93333390

Best,

DSC 408B

 Lecture 5-6 :
Worst, Average

T ———
..............................

=l

e Best, Worst and Average cases.
-ttt

Plan for the lecture

93392290

The Movie problem

T ———
..............................

The Movie Problem

=
N
N
N
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3232393

==llllllllllllllllllllllll=ll

B
=I"'. The Movie Problem

e Given: an array movies of movie durations, and the flight
duration t

e Find: two movies whose durations add to t

.I o If no two movies sum to t, return None.

< =8

B ————T
e

B .
| 4 B
-’ =
D Exercise L
B ' B
= e Design a brute force solution to the problem. What is its time =
complexity?
B B
B B
o -
O B
¥ =
=--------——-----d...
-ttt

Brute force

def find movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
if movies[i] + movies[]j] ==
return (i, j)
return None

11113999

T ————
.............................

Time Complexity

e |t looks like there is a best case and worst case.

e How do we formalize this?

11113999

T ————
.............................

For the future...

e (Can you come up with a better algorithm?

e What is the best possible time complexity?

11113999

T ————
.............................

T ———
..............................

Definition

e Define T, .(n) to be the least time taken by the algorithm

on any input of size n.

e The asymptotic growth of 7, _(n) is the algorithm’s best
case time complexity.

133193149

- =8

B ————T
e

=l

mean

total += X
return total / len(arr)

Example 1

def mean(arr):
total = o
for x in arr:

CEEREREREY

93333390

O

mean

total += X
return total / len(arr)

Example 1

def mean(arr):
total =
for x in arr:

Caution!

e The best case is never: “the input is of size one”.

e The best case is about the structure of the input, not its
size.

e Not always constant time!

o Example: sorting.

11113999

T ————
.............................

!!lllllllllllllllllllll=ll

def insertionSort(arr): .

for i in range(1, len(arr)):
key = arr[i]
jo=i-1
while j >= 0 and key < arr[j]:
arr[j + 1] = arr[j]
j -=1
arr[j + 1] = key

1|10

110
Ko
23|10

S

1(10(23]5
N

1 [SEREEONEE

"l'f‘l"!"f'!"!."!'

T ————
.............................

!!lllllllllllllllllllll=ll

def insertionSort(arr): .

for i in range(1, len(arr)):
key = arr[i]
jo=i-1
while j >= 0 and key < arr[j]:
arr[j + 1] = arr[j]
j -=1
arr[j + 1] = key

"l'f'!.'f"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

def insertionSort(arr):
for i in range(1, len(arr)):
key = arr[i]
j=1-1
while j >= 0 and key < arr[j]:
arr[j + 1] = arr[j]

j -=1
arr[j + 1] = key f\

10

"l'f'!.'f"f'!"!."!'

T ————
.............................

IIIllIllllllllllllllllllllllll

. def insertionSort(arr): -..

= for ;e;nzr::g?i], len(arr)): =
2o A

.t Svhili j >= 0 and key < arr[j]: .

. arr[j + 1] = arr[j] .
j -= 1

E arr[; + 1] = key f\ E

i :

i :

C :

B

=- T ——— T ——————

-ttt

N A A
——— =aEE
.

def insertionSort(arr):
for i in range(1, len(arr)):

key = arr[i]

j=1i-1

while j >= 0 and key < arr[j]:
arr[j + 1] = arr[j]
j -= 1

arr[j + 1] = key

"l'f'!.'f"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

def insertionSort(arr):
for i in range(1, len(arr)):

key = arr[i]

j=1i-1

while j >= 0 and key < arr[j]:
arr[j + 1] = arr[j]
j -= 1

arr[j + 1] = key

"l'f‘l'f"f'!"!."!'

T ————
.............................

N A A
——— =aEE
.

def insertionSort(arr):
for i in range(1, len(arr)):

key = arr[i]

j=1i-1

while j >= 0 and key < arr[j]:
arr[j + 1] = arr[j]
j -= 1

arr[j + 1] = key

"l'f‘l'f"f'!"!."!'

T ————
.............................

Time Complexity of mean

e Linear time, O(n).

e Depends only on the array’s size, n, not on its actual
elements.

