DSC 40B Lecture 7: Average, Expected, Lower Bound theory



Plan for the lecture

- Average case, one more example.
- Expected Time
- Lower Bound Theory (can you do better?)

Average Case Time Complexity

- The average case time complexity of linear search is $\Theta(n)$.
 - Output: Output of the input!

Note

- Hard to make realistic assumptions on input distribution.
- **Example**: linear search.
 - \circ Is it realistic to assume t is in array?
 - If not, what is the probability that it is in the array?

- Suppose we *change* our assumptions:
 - The target has a 50% chance of being in the array.
- If it is in the array, it is equally-likely to be any element.
- What is the average case complexity now?

Average Case in Movie Problem

Recall: The Movie Problem

- **Given**: an array movies of movie durations, and the flight duration t
- Find: two movies whose durations add to t.
 - If no two movies sum to t, return None.

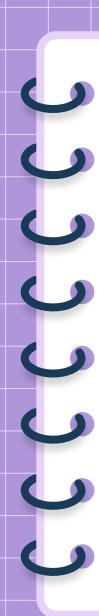
```
def find_movies(movies, t):
    n = len(movies)
    for i in range(n):
        for j in range(i + 1, n):
            if movies[i] + movies[j] == t:
                return (i, j)
    return None
```


Time Complexity

- Best case: Θ(1)
 - When the first pair of movies checked equals target.
- Worst case: $\Theta(n^2)$
 - When no pair of movies equals target.

"Average" Case?

- The best and worst cases are extremes.
- How much time is taken, typically?
 - That is, when the target pair is not the first checked nor the last, but somewhere in the middle.



 How much time do you expect find_movies to take on a typical input?

A: Θ(1)

B: $\Theta(n^2)$

C: Something in between,

like $\Theta(n)$

The Movie Problem

```
def find_movies(movies, t):
    n = len(movies)
    for i in range(n):
        for j in range(i + 1, n):
            if movies[i] + movies[j] == t:
                return (i, j)
    return None
```


Step 0: Assume input distribution

- Suppose we are told that:
 - \circ There is a **unique** pair of movies that add to t.
 - All pairs are equally likely.

Step 1: Determine the Cases

- Case α : the α th pair checked sums to t.
- Each pair of movies is a case.
- There are $\binom{n}{2}$ cases (pairs of movies)

Step 2: Case Probabilities

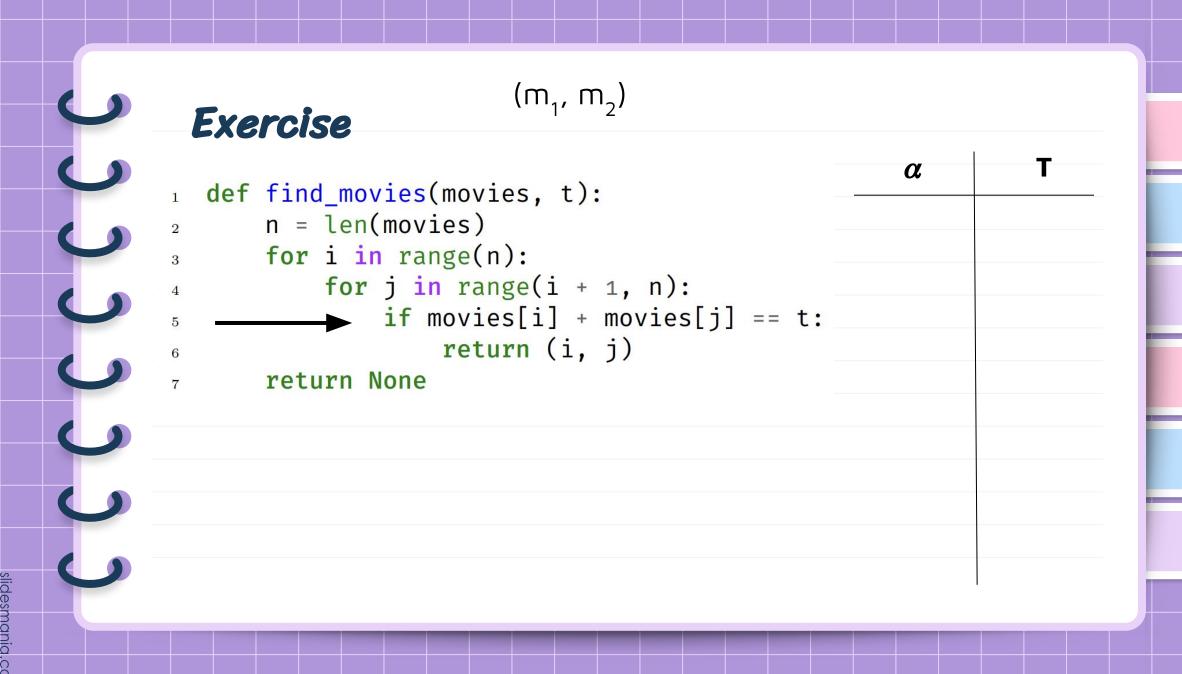
- **Assume**: there is a unique pair that adds to t.
- **Assume**: all pairs are equally likely.
- Probability of any case: $\frac{1}{\binom{n}{2}} = \frac{2}{n(n-1)}$

