93333390

DSC 408
l!unwwel7a4venmgq,
Bound theory

A v v
Expected, Lower

T ———
..............................

Plan for the lecture

e Average case, one more example.
e Expected Time
e Lower Bound Theory (can you do better?)

11113999

T ————
.............................

Average Case Time Complexity

e The average case time complexity of linear search is O(n).
o Under the assumptions on the input!

11113999

T ————
.............................

:

e Hard to make realistic assumptions on input distribution.

e Example: linear search.
o s it realistic to assume tis in array?

o If not, what is the probability that it is in the array?

11113999

T ————
.............................

Bl |
| 4 B
. -
B B
. Exercise B
B ' B
= e Suppose we change our assumptions: =
. o The target has a 50% chance of being in the array. .
.t e |Ifitisinthe array, it is equally-likely to be any element. .
.P e What is the average case complexity now? B
B B
B

II_, -
= B
T —
..............................

93322290

Average Case in Movie

Recall: The Movie Problem

e Given: an array movies of movie durations, and the
flight duration t

e Find: two movies whose durations add to t.
o If no two movies sum to t, return None.

11113999

T ————
.............................

~def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
if movies[i] + movies[j] ==
return (i, j)
return None

199999949

T ———
e

Time Complexity

e Best case: O(1)
o When the first pair of movies checked equals target.

e Worst case: O(n?)
o When no pair of movies equals target.

11113999

T ————
.............................

‘Average” Case?

e The best and worst cases are extremes.

e How much time is taken, typically?
o That is, when the target pair is not the first checked nor
the last, but somewhere in the middle.

11113999

T ————
.............................

I lllllllllllllllllllllll=ll

L
II.__, .
Exercise

e How much time do you expect find_movies to take on a typical
input?

I C: Something in between,
I like ©(n)

B ————T
.............................

The Movie Problem

def find_movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
if movies[i] + movies[j] ==
return (i, j)
return None

11113999

T ————
.............................

Step 0: Assume input distribution

e Suppose we are told that:
o There is a unique pair of movies that add to .
o All pairs are equally likely.

11113999

T ————
.............................

Step 1: Determine the Cases

e (ase a: the ath pair checked sums to .

e Each pair of movies is a case.

e There are ('21) cases (pairs of movies)

11113999

T ————
.............................

Step 2: Case Probabilities

e Assume: there is a unique pair that adds to t.

e Assume: all pairs are equally likely.

e Probability of any case: 1 - _2

('27) n(n-1)

11113999

T ————
.............................

Step 3: Case Time

e How much time is taken for a particular case?

e Example, suppose the movies a and b sum to the target.

e How long does it take to find this pair?

11113999

T ————
.............................

I lllllllllllllllllllllll=l=
.-

Exercise

-Roughly how much time is taken (how many times does line 5
run) if the ath pair checked sums to the target?

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
if movies[i] + movies[j] == t:
return (i, j)

P return None
= L

B ————T
.............................

I lllllllllllllllllllllll=l=
.-

(m.,, m,)
Exercise

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
p if movies[i] + movies[j] == t:
return (i, j)
return None

="’ =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

(m.,, m,)
Exercise

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
p if movies[i] + movies[j] == t:
return (i, j)
return None

="’ =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

(m,, m,)
Exercise

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
p if movies[i] + movies[j] == t:
return (i, j)
return None

="’ =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

(m., m,)
Exercise

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
p if movies[i] + movies[j] == t:
return (i, j)
return None

="’ =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

Exercise

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
p if movies[i] + movies[j] == t:
return (i, j)
return None

="’ =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

Exercise

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
p if movies[i] + movies[j] == t:
return (i, j)
return None

Roughly how much time is taken (how many times does line 5 run)

I if the ath pair checked sums to the target? T(case a) =
= T T ——————
.............................