11113999

T ————
.............................

ceeecece

Example 2: Linear Search

e Given: an array arr of numbers and a target t.
e Find: the index of tin arr, or None if it is missing.

e Example: arr = [-3, -6, 7, 3, 0, 15, 4]

T ————
.............................

33323330

(ary, t):
for i, x in enumerate(arr):

return 1
return None

1F x == T3

def linear search

Exercise: Time complexity?

def linear_search(arr, t):
for i, x in enumerate(arr):
if x ==
return 1
return None

11113999

T ————
.............................

=l

It looks like there are two extreme cases...

Observation

CEEREREREY

The Best Case

e \When the target, t, is the very first element.

e The loop exits after one iteration.

e O(1) time?

11113999

T ————
.............................

The Worst Case

e \When the target, t, is not in the array at all.

e The loop exits after n iterations.

e 0O(n) time?

11113999

T ————
.............................

Time Complexity

e linear search can take vastly different amounts of time
on two inputs of the same size.
o Depends on actual elements as well as size.

e |t has no single, overall time complexity.

e Instead we'll report best and worst case time complexities.

133193149

T ————
.............................

Best Case Time Complexity

e How does the time taken in the best case grow as the
input gets larger?

11113999

T ————
.............................

Best Case

e Inlinear_search’s best case, Tbest(n) = ¢, no matter how
large the array is.

e The best case time complexity is O(1).

11113999

T ————
.............................

Worst Case Time Complexity

e How does the time taken in the worst case grow as the
input gets larger?

11113999

T ————
.............................

Definition

e DefineT _(n)to be the most time taken by the

worst
algorithm on any input of size n.

e The asymptotic growth of T __(n) is the algorithm’s worst
case time complexity.

133193149

- =8

B ————T
e

Worst Case

e |n the worst case, 1inear search iterates through the
entire array.

e The worst case time complexity is O(n).

11113999

T ————
.............................

Exercise: times: Best and Worst

def func(arr):
n = len(arr)
for x in arr:
for y in arr:
X +y == 160
return sum(arr)

11113999

T ————
.............................

Best Case

® Best case occurs when the first elementis 5: 5+ 5 =10

e sum(arr) takes O(n) time

e Exists, taking ©(n) time in total

11113999

T ————
.............................

Worst Case

e \Worst case occurs when no two numbers add to 10.

e Has to loop over all ©(n?) pairs.

e Worst case time complexity: O(n?).

e Note: Not ©(n?®) since the sum (arr) only runs once.

11113999

T ————
.............................

:

e An algorithm like 1inear search doesn’t have one

single time complexity.

e An algorithm like mean does, since the best and worst
case time complexities coincide.

11113999

T ————
.............................

Main Idea

Reporting best and worst case time complexities gives us a
richer of the performance of the algorithm.

11113999

T ————
.............................

Average Case

T ———
..............................

Time Taken, Typically

e Best case and worst case can be misleading.

o Depend on a single good/bad input.
e How much time is taken, typically?

e Idea: compute the average time taken over all possible
inputs.

199999949

T ————
.............................

==llllllllllllllllllllllll=l=
.-

=I,_,o Recall: The Expectation

.t - e The expected value of a3 random variable X is:

. Zx P(X = x)
= winnings probability Expected winnings:
I

S0 50%
$1 30%

S10 18%

I $ 50 2%
= =l

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

=I,_,o Recall: The Expectation

.t - e The expected value of a3 random variable X is:

. Zx P(X = x)
= winnings probability Expected winnings:
I

P $0 50%
31 Shg SO x .5+

S10 18%

I $ 50 2%
= =l

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

=I,_,o Recall: The Expectation

.t - e The expected value of a3 random variable X is:

. Zx P(X = x)
= winnings probability Expected winnings:
I

P $0 50%
31 i SOx.5+S81x.3

S10 18%

I $ 50 2%
= =l

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

=I,_,o Recall: The Expectation

.t - e The expected value of a3 random variable X is:

. Zx P(X = x)
= winnings probability Expected winnings:
I

P $0 50%
(o)

$$110 32; SOx.5+51x.3+510x.18 +
o

I $ 50 2%
= =l

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

=I,_,o Recall: The Expectation

.t - e The expected value of a3 random variable X is:

. Zx P(X = x)
= winnings probability Expected winnings:
I

P $0 50%
(o)

$$110 32; SOX.5+51x.3+510x.18 + $50 x .02
(o}

I $ 50 2%
= =l

B ————T
.............................