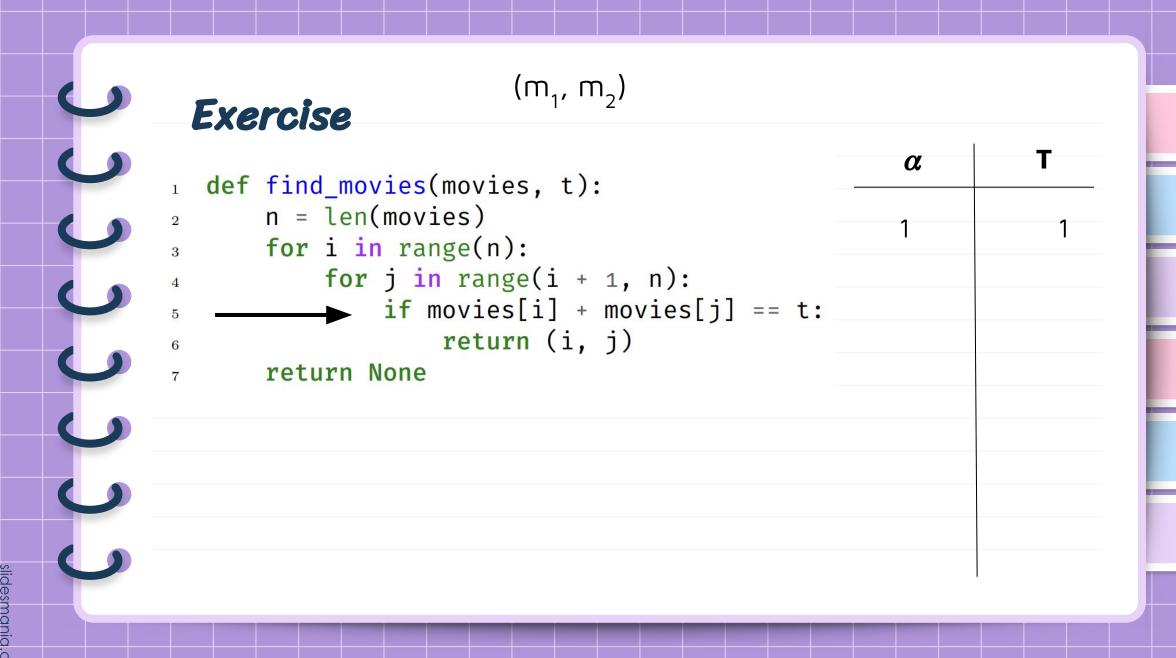
Step 3: Case Time

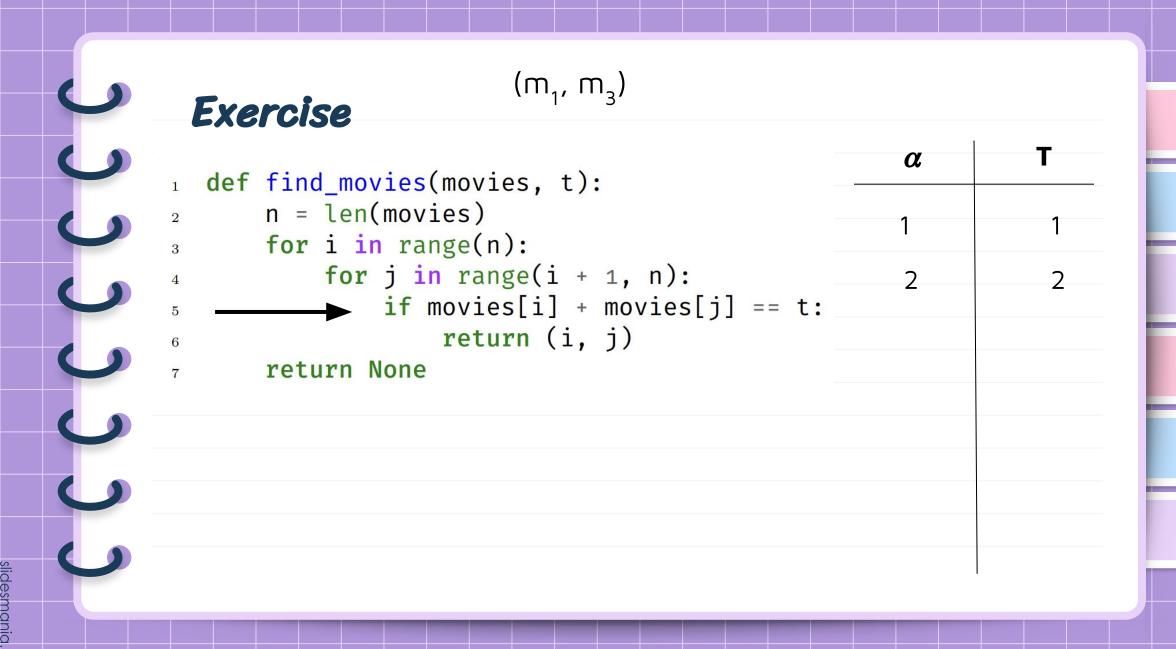
- How much time is taken for a particular case?
- ullet Example, suppose the movies a and b sum to the target.
- How long does it take to find this pair?

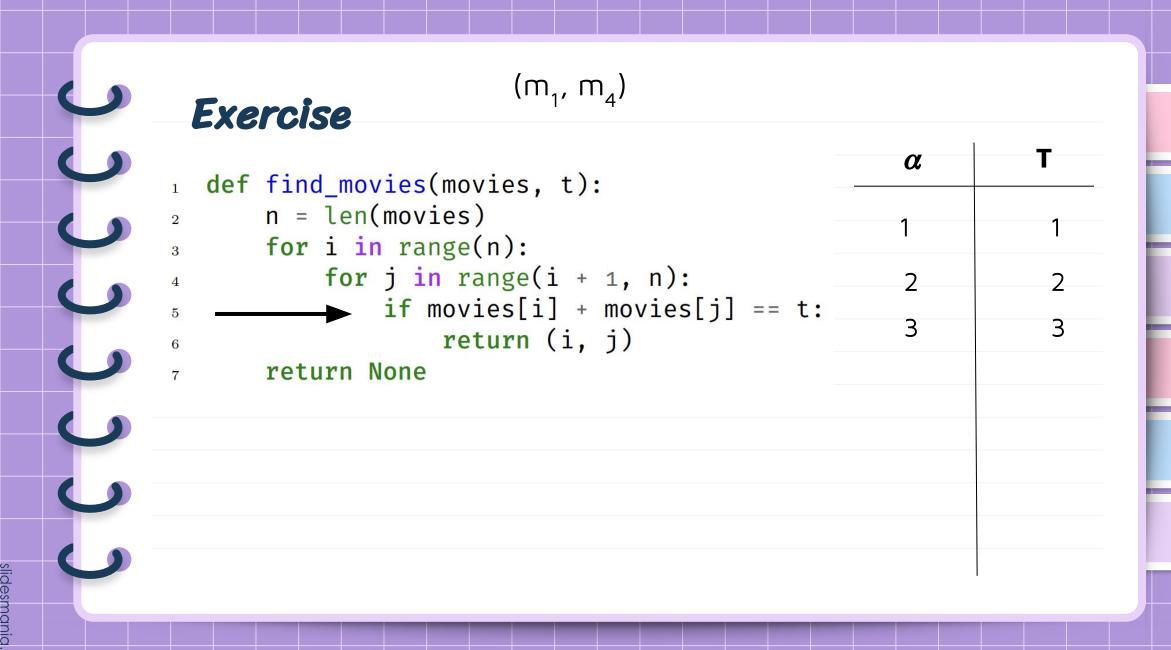
Roughly how much time is taken (how many times does line 5 run) if the α th pair checked sums to the target?

```
def find_movies(movies, t):
    n = len(movies)
    for i in range(n):
        for j in range(i + 1, n):
             if movies[i] + movies[j] == t:
                 return (i, j)
                return None
```









