
❖ DSC 40B
Lecture 7 :Average,

Expected, Lower
Bound theory

❖

Agenda

❖

Plan for the lecture

● Average case, one more example.
● Expected Time
● Lower Bound Theory (can you do better?)

❖

Average Case Time Complexity

● The average case time complexity of linear search is Θ(𝑛).
○ Under the assumptions on the input!

❖

Note

● Hard to make realistic assumptions on input distribution.

● Example: linear search.
○ Is it realistic to assume 𝑡 is in array?

○ If not, what is the probability that it is in the array?

❖

Exercise

● Suppose we change our assumptions:
○ The target has a 50% chance of being in the array.

● If it is in the array, it is equally-likely to be any element.
● What is the average case complexity now?

❖

Average Case in Movie
Problem

❖

Recall: The Movie Problem

● Given: an array movies of movie durations, and the
flight duration t

● Find: two movies whose durations add to t.
○ If no two movies sum to t, return None.

❖

❖

Time Complexity

● Best case: Θ(1)
○ When the first pair of movies checked equals target.

● Worst case: Θ(𝑛2)
○ When no pair of movies equals target.

❖

“Average” Case?

● The best and worst cases are extremes.

● How much time is taken, typically?
○ That is, when the target pair is not the first checked nor

the last, but somewhere in the middle.

❖

Exercise

● How much time do you expect find_movies to take on a typical
input?

A: Θ(1)

B: Θ(𝑛2)

C: Something in between,
like Θ(𝑛)

❖

The Movie Problem

❖

Step 0: Assume input distribution

● Suppose we are told that:
○ There is a unique pair of movies that add to 𝑡.
○ All pairs are equally likely.

❖

Step 1: Determine the Cases

● Case 𝛼: the 𝛼th pair checked sums to 𝑡.

● Each pair of movies is a case.

● There are cases (pairs of movies)

❖

Step 2: Case Probabilities

● Assume: there is a unique pair that adds to t.

● Assume: all pairs are equally likely.

● Probability of any case:

❖

Step 3: Case Time

● How much time is taken for a particular case?

● Example, suppose the movies 𝑎 and 𝑏 sum to the target.

● How long does it take to find this pair?

❖

Exercise
Roughly how much time is taken (how many times does line 5
run) if the 𝛼th pair checked sums to the target?

❖

Exercise
𝛼 T

(m1, m2)

❖

Exercise
𝛼 T

(m1, m2)

 1 1

❖

Exercise
𝛼 T

(m1, m3)

 1 1

 2 2

❖

Exercise
𝛼 T

(m1, m4)

 1 1

 2 2

 3 3

❖

Exercise
𝛼 T

 1 1

 2 2

 3 3

 4 4

❖

Exercise
𝛼 T

 1 1

 2 2

 3 3

 4 4

Roughly how much time is taken (how many times does line 5 run)
if the 𝛼th pair checked sums to the target? T(case 𝛼) = 𝛼

❖

Step 4: Compute Expectation

❖

Step 4: Compute Expectation

❖

Step 4: Compute Expectation

❖

Step 4: Compute Expectation

❖

Step 4: Compute Expectation

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

Average Case

● The average case time complexity of find_movies is Θ(𝑛2).

● Same as the worst case!

❖

Note

● We’ve seen two algorithms where the average case = the
worst case.

● Not always the case!
● Interpretation: the worst case is not too extreme.

❖

T/F?

𝑂(⋅) is worst case,

Ω(⋅) is best case,

Θ(⋅) is average case.
A: True

B: False

❖

A Common Mistake

● You’ll sometimes see people equate:
○ 𝑂(⋅) with worst case,
○ Ω(⋅) with best case,
○ Θ(⋅) with average case.

● This isn’t right!

❖

Note!

● 𝑂(⋅) expresses ignorance about a lower bound.
○ 𝑂(⋅) is like ≤ (“at most”)

● Ω(⋅) expresses ignorance about an upper bound.
○ Ω(⋅) is like ≥ (“at least”)

● Θ(⋅) expresses ignorance about an upper bound.
○ Θ(⋅) is like = (“roughly the same”)

❖

Example

● Suppose we said: “the worst case time complexity of
find_movies is 𝑂(𝑛2).”