I $ 50 2%
= =l

B ————T
.............................

llllllllllIIIIIIIIIIIIIIIIIIII
=I,_,o Recall: The Expectation -.=
=t - o The expected value of a random variable X is: =
= Z X-P(X = x) =
Ii = B
N winnings probability Expected winnings: |
.I"'. $0 50% B
$$1B 32;{: SOx.5+S$1x.3+3$10x.18 + $50 x.02 = $3.10 =

l B
B

B

N

==llllllllllllllllllllllll=ll

-
.I.__. &
n Average Case

e We'l compute the expected time over all cases:

Tag(n)= > P(case)- T(case)

caseeall cases

. e (alled the average case time complexity.

< =8

B ————T
e

Strategy for Finding Average Case

Step 0: Make assumption about distribution of inputs.

Step 1: Determine the possible cases.

Step 2: Determine the probability of each case.

Step 3: Determine the time taken for each case.

Step 4: Compute the expected time (average).

133193149

T ————
.............................

==llllllllllllllllllllllll=ll

.I._’
= Example: Linear Search

"o Best? Worst?

def linear_search(arr, t):
for i, x in enumerate(arr):

1f % == %o
.P return 1
return None
= L

B ————T
.............................

93333390

Linear Search

Example

What is the average case time complexity of linear

Step 0: Assume input distribution

e We must assume something about the input.

e Example: Target must be in array, equally-likely to be
any element, no duplicates.

e This is usually given to you.

11113999

T ————
.............................

==llllllllllllllllllllllll=l=
.-

Step 1: Determine the Cases

Example: /inear search.

e Case 1: target is first element
Case 2: target is second element

Case n: target is nth element
Case n + 1: target is not in array (but not needed due

= to assumptions)
= =l

B ————T
.............................

Step 2: Case Probabilities

e \What is the probability that we see each case?
o Example: what is the probability that the target is the
kth element?

e This is where we use assumptions from Step O.

11113999

T ————
.............................

Example

e Assume: target is in the array exactly once, equally-likely
to be any element.

e Each case has probability 1/n.

11113999

T ————
.............................

==llllllllllllllllllllllll=ll

— [
=I.__. Step 3: Case Times

e Determine time taken in each case.

o Example: linear search.
o Let’'s say it takes time ¢ per iteration.

Case 1: time ¢

Case 2: time 2c

.I :
Casei:timec - i
=l—. Casen: time ¢ - n
L

B ————T
e

ENEEEEEEEE .
Nl
s .

33323330

Z P(case i) - T(case i)

i=1

n

ve(N)

tep 4: Compute Expectation

d

Average Case Time Complexity

e The average case time complexity of linear search is O(n).
o Under these assumptions on the input!

11113999

T ————
.............................

:

e Worst case time complexity is still useful.

e Easier to calculate.
e Often same as average case (but not always!)
e Sometimes worst case is very important.

o Real time applications, time complexity attacks

11113999

T ————
.............................

:

e Hard to make realistic assumptions on input distribution.

e Example: linear search.
o s it realistic to assume tis in array?

o If not, what is the probability that it is in the array?

11113999

T ————
.............................

Bl |
| 4 B
. -
B B
. Exercise B
B ' B
= e Suppose we change our assumptions: =
. o The target has a 50% chance of being in the array. .
.t e |Ifitisinthe array, it is equally-likely to be any element. .
.P e What is the average case complexity now? B
B B
B

II_, -
= B
T —
..............................

93322290

Average Case in Movie

Recall: The Movie Problem

e Given: an array movies of movie durations, and the
flight duration t

e Find: two movies whose durations add to t.
o If no two movies sum to t, return None.

11113999

T ————
.............................

~def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
if movies[i] + movies[j] ==
return (i, j)
return None

199999949

T ———
e

Time Complexity

e Best case: O(1)
o When the first pair of movies checked equals target.

e Worst case: O(n?)
o When no pair of movies equals target.

11113999

T ————
.............................

‘Average” Case?

e The best and worst cases are extremes.

e How much time is taken, typically?
o That is, when the target pair is not the first checked nor
the last, but somewhere in the middle.

11113999

T ————
.............................

I lllllllllllllllllllllll=ll

L
II.__, .
Exercise

e How much time do you expect find_movies to take on a typical
input?

