
❖

DSC 40B
Lecture 5-6 : Best,

Worst, Average

❖

Agenda

❖

Plan for the lecture

● Best, Worst and Average cases.

❖

The Movie problem

❖

The Movie Problem

❖

The Movie Problem

● Given: an array movies of movie durations, and the flight
duration t

● Find: two movies whose durations add to t
○ If no two movies sum to t, return None.

❖

Exercise

● Design a brute force solution to the problem. What is its time
complexity?

❖

Brute force

❖

Time Complexity

● It looks like there is a best case and worst case.

● How do we formalize this?

❖

For the future...

● Can you come up with a better algorithm?

● What is the best possible time complexity?

❖

Best and Worst Cases

❖

Definition

● Define 𝑇best(𝑛) to be the least time taken by the algorithm
on any input of size 𝑛.

● The asymptotic growth of 𝑇best(𝑛) is the algorithm’s best
case time complexity.

❖

Example 1: mean

❖

Example 1: mean

𝑇best(𝑛) = n

❖

Caution!

● The best case is never: “the input is of size one”.

● The best case is about the structure of the input, not its
size.

● Not always constant time!

○ Example: sorting.

❖

def insertionSort(arr):
 for i in range(1, len(arr)):
 key = arr[i]
 j = i - 1
 while j >= 0 and key < arr[j]:
 arr[j + 1] = arr[j]
 j -= 1
 arr[j + 1] = key

❖

def insertionSort(arr):
 for i in range(1, len(arr)):
 key = arr[i]
 j = i - 1
 while j >= 0 and key < arr[j]:
 arr[j + 1] = arr[j]
 j -= 1
 arr[j + 1] = key

10 20 30 40 50

❖

def insertionSort(arr):
 for i in range(1, len(arr)):
 key = arr[i]
 j = i - 1
 while j >= 0 and key < arr[j]:
 arr[j + 1] = arr[j]
 j -= 1
 arr[j + 1] = key

10 20 30 40 50

❖

def insertionSort(arr):
 for i in range(1, len(arr)):
 key = arr[i]
 j = i - 1
 while j >= 0 and key < arr[j]:
 arr[j + 1] = arr[j]
 j -= 1
 arr[j + 1] = key

10 20 30 40 50

❖

def insertionSort(arr):
 for i in range(1, len(arr)):
 key = arr[i]
 j = i - 1
 while j >= 0 and key < arr[j]:
 arr[j + 1] = arr[j]
 j -= 1
 arr[j + 1] = key

10 20 30 40 50

❖

def insertionSort(arr):
 for i in range(1, len(arr)):
 key = arr[i]
 j = i - 1
 while j >= 0 and key < arr[j]:
 arr[j + 1] = arr[j]
 j -= 1
 arr[j + 1] = key

10 20 30 40 50

❖

def insertionSort(arr):
 for i in range(1, len(arr)):
 key = arr[i]
 j = i - 1
 while j >= 0 and key < arr[j]:
 arr[j + 1] = arr[j]
 j -= 1
 arr[j + 1] = key

10 20 30 40 50

𝑇best(𝑛) = n

❖

Time Complexity of mean

● Linear time, Θ(𝑛).
● Depends only on the array’s size, 𝑛, not on its actual

elements.

❖

Example 2: Linear Search

● Given: an array arr of numbers and a target t.

● Find: the index of t in arr, or None if it is missing.

● Example: arr = [-3, -6, 7, 3, 0, 15, 4]

❖

❖

Exercise: Time complexity?

❖

Observation

● It looks like there are two extreme cases...

❖

The Best Case

● When the target, t, is the very first element.

● The loop exits after one iteration.

● Θ(1) time?

❖

The Worst Case

● When the target, t, is not in the array at all.

● The loop exits after 𝑛 iterations.

● Θ(𝑛) time?

❖

Time Complexity

● linear_search can take vastly different amounts of time
on two inputs of the same size.
○ Depends on actual elements as well as size.