.I._, L |
B Step 4: Compute Expectation

avg

T ————
e

.I.__. L |
B Step 4: Compute Expectation

= X

av
g o =

==-—' mnd I

—
=
=
—
=
=
=
=
=
=
—
=
=
=
=
=
=
|
L
O
O

o
II'-’
Ste
p 4
: Co
m
pute E.
X
pe
ctat
ion
|

=I~—'

.I.__. L |
B Step 4: Compute Expectation

)
T =) P(casea)

avyg a =1

==-—' mnd I

.I.__.
B Step 4: Compute Expectation

.t z)

2 P(case a) - T(case a)

T ————
e

=l

Y., P(casea) - T(case a)
=1
T(case a)

(
(n
-

1

)
)

a

avg

L.Ppb_.p-.rp

=l

1
. T
(zj

1

(¢
&

a

Y., P(casea) - T(case a)
=1
T(case o)

(
(n
-

1

)
)

a

avg

L.p_.pb_.p-.rp

T ———
..............................

Q
YRCE
BN

o P

QQ
1 ™M

CCCCCCc

s I

n n

2 2

2
-------—------d

L.Ppp.p-.rpb.-

n n

2 2

2
-------—------d

L.Ppp.p-.rpb.-

T ———
..............................

il
)
|
: A~
-
- N
©)
. |
4_
-+
o 2l
|
|
|
1l

L.Ppp.p-.rpb.

T R ————
-ttt

T R ————
-ttt

T ———
..............................

=l

1
IIIIIIIIIIIIIIIIIIIIIIIIIIII

L 0o
o(n’)

1“ CR

— .
— n

.U
23333333

CCCCCCece

T ————
.............................

pttppp.n

Average Case

e The average case time complexity of find_movies is O(n?

e Same as the worst case!

11113999

T ————
.............................

:

We've seen two algorithms where the average case = the

worst case.
Not always the case!
Interpretation: the worst case is not too extreme.

11113999

T ————
.............................

93333390

B: False

O(-) is worst case,
Q)(-) is best case
O(-) is average case.

A Common Mistake

e You'll sometimes see people equate:
o O(-) with worst case,
o Q(-) with best case,

o O(-) with average case.
e This isn’t right!

11113999

T ————
.............................

> <
Q
§

e ((-) expresses ignorance about a lower bound.

o O()is like = (“at most”)

e ()(-) expresses ignorance about an upper bound.
o Q(-)islike =z (“at least”)

e O) expresses ignorance about an upper bound.
o O(-)is like = (“roughly the same”)

11113999

T ————
.............................

I lllllllllllllllllllllll=ll

-
I &
I"'. Example

e Suppose we said: "the worst case time complexity of
find_movies is O(n?).”

e Technically true, but not precise.

e This is like saying: “/ don’t know how bad it actually is, but
it can’t be worse than quadratic.”

.P o It could still be linear!

e Better: the worst case time complexity is O(n?).

B ————T
.............................

K.
c
"

Example

e Suppose we said: “the best case time complexity of
find_movies is Q(1).”

e This is like saying: */ don‘t know how good it actually is,
but it can’t be better than constant.”

o It could be linear!

.I e Correct: the best case time complexity is O(1).

T ————
.............................

Put Another Way...

e |tisn't technically wrong to say worst case for
find_movies is O(n?)...

(100)

e ..butitisn't technically wrong to say it is O(n'>"), either!

11113999

T ————
.............................

Vet another way

e Best, worst, and average cases can each have their own
bouds
o Upper (big-0)
o lower, (big-Omega)
o tight (Big Theta)

e 3s these are distinct concepts: "case" describes a specific
input characteristic.

= T —— T ———

'l' 9999499

93333390

Expected Time Complexity
-ttt

==llllllllllllllllllllllll=l=
.-

=I._,o Example: Contrived Algorithm

def wibble(n):
generate random number between @ and n
X = np.random.randint(e, n)

1f X == o

for i in range(n)
print('Unlucky!")

. else:
print('Lucky!"')
P How much time does wibble take on average?

= T —— T ———

Random Algorithms

e This algorithm is randomized.

e The time it takes is also random.

e What is the expected time?

11113999

T ————
.............................

Average Case vs. Expected Time

e \With average case complexity, a probability distribution
on inputs is specified.

e Now, the randomness is in the algorithm itselr.

e Otherwise, the analysis is very similar.

