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Worst, Average
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Plan for the lecture

● Best, Worst and Average cases. 
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The Movie Problem

● Given: an array movies of movie durations, and the flight 
duration t

●  Find: two movies whose durations add to t
○ If no two movies sum to t, return None.
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Exercise

● Design a brute force solution to the problem. What is its time 
complexity?
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Brute force
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Time Complexity

● It looks like there is a best case and worst case.

● How do we formalize this?
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For the future...

●  Can you come up with a better algorithm?

●  What is the best possible time complexity?



❖

Best and Worst Cases
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Definition

● Define 𝑇best(𝑛) to be the least time taken by the algorithm 
on any input of size 𝑛. 

● The asymptotic growth of 𝑇best(𝑛) is the algorithm’s best 
case time complexity.
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Example 1: mean             

𝑇best(𝑛) = n



❖

Caution!

●  The best case is never: “the input is of size one”. 

●  The best case is about the structure of the input, not its 
size. 

●  Not always constant time! 

○ Example: sorting.
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def insertionSort(arr):
    for i in range(1, len(arr)):
        key = arr[i]
        j = i - 1
        while j >= 0 and key < arr[j]:
            arr[j + 1] = arr[j]
            j -= 1
        arr[j + 1] = key
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def insertionSort(arr):
    for i in range(1, len(arr)):
        key = arr[i]
        j = i - 1
        while j >= 0 and key < arr[j]:
            arr[j + 1] = arr[j]
            j -= 1
        arr[j + 1] = key

10 20 30 40 50

𝑇best(𝑛) = n
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Time Complexity of mean

●  Linear time, Θ(𝑛). 
●  Depends only on the array’s size, 𝑛, not on its actual 

elements.
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Example 2: Linear Search

● Given: an array arr of numbers and a target t. 

● Find: the index of t in arr, or None if it is missing.

● Example: arr = [-3, -6, 7, 3, 0, 15, 4]
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Exercise: Time complexity?
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Observation

●  It looks like there are two extreme cases...
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The Best  Case

● When the target, t, is the very first element. 

●  The loop exits after one iteration. 

●  Θ(1) time?
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The Worst  Case

● When the target, t, is not in the array at all. 

●  The loop exits after 𝑛 iterations. 

●  Θ(𝑛) time?



❖

Time Complexity

● linear_search can take vastly different amounts of time 
on two inputs of the same size. 
○ Depends on actual elements as well as size. 

● It has no single, overall time complexity. 

● Instead we’ll report best and worst case time complexities.



❖

Best Case Time Complexity

● How does the time taken in the best case grow as the 
input gets larger?



❖

Best Case

● In linear_search’s best case, 𝑇best(𝑛) = 𝑐, no matter how 
large the array is.

● The best case time complexity is Θ(1).



❖

Worst Case Time Complexity

● How does the time taken in the worst case grow as the 
input gets larger?



❖

Definition

● Define 𝑇worst(𝑛) to be the most time taken by the 
algorithm on any input of size 𝑛. 

● The asymptotic growth of 𝑇worst(𝑛) is the algorithm’s worst 
case time complexity.
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Worst Case

● In the worst case, linear_search iterates through the 
entire array. 

●  The worst case time complexity is Θ(𝑛).



❖

Exercise: times: Best and Worst

def func(arr):
n = len(arr)
for x in arr:

for y in arr: 
x + y == 10

return sum(arr)

A: Θ(1)

B:  Θ(𝑛)

C:  Θ(𝑛2)

D:  Θ(𝑛3)
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Best Case

● Best case occurs when the first element is 5: 5 + 5 = 10

● sum(arr) takes Θ(𝑛) time

● Exists, taking Θ(𝑛) time in total



❖

Worst Case

●  Worst case occurs when no two numbers add to 10. 

●  Has to loop over all Θ(𝑛2 ) pairs. 

● Worst case time complexity: Θ(𝑛2 ).

● Note: Not Θ(𝑛3 ) since the sum(arr) only runs once.
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Note

● An algorithm like linear_search doesn’t have one 
single time complexity.

● An algorithm like mean does, since the best and worst 
case time complexities coincide.
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Main Idea

Reporting best and worst case time complexities gives us a 
richer of the performance of the algorithm.
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Average Case
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Time Taken, Typically

●  Best case and worst case can be misleading. 

○  Depend on a single good/bad input. 

● How much time is taken, typically?

● Idea: compute the average time taken over all possible 
inputs.



❖

Recall: The Expectation

● The expected value of a random variable 𝑋 is:
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Recall: The Expectation

● The expected value of a random variable 𝑋 is:

$0 x .5 + $1 x .3 + $10 x .18 + $50 x .02
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Recall: The Expectation

● The expected value of a random variable 𝑋 is:

$0 x .5 + $1 x .3 + $10 x .18 + $50 x .02 = $3.10
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Average Case

●  We’ll compute the expected time over all cases:

● Called the average case time complexity.
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Strategy for Finding Average Case

● Step 0: Make assumption about distribution of inputs. 