● Technically true, but not precise.

● This is like saying: “I don’t know how bad it actually is, but
it can’t be worse than quadratic.”
○ It could still be linear!

● Better: the worst case time complexity is Θ(𝑛2).

❖

Example

● Suppose we said: “the best case time complexity of
find_movies is Ω(1).”

● This is like saying: “I don’t know how good it actually is,
but it can’t be better than constant.”

○ It could be linear!

● Correct: the best case time complexity is Θ(1).

❖

Put Another Way...

● It isn’t technically wrong to say worst case for
find_movies is 𝑂(𝑛2)...

● ...but it isn’t technically wrong to say it is 𝑂(𝑛100), either!

❖

Yet another way

● Best, worst, and average cases can each have their own
bouds
○ Upper (big-O)
○ lower, (big-Omega)
○ tight (Big Theta)

● as these are distinct concepts: "case" describes a specific
input characteristic.

❖

Expected Time Complexity

❖

Example: Contrived Algorithm

How much time does wibble take on average?

❖

Random Algorithms

● This algorithm is randomized.

● The time it takes is also random.

● What is the expected time?

❖

Average Case vs. Expected Time

● With average case complexity, a probability distribution
on inputs is specified.

● Now, the randomness is in the algorithm itself.
● Otherwise, the analysis is very similar.

❖

Step 1: Determine the cases

● Case 1: x == 0

● Case 2: x != 0

❖

Step 2: Determine case probabilities

● Case 1: x == 0

○ P(Case 1) = 1/n

● Case 2: x != 0

○ P(Case 2)=1-1/n

❖

Step 3: Determine case times

● Case 1: x == 0

○ T(Case 1): = Θ(n)

● Case 2: x != 0

○ T(Case 1): = Θ(1)

❖

Step 4: Compute expectation

Compute expected time:

❖

Step 4: Compute expectation

Compute expected time:

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2)

❖

Step 4: Compute expectation

Compute expected time:

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2) =

 1/n * Θ(n)

❖

Step 4: Compute expectation

Compute expected time:

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2) =

 1/n * Θ(n) + (1-1/n) * Θ(1)

❖

Step 4: Compute expectation

Compute expected time:

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2) =

 1/n * Θ(n) + (1-1/n) * Θ(1) =

 1/n * Θ(n) + ((n-1)/n))* Θ(1) =

❖

Step 4: Compute expectation

Compute expected time:

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2) =

 1/n * Θ(n) + (1-1/n) * Θ(1) =

 1/n * Θ(n) + ((n-1)/n))* Θ(1) =

 Θ(1) + Θ(1) = Θ(1)

❖

Expected Time

This was a contrived example.

● Some important algorithms involve randomness!
○ Quicksort
○ We’ll see alg. for median with Θ(𝑛) expected time

❖

Lower Bound Theory

❖

Imagine...

● You write a simple algorithm to solve a problem.

● You analyze time complexity and find it is Θ(𝑛2).
● You ask yourself: can I do better than Θ(𝑛2)?
● Or: What is the best time complexity possible?

❖

Doing Better

● How can you know what you don’t know?

● You can argue that any algorithm for solving the problem
must take at least a certain amount of time in the worst
case.

❖

Example: Minimum

● Problem: Find minimum in array of length 𝑛.

● Any algorithm has to check all 𝑛 numbers in the worst case.
○ Or else the number not checked could have been the

smallest!

● Takes at least linear (Ω(𝑛)) time.
○ No algorithm for the min can have worst case of < linear

time.

❖

Definition

A theoretical lower bound is a lower bound on the worst-case
time complexity of any algorithm solving a particular problem.

❖

Main Idea

No algorithm’s worst case can possibly be better than
theoretical lower bound.

❖

Loose Lower Bounds

● Ω(log 𝑛), Θ(√𝑛) and Θ(1) are also theoretical lower bounds for
finding the minimum.

● But no algorithm can exist which has a worst case of Θ(log 𝑛),
Θ(√𝑛), or Θ(1).

● This bound is loose. Not super useful.

❖

Tight Lower Bounds

● A lower bound is tight if there exists an algorithm with
that worst case time complexity.

● That algorithm is (in a sense) optimal.

