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=I"'. The Movie Problem

e Given: an array movies of movie durations, and the flight
duration t

e Find: two movies whose durations add to t

.I o If no two movies sum to t, return None.
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Brute force

def find movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
if movies[i] + movies[]j] ==
return (i, j)
return None
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Time Complexity

e |t looks like there is a best case and worst case.

e How do we formalize this?
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For the future...

e (Can you come up with a better algorithm?

e What is the best possible time complexity?
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Definition

e Define T, .(n) to be the least time taken by the algorithm

on any input of size n.

e The asymptotic growth of 7, _(n) is the algorithm’s best
case time complexity.
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mean

total += X
return total / len(arr)

Example 1

def mean(arr):
total = o
for x in arr:
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O

mean

total += X
return total / len(arr)

Example 1

def mean(arr):
total =
for x in arr:



Caution!

e The best case is never: “the input is of size one”.

e The best case is about the structure of the input, not its
size.

e Not always constant time!

o Example: sorting.
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def insertionSort(arr): .

for i in range(1, len(arr)):
key = arr[i]
jo=i-1
while j >= 0 and key < arr[j]:
arr[j + 1] = arr[j]
j -=1
arr[j + 1] = key
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def insertionSort(arr): .

for i in range(1, len(arr)):
key = arr[i]
jo=i-1
while j >= 0 and key < arr[j]:
arr[j + 1] = arr[j]
j -=1
arr[j + 1] = key
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def insertionSort(arr):
for i in range(1, len(arr)):
key = arr[i]
j=1-1
while j >= 0 and key < arr[j]:
arr[j + 1] = arr[j]

j -=1
arr[j + 1] = key f\
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. def insertionSort(arr): -..
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def insertionSort(arr):
for i in range(1, len(arr)):

key = arr[i]

j=1i-1

while j >= 0 and key < arr[j]:
arr[j + 1] = arr[j]
j -= 1

arr[j + 1] = key
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def insertionSort(arr):
for i in range(1, len(arr)):

key = arr[i]

j=1i-1

while j >= 0 and key < arr[j]:
arr[j + 1] = arr[j]
j -= 1

arr[j + 1] = key
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def insertionSort(arr):
for i in range(1, len(arr)):

key = arr[i]

j=1i-1

while j >= 0 and key < arr[j]:
arr[j + 1] = arr[j]
j -= 1

arr[j + 1] = key
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Time Complexity of mean

e Linear time, O(n).

e Depends only on the array’s size, n, not on its actual
elements.
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Example 2: Linear Search

e Given: an array arr of numbers and a target t.
e Find: the index of tin arr, or None if it is missing.

e Example: arr = [-3, -6, 7, 3, 0, 15, 4]
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(ary, t):
for i, x in enumerate(arr):

return 1
return None

1F x == T3

def linear search



Exercise: Time complexity?

def linear_search(arr, t):
for i, x in enumerate(arr):
if x ==
return 1
return None
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It looks like there are two extreme cases...

Observation
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The Best Case

e \When the target, t, is the very first element.

e The loop exits after one iteration.

e O(1) time?

11113999

T ————
.............................



The Worst Case

e \When the target, t, is not in the array at all.

e The loop exits after n iterations.

e 0O(n) time?
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Time Complexity

e linear search can take vastly different amounts of time
on two inputs of the same size.
o Depends on actual elements as well as size.

e |t has no single, overall time complexity.

e Instead we'll report best and worst case time complexities.
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Best Case Time Complexity

e How does the time taken in the best case grow as the
input gets larger?
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Best Case

e Inlinear_search’s best case, Tbest(n) = ¢, no matter how
large the array is.

e The best case time complexity is O(1).
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Worst Case Time Complexity

e How does the time taken in the worst case grow as the
input gets larger?
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Definition

e DefineT _(n)to be the most time taken by the

worst
algorithm on any input of size n.

e The asymptotic growth of T __(n) is the algorithm’s worst
case time complexity.
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Worst Case

e |n the worst case, 1inear search iterates through the
entire array.

e The worst case time complexity is O(n).
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Exercise: times: Best and Worst

def func(arr):
n = len(arr)
for x in arr:
for y in arr:
X +y == 160
return sum(arr)
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Best Case

® Best case occurs when the first elementis 5: 5+ 5 =10

e sum(arr) takes O(n) time

e Exists, taking ©(n) time in total
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Worst Case

e \Worst case occurs when no two numbers add to 10.

e Has to loop over all ©(n?) pairs.

e Worst case time complexity: O(n? ).

e Note: Not ©(n?® ) since the sum (arr) only runs once.

11113999

T ————
.............................