Roughly how much time is taken (how many times does line 5 run) if the α th pair checked sums to the target? **T(case** α **)** = α

$$T_{avg} = \sum_{\alpha = 1}$$

$$T_{avg} = \sum_{\alpha = 1}^{(-)}$$

$$T_{avg} = \sum_{\alpha = 1}^{\infty} P(case \alpha)$$

$$T_{avg} = \sum_{\alpha = 1}^{(2)} P(case \alpha) \cdot T(case \alpha)$$

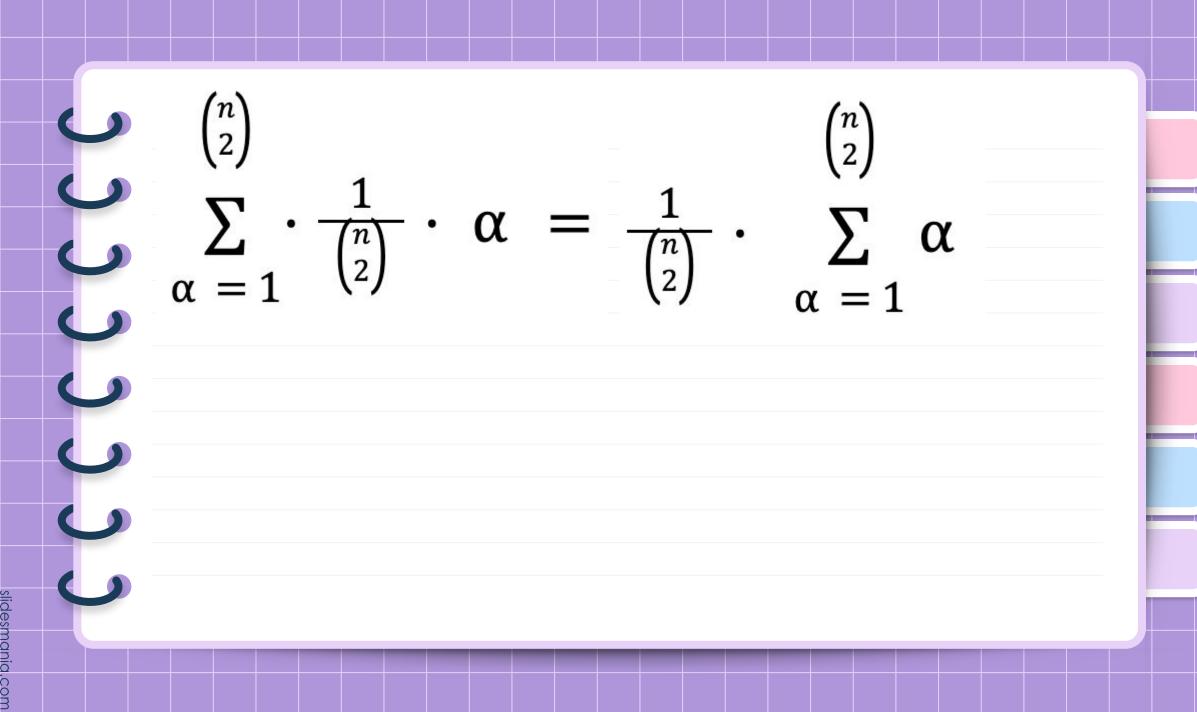
$$T_{avg} = \sum_{\alpha = 1}^{\binom{n}{2}} P(case \, \alpha) \cdot T(case \, \alpha)$$

$$\sum_{\alpha = 1}^{\binom{n}{2}} \frac{1}{\binom{n}{2}} \cdot T(case \, \alpha)$$

$$\alpha = 1$$

$$T_{avg} = \sum_{\alpha = 1}^{\binom{n}{2}} P(case \, \alpha) \cdot T(case \, \alpha)$$

$$\sum_{\alpha = 1}^{\binom{n}{2}} \cdot \frac{1}{\binom{n}{2}} \cdot T(case \, \alpha) = \sum_{\alpha = 1}^{\binom{n}{2}} \cdot \frac{1}{\binom{n}{2}} \cdot \alpha$$



$$\sum_{\alpha=1}^{\binom{n}{2}} \cdot \frac{1}{\binom{n}{2}} \cdot \alpha = \frac{1}{\binom{n}{2}} \cdot \sum_{\alpha=1}^{\binom{n}{2}} \alpha$$

$$\sum_{\alpha=1}^{\binom{n}{2}} \alpha = \sum_{\alpha=1}^{t} \alpha = \frac{t(t+1)}{2}$$

$$\alpha = 1$$

slidesmania.com

$$\sum_{\alpha=1}^{\binom{n}{2}} \frac{1}{\binom{n}{2}} \cdot \alpha = \frac{1}{\binom{n}{2}} \cdot \sum_{\alpha=1}^{\binom{n}{2}} \alpha$$

$$\sum_{\alpha=1}^{\binom{n}{2}} \frac{t}{\alpha} = \sum_{\alpha=1}^{t} \alpha = \frac{t(t+1)}{2} = \frac{\binom{n}{2} \binom{n}{2}+1}{2}$$