❖

Definition

A tight theoretical lower bound for a problem is the fastest
possible worst-case time complexity of any algorithm solving
that problem.

❖

How to find a TLB

● Argument from completeness:
○ The algorithm might not be correct if it doesn’t check

𝑘 things, so the time is Ω(𝑘).
● Argument from I/O:

○ If the output is an array of size 𝑘, time taken is Ω(𝑘)
● More sophisticated arguments...

❖

Tight Bounds can be difficult to find

 Often require sophisticated combinatorial arguments
outside of the scope of DSC 40B.

❖

Assumptions make problems easier

● The TLB for finding a minimum changes if we assume that
the array is sorted.

❖

Exercise

● Consider these two problems:
○ Find the min of a sorted array.
○ Given a target 𝑡 and a sorted array, determine whether

𝑡 is in the array.

● Find tight theoretical lower bounds for each problem.

A: Constant

B: n

C: n2

D: Something else

❖

Main Idea

When coming up with an algorithm, first try to find a tight
TLB. Then try to make an algorithm which has that
worst-case complexity. If you can, it’s optimal!

❖

Practice makes perfect

● dsc40b.com/practice has a dozen more examples of
finding theoretical lower bounds.

❖

Case Study: Matrix
Multiplication

❖

It’s Important

● Matrix multiplication is a very common operation in
machine learning algorithms.

● Estimate: 75% - 95% of time training a neural network is
spent in matrix multiplication.

❖

Recall

● If 𝐴 is 𝑚 × 𝑝 and 𝐵 is 𝑝 × 𝑛, then 𝐴𝐵 is 𝑚 × 𝑛.
● The 𝑖𝑗 entry of 𝐴𝐵 is

❖

Recall

 X

❖

Naïve Algorithm

This algorithm is relatively straightforward to code up.

❖

❖

Time Complexity

● The naïve algorithm takes time Θ(𝑚𝑛𝑝).

● If both matrices are 𝑛 × 𝑛, then Θ(𝑛3) time.

● Cubic!

❖

Cubic Time Complexity

● The largest problem size that can be solved, if a basic
operation takes 1 nanosecond.

1 s 10 m 1 hr

1,000 6,694 15,326

❖

The Question

● Can we do better?

● How fast can we possibly multiply matrices?

❖

Theoretical Lower Bound

● If 𝐴 and 𝐵 are 𝑛 × 𝑛, 𝐶 will have 𝑛2 entries.

● Each entry must be filled: Ω(𝑛2) time.

● That is, matrix multiplication must take at least quadratic time.

● Is this bound tight? Can it be increased?

❖

 Θ(1) Θ(n) Θ(n2) Θ(n3)

Our theoretical lower bound

Our Naïve Algorithm

❖

Strassen’s Algorithm

● Cubic was as good as it got...

● ...until Strassen, 1969.

● Time complexity: Θ(𝑛log
2
 7) = Θ(𝑛2.8073)

❖

 Θ(1) Θ(n) Θ(n2) Θ(n3)

Our theoretical lower bound

Our Naïve Algorithm

Strassen’s Algorithm: Θ(𝑛2.8073)

❖

❖

Currently

● The fastest known matrix multiplication algorithm is due
to Le Gall
○ In terms of asymptotic time complexity.

● Θ(𝑛2.3728639) time.

❖

 Θ(1) Θ(n) Θ(n2) Θ(n3)

Our theoretical lower bound

Our Naïve Algorithm

Strassen’s Algorithm: Θ(𝑛2.8073)

Le Gall: Θ
(𝑛2.3728639)

❖

Interestingly...

● No one knows what the lowest possible time complexity is.

● It could be Θ(𝑛2)!

● The “best” matrix multiplication algorithm is probably still
undiscovered.

❖

Irony

● There are many matrix multiplication algorithms.

● How fast is numpy’s matrix multiply?

❖

Irony

● There are many matrix multiplication algorithms.

● How fast is numpy’s matrix multiply?

○ Θ(𝑛3).

❖

Why?

● Strassen et al. have better asymptotic complexity.

● But much (much!) larger “hidden constants”.

● Remember, which is better for small 𝑛:

999,999𝑛2 or 𝑛3?

❖

Do you have any questions?

Thank you!

CampusWire!