I C: Something in between,
I like ©(n)

B ————T
.............................

The Movie Problem

def find_movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
if movies[i] + movies[j] ==
return (i, j)
return None

11113999

T ————
.............................

Step 0: Assume input distribution

e Suppose we are told that:
o There is a unique pair of movies that add to .
o All pairs are equally likely.

11113999

T ————
.............................

Step 1: Determine the Cases

e (ase a: the ath pair checked sums to .

e Each pair of movies is a case.

e There are ('21) cases (pairs of movies)

11113999

T ————
.............................

Step 2: Case Probabilities

e Assume: there is a unique pair that adds to t.

e Assume: all pairs are equally likely.

e Probability of any case: 1 - _2

('27) n(n-1)

11113999

T ————
.............................

Step 3: Case Time

e How much time is taken for a particular case?

e Example, suppose the movies a and b sum to the target.

e How long does it take to find this pair?

11113999

T ————
.............................

I lllllllllllllllllllllll=l=
.-

Exercise

-Roughly how much time is taken (how many times does line 5
run) if the ath pair checked sums to the target?

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
if movies[i] + movies[j] == t:
return (i, j)

P return None
= L

B ————T
.............................

I lllllllllllllllllllllll=l=
.-

(m.,, m,)
Exercise

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
p if movies[i] + movies[j] == t:
return (i, j)
return None

="’ =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

(m.,, m,)
Exercise

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
p if movies[i] + movies[j] == t:
return (i, j)
return None

="’ =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

(m,, m,)
Exercise

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
p if movies[i] + movies[j] == t:
return (i, j)
return None

="’ =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

(m., m,)
Exercise

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
p if movies[i] + movies[j] == t:
return (i, j)
return None

="’ =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

Exercise

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
p if movies[i] + movies[j] == t:
return (i, j)
return None

="’ =8

B ————T
e

I lllllllllllllllllllllll=l=
.-

Exercise

def find _movies(movies, t):
n = len(movies)
for i in range(n):
for j in range(i + 1, n):
p if movies[i] + movies[j] == t:
return (i, j)
return None

Roughly how much time is taken (how many times does line 5 run)

I if the ath pair checked sums to the target? T(case a) =
= T T ——————
.............................

.I._, L |
B Step 4: Compute Expectation

avg

T ————
e

.I.__. L |
B Step 4: Compute Expectation

= X

av
g o =

==-—' mnd I

—
=
=
—
=
=
=
=
=
=
—
=
=
=
=
=
=
|
L
O
O

o
II'-’
Ste
p 4
: Co
m
pute E.
X
pe
ctat
ion
|

=I~—'

.I.__. L |
B Step 4: Compute Expectation

)
T =) P(casea)

avyg a =1

==-—' mnd I

.I.__.
B Step 4: Compute Expectation

.t z)

2 P(case a) - T(case a)

T ————
e

=l

Y., P(casea) - T(case a)
=1
T(case a)

(
(n
-

1

)
)

a

avg

L.Ppb_.p-.rp

=l

1
. T
(zj

1

(¢
&

a

Y., P(casea) - T(case a)
=1
T(case o)

(
(n
-

1

)
)

a

avg

L.p_.pb_.p-.rp

T ———
..............................

Q
YRCE
BN

o P

QQ
1 ™M

CCCCCCc

s I

n n

2 2

2
-------—------d

L.Ppp.p-.rpb.-

n n

2 2

2
-------—------d

L.Ppp.p-.rpb.-

T ———
..............................

il
)
|
: A~
-
- N
©)
. |
4_
-+
o 2l
|
|
|
1l

L.Ppp.p-.rpb.

T R ————
-ttt

T R ————
-ttt

T ———
..............................

=l

1
IIIIIIIIIIIIIIIIIIIIIIIIIIII

L 0o
o(n’)

1“ CR

— .
— n

.U
23333333

CCCCCCece

T ————
.............................

pttppp.n

Average Case

e The average case time complexity of find_movies is O(n?

e Same as the worst case!

11113999

T ————
.............................

:

We've seen two algorithms where the average case = the

worst case.
Not always the case!
Interpretation: the worst case is not too extreme.

11113999

T ————
.............................

Thank you!

.I CampusWire!
=l--

)