$$\alpha = 1$$

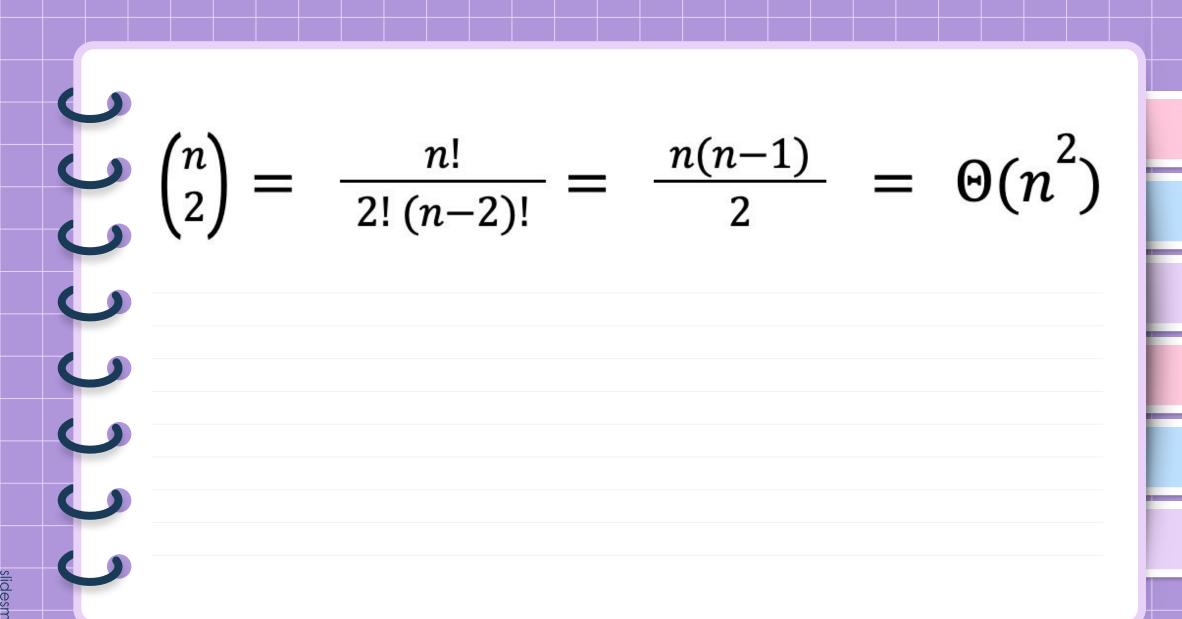
slidesmania.com

$$\sum_{\alpha=1}^{\binom{n}{2}} \frac{1}{\binom{n}{2}} \cdot \alpha = \frac{1}{\binom{n}{2}} \cdot \sum_{\alpha=1}^{\binom{n}{2}} \alpha$$

$$\sum_{\alpha=1}^{\binom{n}{2}} \frac{t}{\alpha} = \sum_{\alpha=1}^{t} \alpha = \frac{t(t+1)}{2} = \frac{\binom{n}{2} \binom{n}{2}+1}{2}$$

$$\alpha = 1$$

slidesmania.com

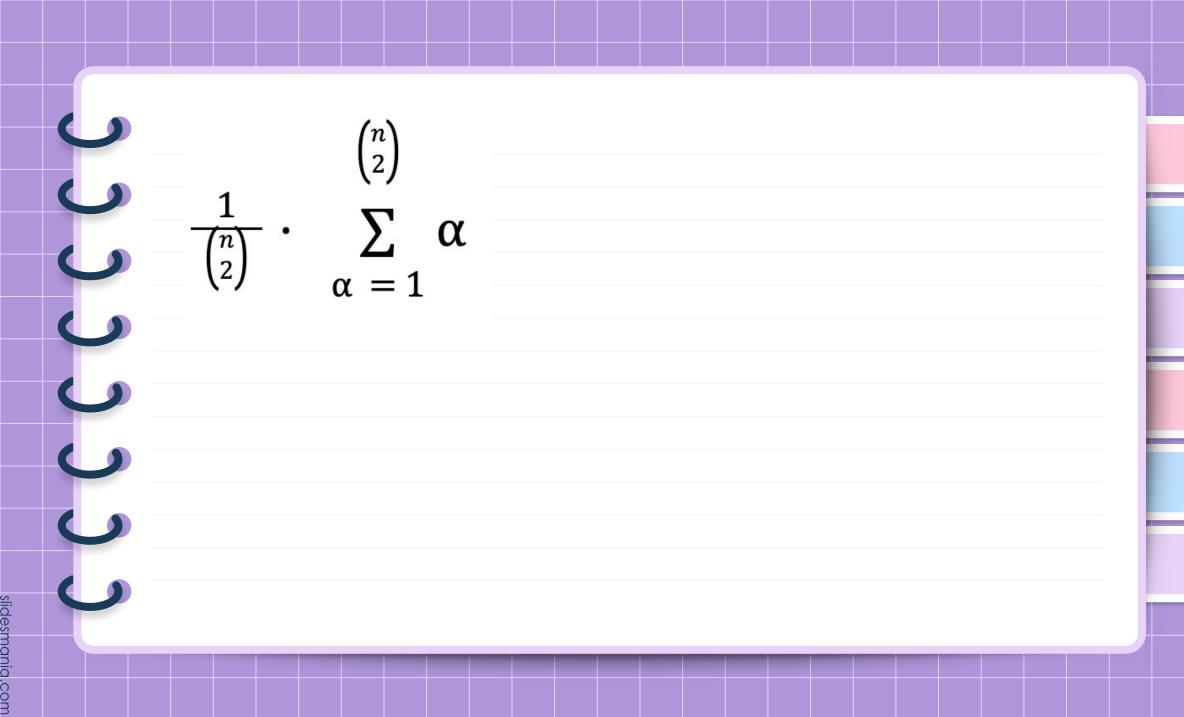


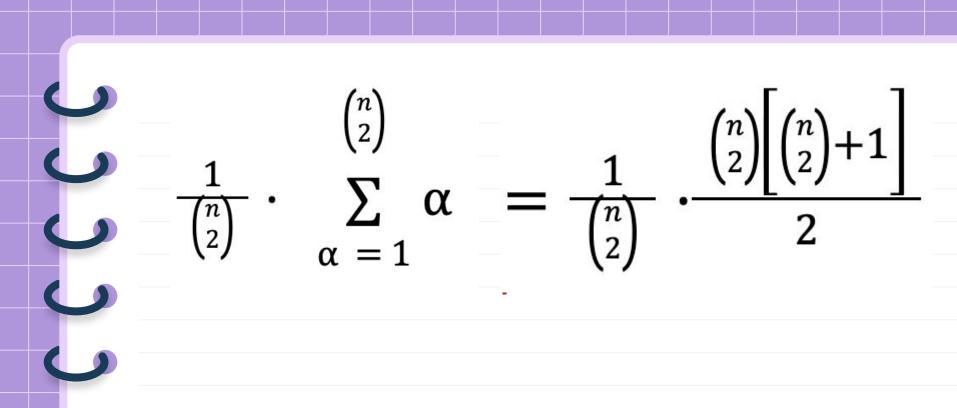
$$\binom{n}{2} = \frac{n!}{2! (n-2)!} = \frac{n(n-1)}{2} = \Theta(n^2)$$