11113999

T ————
.............................

llllllllllllllllllllllllllllll
II.__, LT
= Step 1: Determine the cases =
. def wibble(n): e Casel1: x == 0 .
. # generate random number between o and n .
.t X = np.random.randint(e, n) e Case?2:x = 0 .
if x == o:
. = DR iy, :
else:
. print('Lucky!") .
o -
= B
T R —————
.lllIlllllllllllllllllllllllll

..............................
II__, u
= Step 2: Determine case probabilities =
. def wibble(n): e Casel: x == .
. # generate random number between o and n .
. X = np.random.randint(e, n) o P(Case 1) = 1/n .
e, Cose2x 1= 0 :
.P : Se[.:jrlnt('Lucky!") o P(Case 2)=1-1/n .
'I ' -
= L

T R —————
..............................

©

v
C
©

=I—'

T — T W ————
e

Step 3: Determine case times

ef wibble(n): e Case 1: x == 0

generate random number between © and n
X = np.random.randint(e, n) 5 T(Case 1). = 0(n)

if x == o:
for i in range(n): e Case 2: x =0
print('Unlucky!")
else:

print('Lucky!") o T(Case 1): = 0(1)

93333390

Step 4: Compute expectation

Compute expected time:

Step 4: Compute expectation

Compute expected time:

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2)

11113999

T ————
.............................

Step 4: Compute expectation

Compute expected time:

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2) =
1/n * O(n)

11113999

T ————
.............................

Step 4: Compute expectation

Compute expected time:

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2) =
1/n * O(n) + (1-1/n) * O(1)

11113999

T ————
.............................

Step 4: Compute expectation

Compute expected time:

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2) =
1/n * O(n) + (1-1/n) * O(1)
1/n * O(n) + ((n-1)/n))* O(1)

11113999

T ————
.............................

Step 4: Compute expectation

Compute expected time:

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2) =
1/n * O(n) + (1-1/n) * O(1)
1/n + ((n-1)/n))* O(1)
+ o(1)

11113999

T ————
.............................

Expected Time

This was a contrived example.

e Some important algorithms involve randomness!
o Quicksort
o We’'ll see alg. for median with O(n) expected time

11113999

T ————
.............................

T ———
..............................

Imagine...

You write a simple algorithm to solve a problem.

You analyze time complexity and find it is ©(n?).
You ask yourself: can | do better than O(n?)?
Or: What is the best time complexity possible?

11113999

T ————
.............................

Doing Better

e How can you know what you don’t know?

e You can argue that any algorithm for solving the problem
must take at least a certain amount of time in the worst
case.

11113999

T ————
.............................

==llllllllllllllllllllllll=l=
.-

II.__.
B Example: Minimum

- e Problem: Find minimum in array of length n.

e Any algorithm has to check all n numbers in the worst case.
o Or else the number not checked could have been the
smallest!

. e Takes at least linear (Q(n)) time.
o No algorithm for the min can have worst case of < linear

time.
= =

B ————T
.............................

Definition

A theoretical lower bound is a lower bound on the worst-case
time complexity of any algorithm solving a particular problem.

133193149

T ————
.............................

B .
| 4 .
.I.__. L
o .
= Main Idea B
o ' L
= No algorithm’s worst case can possibly be better than =
.t theoretical lower bound. .
o .
.P .
O -
.I". .
= L

T ——
-ttt

Loose Lower Bounds

o Qf(log n), ©(vn) and O(1) are also theoretical lower bounds for
finding the minimum.

But no algorithm can exist which has a worst case of O(log n),
@(+vn), or ©(1).

e This bound is loose. Not super useful.

AR

T ————
.............................

Tight Lower Bounds

e A lower bound is tight if there exists an algorithm with
that worst case time complexity.

e That algorithm is (in a sense) optimal.

11113999

T ————
.............................

Definition

A tight theoretical lower bound for a problem is the fastest
possible worst-case time complexity of any algorithm solving
that problem.

133193149

- =8

B ————T
e

How to find a TLB

e Argument from completeness:
o The algorithm might not be correct if it doesn’t check
k things, so the time is Q(k).

e Argument from I/O:
o If the output is an array of size k, time taken is Q(k)

199999949

e More sophisticated arguments...

T ————
.............................

ceeecece

Tight Bounds can be difficult to find

Often require sophisticated combinatorial arguments
outside of the scope of DSC 40B.

T ————
.............................

Assumptions make problems easier

e The TLB for finding a8 minimum changes if we assume that
the array is sorted.

11113999

T ————
.............................

lllllllllll=l=
.-

A: Constant
B: n
C: n?