● Step 1: Determine the possible cases. 

● Step 2: Determine the probability of each case. 

● Step 3: Determine the time taken for each case. 

● Step 4: Compute the expected time (average).
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Example: Linear Search

● Best? Worst?
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Example: Linear Search

●  What is the average case time complexity of linear 
search?
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Step 0: Assume input distribution

●  We must assume something about the input. 

●  Example: Target must be in array, equally-likely to be 
any element, no duplicates. 

● This is usually given to you.
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Step 1: Determine the Cases

Example: linear search. 

● Case 1: target is first element 
● Case 2: target is second element

 ⋮ 

● Case 𝑛: target is 𝑛th element 
● Case 𝑛 + 1: target is not in array (but not needed  due 

to assumptions)
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Step 2: Case Probabilities

●  What is the probability that we see each case?
○ Example: what is the probability that the target is the 

𝑘th element? 

●  This is where we use assumptions from Step 0.



❖

Example

● Assume: target is in the array exactly once, equally-likely 
to be any element. 

● Each case has probability 1/𝑛.



❖

Step 3: Case Times

● Determine time taken in each case.

● Example: linear search.
○ Let’s say it takes time 𝑐 per iteration. 

Case 1: time 𝑐 

Case 2: time 2𝑐 

⋮ 

Case i: time 𝑐 ⋅ 𝑖 

⋮ 

Case 𝑛: time  𝑐 ⋅ n
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Step 4: Compute Expectation
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Average Case Time Complexity

●  The average case time complexity of linear search is Θ(𝑛).
○ Under these assumptions on the input!



❖

Note

●  Worst case time complexity is still useful. 

●  Easier to calculate. 

●  Often same as average case (but not always!) 

● Sometimes worst case is very important. 

○  Real time applications, time complexity attacks



❖

Note

●  Hard to make realistic assumptions on input distribution. 

●  Example: linear search. 
○ Is it realistic to assume 𝑡 is in array?

○ If not, what is the probability that it is in the array?
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Exercise

● Suppose we change our assumptions: 
○ The target has a 50% chance of being in the array.

●  If it is in the array, it is equally-likely to be any element. 
● What is the average case complexity now?
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Average Case in Movie 
Problem
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Recall: The Movie Problem

● Given: an array movies of movie durations, and the 
flight duration t 

● Find: two movies whose durations add to t. 
○ If no two movies sum to t, return None.
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Time Complexity

●  Best case: Θ(1) 
○ When the first pair of movies checked equals target. 

● Worst case: Θ(𝑛2 ) 
○ When no pair of movies equals target.



❖

“Average” Case?

● The best and worst cases are extremes.

●  How much time is taken, typically? 
○ That is, when the target pair is not the first checked nor 

the last, but somewhere in the middle.
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Exercise

● How much time do you expect find_movies to take on a typical 
input?

A: Θ(1) 

B: Θ(𝑛2 ) 

C: Something in between, 
like Θ(𝑛)
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The Movie Problem
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Step 0: Assume input distribution

●  Suppose we are told that: 
○ There is a unique pair of movies that add to 𝑡. 
○ All pairs are equally likely.
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Step 1: Determine the Cases

●  Case 𝛼: the 𝛼th pair checked sums to 𝑡. 

●  Each pair of movies is a case. 

● There are          cases (pairs of movies)



❖

Step 2: Case Probabilities

● Assume: there is a unique pair that adds to t. 

● Assume: all pairs are equally likely. 

● Probability of any case: 



❖

Step 3: Case Time

● How much time is taken for a particular case? 

● Example, suppose the movies 𝑎 and 𝑏 sum to the target. 

●  How long does it take to find this pair?
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Exercise
Roughly how much time is taken (how many times does line 5 
run) if the 𝛼th pair checked sums to the target?
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Exercise
𝛼     T

(m1, m2) 
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Exercise
𝛼     T

(m1, m2) 

     1                   1
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Exercise
𝛼     T

(m1, m3) 

     1                  1

  2                 2
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Exercise
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Exercise
𝛼     T

     1                  1

  2                 2

  3                 3

  4                 4

Roughly how much time is taken (how many times does line 5 run) 
if the 𝛼th pair checked sums to the target?  T(case 𝛼) = 𝛼
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Average Case

● The average case time complexity of find_movies is Θ(𝑛2 ).

●  Same as the worst case!



❖

Note

● We’ve seen two algorithms where the average case = the 
worst case.

● Not always the case! 
● Interpretation: the worst case is not too extreme.
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Do you have any questions?

Thank you!

CampusWire!