$$\frac{\binom{n}{2}\left[\binom{n}{2}+1\right]}{2}=\Theta(?)$$

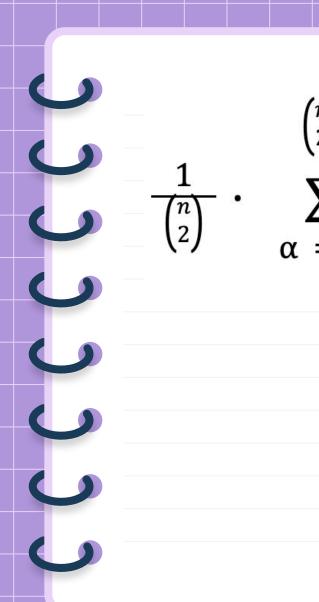
$$\binom{n}{2} = \frac{n!}{2! (n-2)!} = \frac{n(n-1)}{2} = \Theta(n^2)$$

$$\frac{\binom{n}{2}\left[\binom{n}{2}+1\right]}{2}=\Theta(n^4)$$





slidesmania.com



slidesmania.com

$$\sum_{\alpha=1}^{\binom{n}{2}} \alpha = \frac{1}{\binom{n}{2}} \cdot \frac{\binom{n}{2} \left[\binom{n}{2} + 1\right]}{2}$$

$$=\frac{1}{\binom{n}{2}}\cdot\Theta(n^4)$$

$$\frac{1}{\binom{n}{2}} \cdot \sum_{\alpha = 1}^{\binom{n}{2}} \alpha = \frac{1}{\binom{n}{2}} \cdot \frac{\binom{n}{2} \left[\binom{n}{2} + 1\right]}{2}$$

$$= \frac{1}{\binom{n}{2}} \cdot \Theta(n^4)$$

$$= \frac{1}{\Theta(n^2)} \cdot \Theta(n^4)$$

$$\frac{1}{\binom{n}{2}} \cdot \sum_{\alpha = 1}^{\binom{n}{2}} \alpha = \frac{1}{\binom{n}{2}} \cdot \frac{\binom{n}{2} \left[\binom{n}{2} + 1\right]}{2}$$

$$= \frac{1}{\binom{n}{2}} \cdot \Theta(n^4)$$

$$= \frac{1}{\Theta(n^2)} \cdot \Theta(n^4)$$

$$= \Theta(n^2)$$

Average Case

- The average case time complexity of find_movies is $\Theta(n^2)$.
- Same as the **worst** case!

Note

- We've seen two algorithms where the average case = the worst case.
- Not always the case!
- Interpretation: the worst case is not too extreme.

T/F?

 $O(\cdot)$ is worst case,

 $\Omega(\cdot)$ is best case,

 $\Theta(\cdot)$ is average case.

A: True

B: False

A Common Mistake

- You'll sometimes see people equate:
 - \circ $O(\cdot)$ with worst case,
 - \circ $\Omega(\cdot)$ with best case,
 - \circ $\Theta(\cdot)$ with average case.
- This isn't right!

Note!

- \bullet $O(\cdot)$ expresses ignorance about a lower bound.
 - \circ $O(\cdot)$ is like \leq ("at most")
- ullet $\Omega(\cdot)$ expresses ignorance about an upper bound.
 - \circ $\Omega(\cdot)$ is like ≥ ("at least")
- \bullet $\Theta(\cdot)$ expresses ignorance about an upper bound.
 - \circ $\Theta(\cdot)$ is like = ("roughly the same")



Example

- Suppose we said: "the worst case time complexity of find_movies is $O(n^2)$."
- Technically *true*, but not **precise**.
- This is like saying: "I **don't know** how bad it actually is, but it can't be worse than quadratic."
 - It could still be linear!
- **Better**: the worst case time complexity is $\Theta(n^2)$.

Example

- Suppose we said: "the best case time complexity of find_movies is $\Omega(1)$."
- This is like saying: "I don't know how good it actually is, but it can't be better than constant."
 - It could be linear!
- Correct: the best case time complexity is $\Theta(1)$.

Put Another Way...

- It isn't **technically wrong** to say worst case for find_movies is $O(n^2)$...
- ...but it isn't **technically wrong** to say it is $O(n^{100})$, either!

Yet another way

- Best, worst, and average cases can each have their own bouds
 - Upper (big-O)
 - lower, (big-Omega)
 - tight (Big Theta)
- as these are distinct concepts: "case" describes a *specific* input characteristic.

Expected Time Complexity

Example: Contrived Algorithm

```
def wibble(n):
    # generate random number between o and n
    x = np.random.randint(o, n)

if x == o:
    for i in range(n):
        print('Unlucky!')

else:
    print('Lucky!')
```

How much time does wibble take on average?

Random Algorithms

- This algorithm is randomized.
- The time it takes is also random.
- What is the expected time?

