper (big-O)
○ lower, (big-Omega)
○ tight (Big Theta)

● as these are distinct concepts: "case" describes a specific 
input characteristic.



❖

Expected Time Complexity



❖

Example: Contrived Algorithm

How much time does wibble take on average?



❖

Random Algorithms

●  This algorithm is randomized.

●  The time it takes is also random.

●  What is the expected time?



❖

Average Case vs. Expected Time

●  With average case complexity, a probability distribution 
on inputs is specified.

●  Now, the randomness is in the algorithm itself.
●  Otherwise, the analysis is very similar.



❖

Step 1: Determine the cases

● Case 1: x == 0

● Case 2: x != 0



❖

Step 2: Determine case probabilities

● Case 1: x == 0

○ P(Case 1) = 1/n

● Case 2: x != 0

○ P(Case 2)=1-1/n



❖

Step 3: Determine case times

● Case 1: x == 0

○ T(Case 1): = Θ(n) 

● Case 2: x != 0

○ T(Case 1): = Θ(1) 



❖

Step 4: Compute expectation

Compute expected time:



❖

Step 4: Compute expectation

Compute expected time:

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2)



❖

Step 4: Compute expectation

Compute expected time:

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2) =

    1/n   *   Θ(n) 



❖

Step 4: Compute expectation

Compute expected time:

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2) =

    1/n   *   Θ(n)     +  (1-1/n)  * Θ(1) 



❖

Step 4: Compute expectation

Compute expected time:

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2) =

    1/n   *   Θ(n)     +  (1-1/n)  * Θ(1)      =

    1/n   *   Θ(n)     +  ((n-1)/n))* Θ(1)     =    



❖

Step 4: Compute expectation

Compute expected time:

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2) =

    1/n   *   Θ(n)     +  (1-1/n)  * Θ(1)      =

    1/n   *   Θ(n)     +  ((n-1)/n))* Θ(1)     = 

          Θ(1)                 +       Θ(1)                 =    Θ(1)



❖

Expected Time

This was a contrived example.

●  Some important algorithms involve randomness!
○ Quicksort
○ We’ll see alg. for median with Θ(𝑛) expected time



❖

Lower Bound Theory



❖

Imagine...

●  You write a simple algorithm to solve a problem.

●  You analyze time complexity and find it is Θ(𝑛2).
●  You ask yourself: can I do better than Θ(𝑛2)?
●  Or: What is the best time complexity possible?



❖

Doing Better

●  How can you know what you don’t know?

●  You can argue that any algorithm for solving the problem 
must take at least a certain amount of time in the worst 
case.



❖

Example: Minimum

● Problem: Find minimum in array of length 𝑛.

● Any algorithm has to check all 𝑛 numbers in the worst case.
○ Or else the number not checked could have been the 

smallest!

● Takes at least linear (Ω(𝑛)) time.
○ No algorithm for the min can have worst case of < linear 

time.



❖

Definition

A theoretical lower bound is a lower bound on the worst-case 
time complexity of any algorithm solving a particular problem.



❖

Main Idea

No algorithm’s worst case can possibly be better than 
theoretical lower bound.



❖

Loose Lower Bounds

●  Ω(log 𝑛), Θ(√𝑛) and Θ(1) are also theoretical lower bounds for 
finding the minimum.

●  But no algorithm can exist which has a worst case of Θ(log 𝑛), 
Θ(√𝑛), or Θ(1).

●  This bound is loose. Not super useful.



❖

Tight Lower Bounds

●  A lower bound is tight if there exists an algorithm with 
that worst case time complexity.

●  That algorithm is (in a sense) optimal.



❖

Definition

A tight theoretical lower bound for a problem is the fastest 
possible worst-case time complexity of any algorithm solving 
that problem.



❖

How to find a TLB

●  Argument from completeness:
○  The algorithm might not be correct if it doesn’t check 

𝑘 things, so the time is Ω(𝑘).
●  Argument from I/O:

○ If the output is an array of size 𝑘, time taken is Ω(𝑘)
●  More sophisticated arguments...