● It has no single, overall time complexity.

● Instead we’ll report best and worst case time complexities.

❖

Best Case Time Complexity

● How does the time taken in the best case grow as the
input gets larger?

❖

Best Case

● In linear_search’s best case, 𝑇best(𝑛) = 𝑐, no matter how
large the array is.

● The best case time complexity is Θ(1).

❖

Worst Case Time Complexity

● How does the time taken in the worst case grow as the
input gets larger?

❖

Definition

● Define 𝑇worst(𝑛) to be the most time taken by the
algorithm on any input of size 𝑛.

● The asymptotic growth of 𝑇worst(𝑛) is the algorithm’s worst
case time complexity.

❖

Worst Case

● In the worst case, linear_search iterates through the
entire array.

● The worst case time complexity is Θ(𝑛).

❖

Exercise: times: Best and Worst

def func(arr):
n = len(arr)
for x in arr:

for y in arr:
x + y == 10

return sum(arr)

A: Θ(1)

B: Θ(𝑛)

C: Θ(𝑛2)

D: Θ(𝑛3)

❖

Best Case

● Best case occurs when the first element is 5: 5 + 5 = 10

● sum(arr) takes Θ(𝑛) time

● Exists, taking Θ(𝑛) time in total

❖

Worst Case

● Worst case occurs when no two numbers add to 10.

● Has to loop over all Θ(𝑛2) pairs.

● Worst case time complexity: Θ(𝑛2).

● Note: Not Θ(𝑛3) since the sum(arr) only runs once.

❖

Note

● An algorithm like linear_search doesn’t have one
single time complexity.

● An algorithm like mean does, since the best and worst
case time complexities coincide.

❖

Main Idea

Reporting best and worst case time complexities gives us a
richer of the performance of the algorithm.

❖

Average Case

❖

Time Taken, Typically

● Best case and worst case can be misleading.

○ Depend on a single good/bad input.

● How much time is taken, typically?

● Idea: compute the average time taken over all possible
inputs.

❖

Recall: The Expectation

● The expected value of a random variable 𝑋 is:

❖

Recall: The Expectation

● The expected value of a random variable 𝑋 is:

$0 x .5 +

❖

Recall: The Expectation

● The expected value of a random variable 𝑋 is:

$0 x .5 + $1 x .3

❖

Recall: The Expectation

● The expected value of a random variable 𝑋 is:

$0 x .5 + $1 x .3 + $10 x .18 +

❖

Recall: The Expectation

● The expected value of a random variable 𝑋 is:

$0 x .5 + $1 x .3 + $10 x .18 + $50 x .02

❖

Recall: The Expectation

● The expected value of a random variable 𝑋 is:

$0 x .5 + $1 x .3 + $10 x .18 + $50 x .02 = $3.10

❖

Average Case

● We’ll compute the expected time over all cases:

● Called the average case time complexity.

❖

Strategy for Finding Average Case

● Step 0: Make assumption about distribution of inputs.

● Step 1: Determine the possible cases.

● Step 2: Determine the probability of each case.

● Step 3: Determine the time taken for each case.

● Step 4: Compute the expected time (average).

❖

Example: Linear Search

● Best? Worst?

❖

Example: Linear Search

● What is the average case time complexity of linear
search?

❖

Step 0: Assume input distribution

● We must assume something about the input.

● Example: Target must be in array, equally-likely to be
any element, no duplicates.

● This is usually given to you.

❖

Step 1: Determine the Cases

Example: linear search.

● Case 1: target is first element
● Case 2: target is second element

 ⋮

● Case 𝑛: target is 𝑛th element
● Case 𝑛 + 1: target is not in array (but not needed due

to assumptions)

❖

Step 2: Case Probabilities

● What is the probability that we see each case?
○ Example: what is the probability that the target is the

𝑘th element?

● This is where we use assumptions from Step 0.