Average Case vs. Expected Time

- With average case complexity, a probability distribution on inputs is specified.
- Now, the randomness is in the algorithm itself.
- Otherwise, the analysis is **very similar.**

Step 1: Determine the cases

```
def wibble(n):
    # generate random number between o and n
    x = np.random.randint(o, n)

if x == o:
    for i in range(n):
        print('Unlucky!')

else:
    print('Lucky!')
```

- Case 1: x == 0
- Case 2: x != 0

Step 2: Determine case probabilities

```
def wibble(n):
    # generate random number between o and n
    x = np.random.randint(o, n)

if x == o:
    for i in range(n):
        print('Unlucky!')

else:
    print('Lucky!')
```

- Case 1: x == 0
 - \circ P(Case 1) = 1/n
- Case 2: x != 0
 - \circ P(Case 2)=1-1/n

Step 3: Determine case times

```
def wibble(n):
    # generate random number between o and n
    x = np.random.randint(o, n)

if x == o:
    for i in range(n):
        print('Unlucky!')

else:
    print('Lucky!')
```

• Case 1: x == 0

 \circ T(Case 1): = $\Theta(n)$

• Case 2: x != 0

 \circ T(Case 1): = $\Theta(1)$

Compute expected time:

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2)

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2) =
$$1/n$$
 * $\Theta(n)$

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2) =
$$1/n$$
 * $\Theta(n)$ + $(1-1/n)$ * $\Theta(1)$

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2) =
$$1/n$$
 * $\Theta(n)$ + $(1-1/n)$ * $\Theta(1)$ = $1/n$ * $\Theta(n)$ + $((n-1)/n)$)* $\Theta(1)$ =

P(Case 1) * T(Case 1) + P(Case 2) * T(Case 2) =

1/n *
$$\Theta(n)$$
 + $(1-1/n)$ * $\Theta(1)$ =

1/n * $\Theta(n)$ + $((n-1)/n)$)* $\Theta(1)$ =

 $\Theta(1)$ + $\Theta(1)$ = $\Theta(1)$

Expected Time

This was a *contrived* example.

- Some important algorithms involve randomness!
 - Quicksort
 - \circ We'll see alg. for median with $\Theta(n)$ expected time

Lower Bound Theory

Imagine...

- You write a simple algorithm to solve a problem.
- You analyze time complexity and find it is $\Theta(n^2)$.
- You ask yourself: can I do better than $\Theta(n^2)$?
- Or: What is the **best** time complexity possible?

Doing Better

- How can you know what you don't know?
- You can argue that any algorithm for solving the problem must take at least a certain amount of time in the worst case.

Example: Minimum

- **Problem**: Find *minimum* in array of length n.
- \bullet Any algorithm has to check all n numbers in the worst case.
 - Or else the number not checked could have been the smallest!
- Takes at least linear $(\Omega(n))$ time.
 - No algorithm for the min can have worst case of < linear time.

Definition

A theoretical lower bound is a lower bound on the **worst-case** time complexity of **any algorithm** solving a particular problem.

Main Idea

No algorithm's worst case can possibly be **better** than **theoretical lower bound**.

Loose Lower Bounds

- $\Omega(\log n)$, $\Theta(\sqrt{n})$ and $\Theta(1)$ are also theoretical lower bounds for finding the minimum.
- But no algorithm can exist which has a worst case of $\Theta(\log n)$, $\Theta(\sqrt{n})$, or $\Theta(1)$.
- This bound is loose. Not super useful.

Tight Lower Bounds

- A lower bound is tight if there exists an algorithm with that worst case time complexity.
- That algorithm is (in a sense) optimal.

Definition

A **tight theoretical lower bound** for a problem is the **fastest** possible worst-case time complexity of any algorithm solving that problem.

How to find a TLB

- Argument from completeness:
 - \circ The algorithm might not be correct if it doesn't check k things, so the time is $\Omega(k)$.
- Argument from I/O:
 - \circ If the output is an array of size k, time taken is $\Omega(k)$
- More sophisticated arguments...

Tight Bounds can be difficult to find

Often require sophisticated combinatorial arguments outside of the scope of DSC 40B.

Assumptions make problems easier

• The TLB for finding a minimum changes if we assume that the array is sorted.

Exercise

A: Constant

B: n

C: n^2

D: Something else

- Consider these **two** problems:
 - Find the min of a sorted array.
 - \circ Given a target t and a sorted array, determine whether t is in the array.
- Find tight theoretical lower bounds for each problem.

Main Idea

When coming up with an algorithm, first try to find a tight TLB. Then try to make an algorithm which has that worst-case complexity. If you can, it's **optimal**!

Practice makes perfect

 dsc40b.com/practice has a dozen more examples of finding theoretical lower bounds.

Case Study: Matrix Multiplication

It's Important

- Matrix multiplication is a very common operation in machine learning algorithms.
- **Estimate**: 75% 95% of time training a neural network is spent in matrix multiplication.

Recall

- If A is $m \times p$ and B is $p \times n$, then AB is $m \times n$.
- The ij entry of AB is

$$(AB)_{ij} = \sum_{k=1}^{p} a_{ik}b_{kj}$$

Recall

$$(AB)_{ij} = \sum_{k=1}^{p} a_{ik}b_{kj}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 5 & -1 \\ 1 & 7 \\ -2 & -3 \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \\ \end{pmatrix}$$

Naïve Algorithm

This algorithm is relatively straightforward to code up.

```
def mmul(A, B):
    A is (m \times p) and B is (p \times n)
    11 11 11
    m, p = A.shape
    n = B.shape[1]
    C = np.zeros((m, n))
    for i in range(m):
         for j in range(n):
             for k in range(p):
                 C[i,j] += A[i,k] * B[k, j]
    return C
```


Time Complexity

- The naïve algorithm takes time $\Theta(mnp)$.
- If both matrices are $n \times n$, then $\Theta(n^3)$ time.
- Cubic!

Cubic Time Complexity

 The largest problem size that can be solved, if a basic operation takes 1 nanosecond.