❖

Tight Bounds can be difficult to find

 Often require sophisticated combinatorial arguments 
outside of the scope of DSC 40B.



❖

Assumptions make problems easier

● The TLB for finding a minimum changes if we assume that 
the array is sorted.



❖

Exercise

● Consider these two problems:
○ Find the min of a sorted array.
○ Given a target 𝑡 and a sorted array, determine whether 

𝑡 is in the array.

● Find tight theoretical lower bounds for each problem.

A:  Constant

B:     n

C:     n2

D: Something else



❖

Main Idea

When coming up with an algorithm, first try to find a tight 
TLB. Then try to make an algorithm which has that 
worst-case complexity. If you can, it’s optimal!



❖

Practice makes perfect

● dsc40b.com/practice has a dozen more examples of 
finding theoretical lower bounds.



❖

Case Study: Matrix 
Multiplication



❖

It’s Important

● Matrix multiplication is a very common operation in 
machine learning algorithms.

● Estimate: 75% - 95% of time training a neural network is 
spent in matrix multiplication.



❖

Recall

●  If 𝐴 is 𝑚 × 𝑝 and 𝐵 is 𝑝 × 𝑛, then 𝐴𝐵 is 𝑚 × 𝑛.
●  The 𝑖𝑗 entry of 𝐴𝐵 is



❖

Recall

 X



❖

Naïve Algorithm

This algorithm is relatively straightforward to code up.



❖



❖

Time Complexity

● The naïve algorithm takes time Θ(𝑚𝑛𝑝).

●  If both matrices are 𝑛 × 𝑛, then Θ(𝑛3) time.

●  Cubic!



❖

Cubic Time Complexity

● The largest problem size that can be solved, if a basic 
operation takes 1 nanosecond.

1 s 10 m 1 hr

1,000 6,694 15,326



❖

The Question

●  Can we do better?

● How fast can we possibly multiply matrices?



❖

Theoretical Lower Bound

●  If 𝐴 and 𝐵 are 𝑛 × 𝑛, 𝐶 will have 𝑛2 entries.

● Each entry must be filled: Ω(𝑛2) time.

● That is, matrix multiplication must take at least quadratic time.

●  Is this bound tight? Can it be increased?



❖

 Θ(1)           Θ(n)              Θ(n2)                  Θ(n3)

Our theoretical lower bound

Our Naïve Algorithm



❖

Strassen’s Algorithm

●  Cubic was as good as it got...

●  ...until Strassen, 1969.

●  Time complexity: Θ(𝑛log
2
 7) = Θ(𝑛2.8073)



❖

 Θ(1)           Θ(n)              Θ(n2)                  Θ(n3)

Our theoretical lower bound

Our Naïve Algorithm

Strassen’s Algorithm: Θ(𝑛2.8073)



❖



❖

Currently

● The fastest known matrix multiplication algorithm is due 
to Le Gall
○ In terms of asymptotic time complexity.

●  Θ(𝑛2.3728639) time.



❖

 Θ(1)           Θ(n)              Θ(n2)                  Θ(n3)

Our theoretical lower bound

Our Naïve Algorithm

Strassen’s Algorithm:  Θ(𝑛2.8073)

Le Gall: Θ
(𝑛2.3728639)



❖

Interestingly...

● No one knows what the lowest possible time complexity is.

●  It could be Θ(𝑛2)!

●  The “best” matrix multiplication algorithm is probably still 
undiscovered.



❖

Irony

● There are many matrix multiplication algorithms.

●  How fast is numpy’s matrix multiply?



❖

Irony

● There are many matrix multiplication algorithms.

●  How fast is numpy’s matrix multiply?

○ Θ(𝑛3).



❖

Why?

● Strassen et al. have better asymptotic complexity.

●  But much (much!) larger “hidden constants”.

●  Remember, which is better for small 𝑛:

999,999𝑛2 or 𝑛3?



❖

Do you have any questions?

Thank you!

CampusWire!