❖

Example

● Assume: target is in the array exactly once, equally-likely
to be any element.

● Each case has probability 1/𝑛.

❖

Step 3: Case Times

● Determine time taken in each case.

● Example: linear search.
○ Let’s say it takes time 𝑐 per iteration.

Case 1: time 𝑐

Case 2: time 2𝑐

⋮

Case i: time 𝑐 ⋅ 𝑖

⋮

Case 𝑛: time 𝑐 ⋅ n

❖

Step 4: Compute Expectation

❖

Average Case Time Complexity

● The average case time complexity of linear search is Θ(𝑛).
○ Under these assumptions on the input!

❖

Note

● Worst case time complexity is still useful.

● Easier to calculate.

● Often same as average case (but not always!)

● Sometimes worst case is very important.

○ Real time applications, time complexity attacks

❖

Note

● Hard to make realistic assumptions on input distribution.

● Example: linear search.
○ Is it realistic to assume 𝑡 is in array?

○ If not, what is the probability that it is in the array?

❖

Exercise

● Suppose we change our assumptions:
○ The target has a 50% chance of being in the array.

● If it is in the array, it is equally-likely to be any element.
● What is the average case complexity now?

❖

Average Case in Movie
Problem

❖

Recall: The Movie Problem

● Given: an array movies of movie durations, and the
flight duration t

● Find: two movies whose durations add to t.
○ If no two movies sum to t, return None.

❖

❖

Time Complexity

● Best case: Θ(1)
○ When the first pair of movies checked equals target.

● Worst case: Θ(𝑛2)
○ When no pair of movies equals target.

❖

“Average” Case?

● The best and worst cases are extremes.

● How much time is taken, typically?
○ That is, when the target pair is not the first checked nor

the last, but somewhere in the middle.

❖

Exercise

● How much time do you expect find_movies to take on a typical
input?

A: Θ(1)

B: Θ(𝑛2)

C: Something in between,
like Θ(𝑛)

❖

The Movie Problem

❖

Step 0: Assume input distribution

● Suppose we are told that:
○ There is a unique pair of movies that add to 𝑡.
○ All pairs are equally likely.

❖

Step 1: Determine the Cases

● Case 𝛼: the 𝛼th pair checked sums to 𝑡.

● Each pair of movies is a case.

● There are cases (pairs of movies)

❖

Step 2: Case Probabilities

● Assume: there is a unique pair that adds to t.

● Assume: all pairs are equally likely.

● Probability of any case:

❖

Step 3: Case Time

● How much time is taken for a particular case?

● Example, suppose the movies 𝑎 and 𝑏 sum to the target.

● How long does it take to find this pair?

❖

Exercise
Roughly how much time is taken (how many times does line 5
run) if the 𝛼th pair checked sums to the target?

❖

Exercise
𝛼 T

(m1, m2)

❖

Exercise
𝛼 T

(m1, m2)

 1 1

❖

Exercise
𝛼 T

(m1, m3)

 1 1

 2 2

❖

Exercise
𝛼 T

(m1, m4)

 1 1

 2 2

 3 3

❖

Exercise
𝛼 T

 1 1

 2 2

 3 3

 4 4

❖

Exercise
𝛼 T

 1 1

 2 2

 3 3

 4 4

Roughly how much time is taken (how many times does line 5 run)
if the 𝛼th pair checked sums to the target? T(case 𝛼) = 𝛼

❖

Step 4: Compute Expectation

❖

Step 4: Compute Expectation

❖

Step 4: Compute Expectation

❖

Step 4: Compute Expectation

❖

Step 4: Compute Expectation

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

Average Case

● The average case time complexity of find_movies is Θ(𝑛2).

● Same as the worst case!

❖

Note

● We’ve seen two algorithms where the average case = the
worst case.

● Not always the case!
● Interpretation: the worst case is not too extreme.

❖

Do you have any questions?

Thank you!

CampusWire!