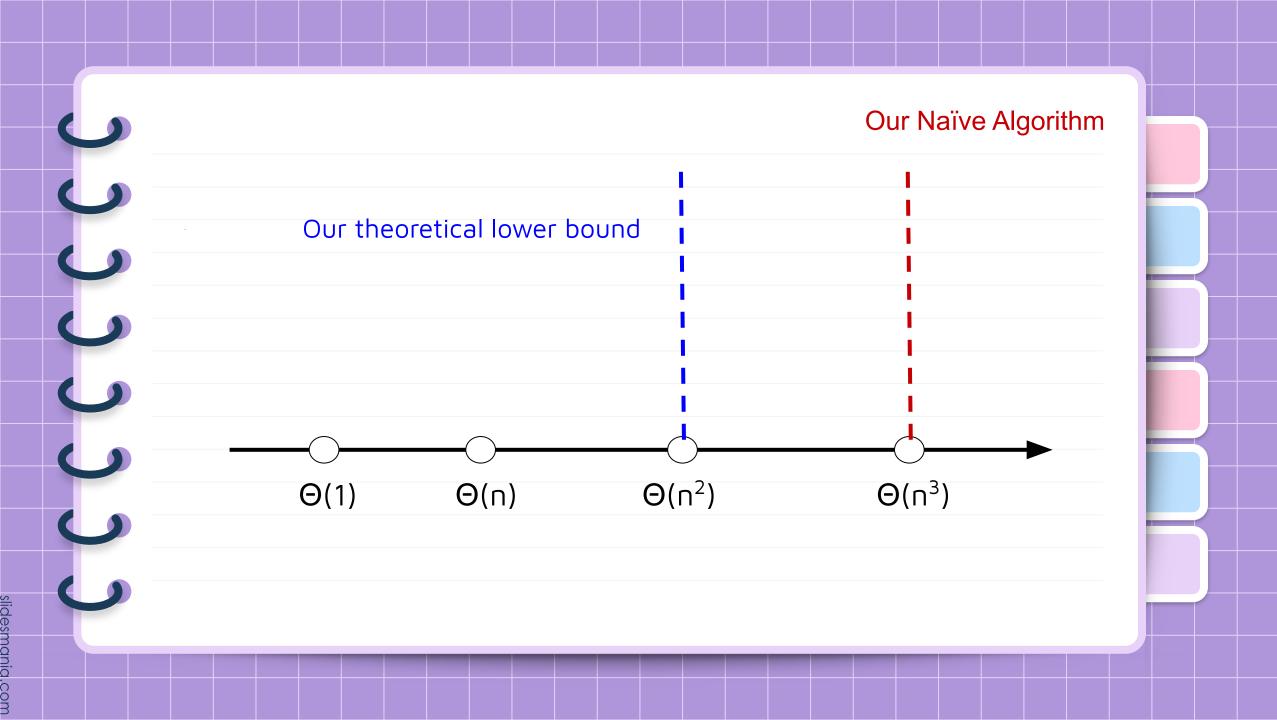
1 s	10 m	1 hr
1,000	6,694	15,326

The Question

- Can we do better?
- How fast can we *possibly* multiply matrices?