:

e An algorithm like 1inear search doesn’t have one

single time complexity.

e An algorithm like mean does, since the best and worst
case time complexities coincide.
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Main Idea

Reporting best and worst case time complexities gives us a
richer of the performance of the algorithm.
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Time Taken, Typically

e Best case and worst case can be misleading.

o Depend on a single good/bad input.
e How much time is taken, typically?

e Idea: compute the average time taken over all possible
inputs.
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=I,_,o Recall: The Expectation

.t - e The expected value of a3 random variable X is:

. Zx P(X = x)
= winnings probability Expected winnings:
I

S0 50%
$1 30%

S10 18%

I $ 50 2%
= =l
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=I,_,o Recall: The Expectation
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=I,_,o Recall: The Expectation

.t - e The expected value of a3 random variable X is:
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n Average Case

e We'l compute the expected time over all cases:

Tag(n)= > P(case)- T(case)

caseeall cases

. e (alled the average case time complexity.
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Strategy for Finding Average Case

Step 0: Make assumption about distribution of inputs.

Step 1: Determine the possible cases.

Step 2: Determine the probability of each case.

Step 3: Determine the time taken for each case.

Step 4: Compute the expected time (average).
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= Example: Linear Search

"o Best? Worst?

def linear_search(arr, t):
for i, x in enumerate(arr):

1f % == %o
.P return 1
return None
= L
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Linear Search

Example

What is the average case time complexity of linear



Step 0: Assume input distribution

e We must assume something about the input.

e Example: Target must be in array, equally-likely to be
any element, no duplicates.

e This is usually given to you.
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Step 1: Determine the Cases

Example: /inear search.

e Case 1: target is first element
Case 2: target is second element

Case n: target is nth element
Case n + 1: target is not in array (but not needed due

= to assumptions)
= =l
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Step 2: Case Probabilities

e \What is the probability that we see each case?
o Example: what is the probability that the target is the
kth element?

e This is where we use assumptions from Step O.
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Example

e Assume: target is in the array exactly once, equally-likely
to be any element.

e Each case has probability 1/n.
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=I.__. Step 3: Case Times

e Determine time taken in each case.

o Example: linear search.
o Let’'s say it takes time ¢ per iteration.

Case 1: time ¢

Case 2: time 2c

.I :
Casei:timec - i
=l—. Casen: time ¢ - n
L
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Z P(case i) - T(case i)

i=1

n

ve(N)

tep 4: Compute Expectation

d



Average Case Time Complexity

e The average case time complexity of linear search is O(n).
o Under these assumptions on the input!
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e Worst case time complexity is still useful.

e Easier to calculate.
e Often same as average case (but not always!)
e Sometimes worst case is very important.

o Real time applications, time complexity attacks
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e Hard to make realistic assumptions on input distribution.

e Example: linear search.
o s it realistic to assume tis in array?

o If not, what is the probability that it is in the array?
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= e Suppose we change our assumptions: =
. o The target has a 50% chance of being in the array. .
.t e |Ifitisinthe array, it is equally-likely to be any element. .
.P e What is the average case complexity now? B
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Average Case in Movie



Recall: The Movie Problem

e Given: an array movies of movie durations, and the
flight duration t

e Find: two movies whose durations add to t.
o If no two movies sum to t, return None.
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~def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
if movies[i] + movies[j] ==
return (i, j)
return None
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Time Complexity

e Best case: O(1)
o When the first pair of movies checked equals target.

e Worst case: O(n?)
o When no pair of movies equals target.
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‘Average” Case?

e The best and worst cases are extremes.

e How much time is taken, typically?
o That is, when the target pair is not the first checked nor
the last, but somewhere in the middle.
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Exercise

e How much time do you expect find_movies to take on a typical
input?

I C: Something in between,
I like ©(n)
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The Movie Problem

def find_movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
if movies[i] + movies[j] ==
return (i, j)
return None
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Step 0: Assume input distribution

e Suppose we are told that:
o There is a unique pair of movies that add to .
o All pairs are equally likely.
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Step 1: Determine the Cases

e (ase a: the ath pair checked sums to .

e Each pair of movies is a case.

e There are ('21) cases (pairs of movies)
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Step 2: Case Probabilities

e Assume: there is a unique pair that adds to t.

e Assume: all pairs are equally likely.

e Probability of any case: 1 - _2

('27) n(n-1)
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Step 3: Case Time

e How much time is taken for a particular case?

e Example, suppose the movies a and b sum to the target.

e How long does it take to find this pair?
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Exercise

-Roughly how much time is taken (how many times does line 5
run) if the ath pair checked sums to the target?

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
if movies[i] + movies[j] == t:
return (i, j)

P return None
= L
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Exercise

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
p if movies[i] + movies[j] == t:
return (i, j)
return None
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Exercise

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
p if movies[i] + movies[j] == t:
return (i, j)
return None
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Exercise

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
p if movies[i] + movies[j] == t:
return (i, j)
return None
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Exercise

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
p if movies[i] + movies[j] == t:
return (i, j)
return None
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Exercise

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
p if movies[i] + movies[j] == t:
return (i, j)
return None
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Exercise

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
p if movies[i] + movies[j] == t:
return (i, j)
return None

Roughly how much time is taken (how many times does line 5 run)

I if the ath pair checked sums to the target? T(case a) =
= T T ——————
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B Step 4: Compute Expectation

)
T = ) P(casea)
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Average Case

e The average case time complexity of find_movies is O(n?

e Same as the worst case!
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We've seen two algorithms where the average case = the

worst case.
Not always the case!
Interpretation: the worst case is not too extreme.
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Thank you!
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