D: Something else

Exercise

e Consider these two problems:
o Find the min of a sorted array.
o Given a target r and a sorted array, determine whether
tis in the array.

e Find tight theoretical lower bounds for each problem.

133193149

T ————
.............................

Main Idea

When coming up with an algorithm, first try to find a tight
TLB. Then try to make an algorithm which has that
worst-case complexity. If you can, it's optimal!

133193149

T ————
.............................

ceeecece

Practice makes perfect

e dsc40b.com/practice has a dozen more examples of
finding theoretical lower bounds.

T ————
.............................

93322290

Case Study: Matrix
Multiplication

It’s Important

e Matrix multiplication is @ very common operation in
machine learning algorithms.

e Estimate: 75% - 95% of time training a neural network is
spent in matrix multiplication.

11113999

T ————
.............................

I lllllllllllllllllllllll=l=
.-

.I'-’ Recall

e IfAismxpandBispxn, then AB is m x n.

e Theijentry of ABis
p
IP (AB);; = D @by,
k=1
= =

B ————T
.............................

T R ————
-ttt

Naive Algorithm

CEEREREREY

=l

This algorithm is relatively straightforward to code up.

NN
——— =aEE
.

def mmul(A, B):

nnn

A is (m x p) and B is (p x n)

nnn

m, p = A.shape
n = B.shape[1]

C = np.zeros((m, n))
for i in range(m):
for j in range(n):
for k in range(p):
cli,j] += A[i,k] = B[k, j]

return C

1999999499

T ————
.........................i...

Time Complexity

e The naive algorithm takes time O(mnp).

e |If both matrices are n x n, then O(x3) time.

e Cubic!

11113999

T ————
.............................

Cubic Time Complexity

e The largest problem size that can be solved, if a basic
operation takes 1 nanosecond.

1s 10 m
1,000 6,694

11113999

T ————
.............................

=l

Can we do better?
e How fast can we possibly multiply matrices?

The Question

CEEREREREY

Theoretical Lower Bound

e |IfAandBarenxn, Cwill have n? entries.

e Each entry must be filled: Q(n?) time.
e That is, matrix multiplication must take at least quadratic time.

e |s this bound tight? Can it be increased?

11113999

T ————
.............................

g
)
m
I
I
i

3232393

Our theoretical lower bound

Strassen'’s Algorithm

e (Cubic was as good as it got...

e ..until Strassen, 19609.

e Time complexity: ©(n'°927) = O(n28973)

11113999

T ————
.............................

93333390

Strassen’s Algorithm: ©(n?28°73)

Our theoretical lower bound

Strassen] Pai
 Bini et al.

Schonhage
Coppersmith, Winograd

Coppersmith, Winograd Stothers Le Gall

Williams
YUY [N ST Y SO W Y N TR TN WY (YA S (LY WY SN N TRS] VU THRLT VAN [N SN SR S S [S [] O Year

1950 1960 1970 1980 1990 2000 2010 2015

=
-
o
+

199999949

T ———
e

Currently

e The fastest known matrix multiplication algorithm is due
to Le Gall
o In terms of asymptotic time complexity.

@(n2.3728639)

° time.

11113999

T ————
.............................

Our Naive Algorithm

Le Gall: ©
(172:3728639)

Our theoretical lower bound

| |
| |
| |
| |
| |
| |
| |
| |
| |
A A
_/ N4

O(n?)

)

Strassen’s Algorithm: ©(n?8973)

ceeecece

T ————
.............................

Interestingly...

e No one knows what the lowest possible time complexity is.

e It could be O(n?)!

e The "best” matrix multiplication algorithm is probably still
undiscovered.

11113999

T ————
.............................

B .
H :
II-—' B
=t: Irony .
= e There are many matrix multiplication algorithms. =
. e How fast is numpy’s matrix multiply? .
HEI . -
o -
¥ -

B
=--------——-----d...
-ttt

B .
H :
II-—' B
=t: Irony .
= e There are many matrix multiplication algorithms. =
.i e How fast is numpy’s matrix multiply? .
= o O(n3). =
HpI -
¥ -

B
=--------——-----d...
-ttt

Why?

e Strassen et al. have better asymptotic complexity.

e But much (much!) larger *hidden constants”.
e Remember, which is better for small n:

999,999x° or n3?

11113999

T ————
.............................

Thank you!

.I CampusWire!
=l--

)