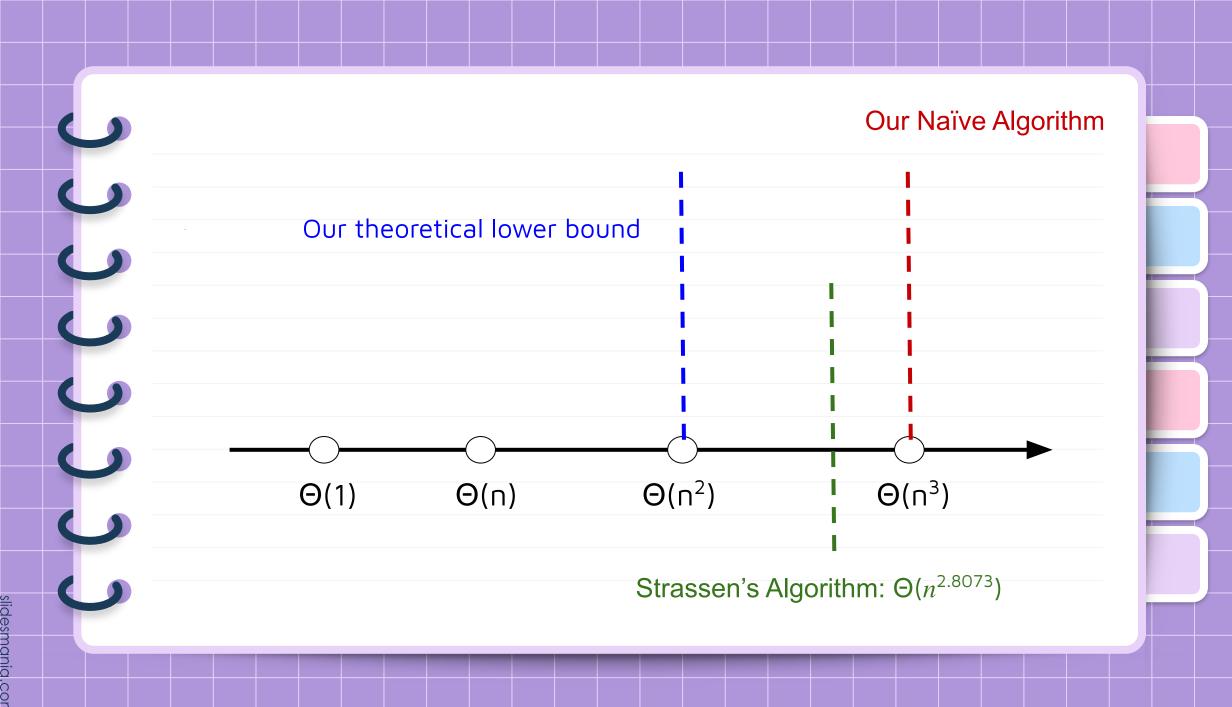
Theoretical Lower Bound

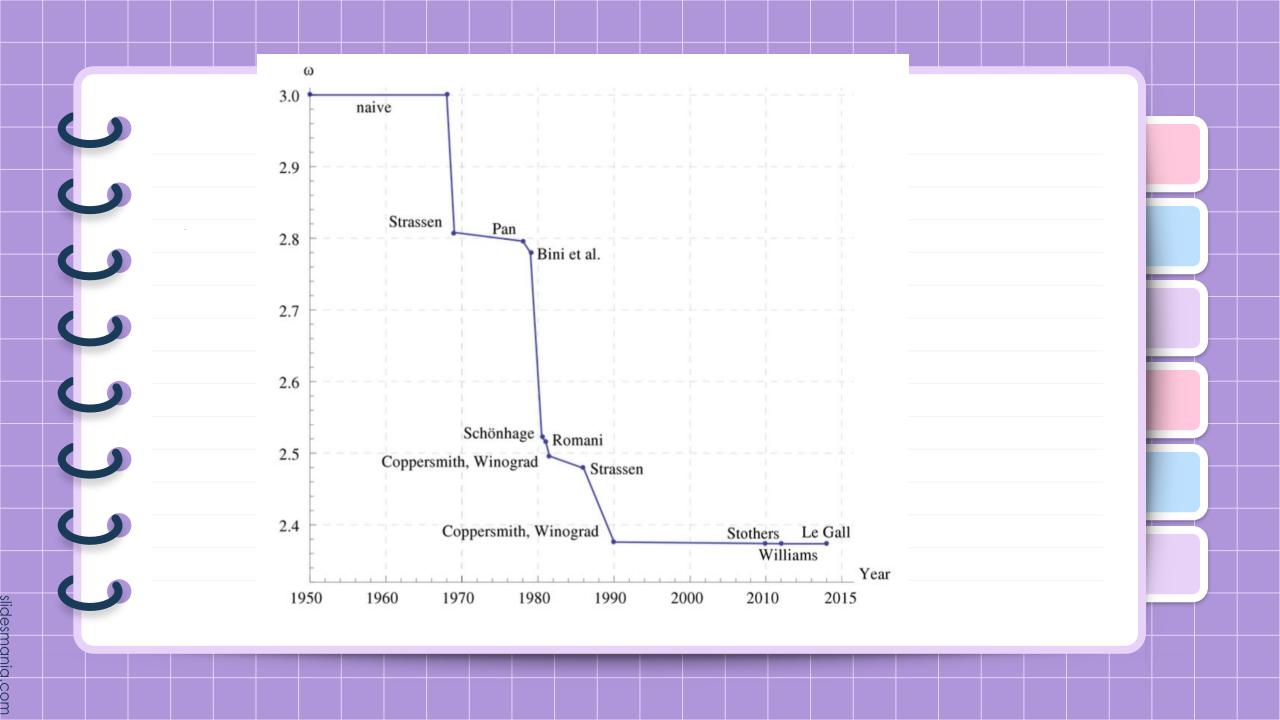
- If A and B are $n \times n$, C will have n^2 entries.
- Each entry must be filled: $\Omega(n^2)$ time.
- That is, matrix multiplication must take at least quadratic time.
- Is this bound **tight**? Can it be increased?



Strassen's Algorithm

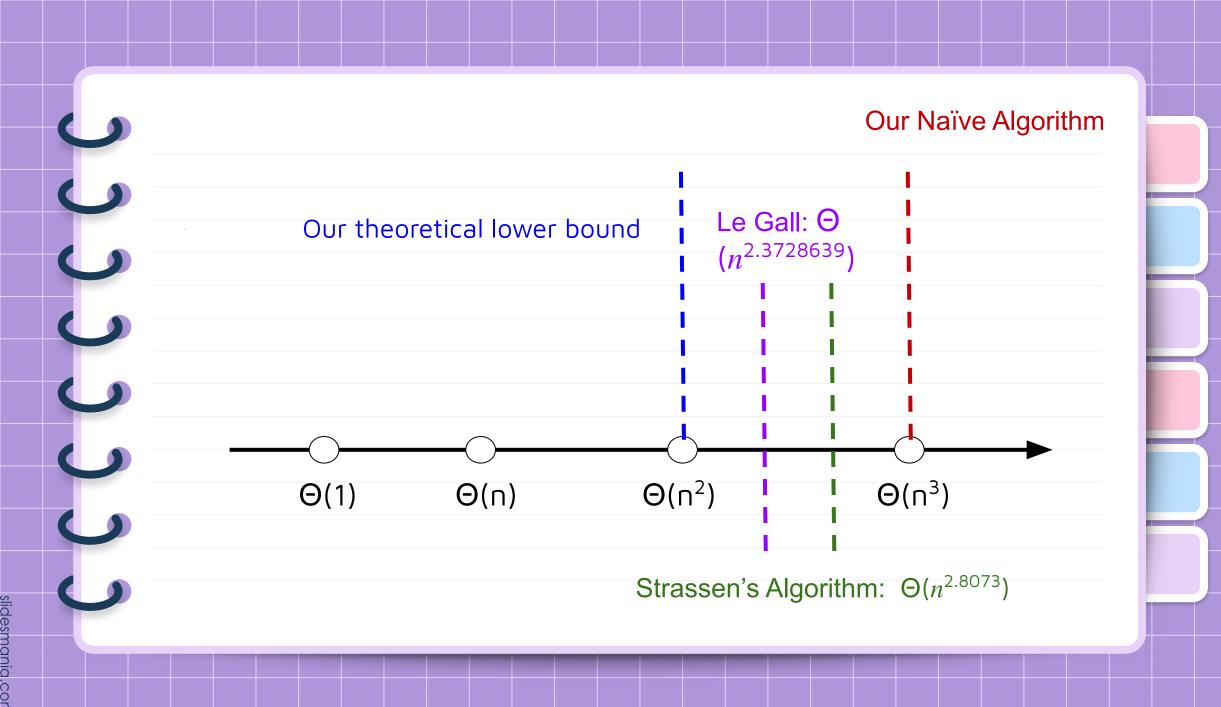
- Cubic was as good as it got...
- ...until Strassen, 1969.
- Time complexity: $\Theta(n^{\log_2 7}) = \Theta(n^{2.8073})$





Currently

- The fastest known matrix multiplication algorithm is due to Le Gall
 - In terms of asymptotic time complexity.
- $\Theta(n^{2.3728639})$ time.



Interestingly...

- No one knows what the lowest possible time complexity is.
- It could be $\Theta(n^2)$!
- The "best" matrix multiplication algorithm is probably still undiscovered.

Irony

- There are many matrix multiplication algorithms.
- How fast is numpy's matrix multiply?

Irony

- There are many matrix multiplication algorithms.
- How fast is numpy's matrix multiply?
 - \circ $\Theta(n^3)$.

Why?

- Strassen et al. have better asymptotic complexity.
- But much (much!) larger "hidden constants".
- Remember, which is better for small n:

999,999 n^2 or n^3 ?

Thank you!

Do you have any questions?

CampusWire!