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Agenda
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Plan for the 5-6 lectures

● Best, Worst and Average cases. 
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The Movie Problem

● Given: an array movies of movie durations, and the flight 
duration t

●  Find: two movies whose durations add to t
○ If no two movies sum to t, return None.
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Exercise

● Design a brute force solution to the problem. What is its time 
complexity?
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Brute force
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Time Complexity

● It looks like there is a best case and worst case.

● How do we formalize this?
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For the future...

●  Can you come up with a better algorithm?

●  What is the best possible time complexity?
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Best and Worst Cases
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Definition

● Define 𝑇best(𝑛) to be the least time taken by the algorithm 
on any input of size 𝑛. 

● The asymptotic growth (n-> infinity) of 𝑇best(𝑛) is the 
algorithm’s best case time complexity.



❖

Example 1: mean. Best case?             
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Example 1: mean             

𝑇best(𝑛) = n



❖

Caution!

●  The best case is never: “the input is of size one or empty”. 

●  The best case is about the structure of the input, not its 
size. 

●  Not always constant time! 

○ Example: sorting.



❖

def insertionSort(arr):
    for i in range(1, len(arr)):
        key = arr[i]
        j = i - 1
        while j >= 0 and key < arr[j]:
            arr[j + 1] = arr[j]
            j -= 1
        arr[j + 1] = key
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def insertionSort(arr):
    for i in range(1, len(arr)):
        key = arr[i]
        j = i - 1
        while j >= 0 and key < arr[j]:
            arr[j + 1] = arr[j]
            j -= 1
        arr[j + 1] = key
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𝑇best(𝑛) = n
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Time Complexity of mean

●  Linear time for all inputs, Θ(𝑛). 
●  Depends only on the array’s size, 𝑛, not on its actual 

elements.
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Example 2: Linear Search

● Given: an array arr of numbers and a target t. 

● Find: the index of t in arr, or None if it is missing.

● Example: arr = [-3, -6, 7, 3, 0, 15, 4]

○ t is 7

○ 2 is returned (index of 7)



❖

Cool function!



❖

Exercise: Time complexity? Best?

A:  Constant
 
B:        n

C:  Something else



❖

Exercise: Time complexity? Worst?
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Observation

●  It looks like there are two extreme cases...
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The Best  Case

● When the target, t, is the very first element. 

●  The loop exits after one iteration. 

●  Θ(1) time?



❖

The Worst  Case

● When the target, t, is not in the array at all. 

●  The loop exits after 𝑛 iterations. 

●  Θ(𝑛) time?
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Time Complexity

● linear_search can take vastly different amounts of time 
on two inputs of the same size. 
○ Depends on actual elements as well as size. 

● It has no single, overall time complexity. 

● Instead we’ll report best and worst case time complexities.



❖

Best Case Time Complexity

● How does the time taken in the best case grow as the 
input gets larger?
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Best Case

● In linear_search’s best case, 𝑇best(𝑛) = 𝑐, no matter how 
large the array is.

● The best case time complexity is Θ(1).



❖

Worst Case Time Complexity

● How does the time taken in the worst case grow as the 
input gets larger?



❖

Definition

● Define 𝑇worst(𝑛) to be the most time taken by the 
algorithm on any input of size 𝑛. 

● The asymptotic growth of 𝑇worst(𝑛) is the algorithm’s worst 
case time complexity.
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Worst Case

● In the worst case, linear_search iterates through the 
entire array. 

●  The worst case time complexity is Θ(𝑛).
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Exercise: times: Best and Worst

def func(arr):
n = len(arr)
for x in arr:

for y in arr: 
if x + y == 10

return sum(arr)

A: Θ(1)

B:  Θ(𝑛)

C:  Θ(𝑛2)

D:  Θ(𝑛3)
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Best Case

● Best case occurs when the first element is 5: 5 + 5 = 10

● sum(arr) takes Θ(𝑛) time

● Exists, taking Θ(𝑛) time in total



❖

Worst Case

●  Worst case occurs when no two numbers add to 10. 

●  Has to loop over all Θ(𝑛2 ) pairs. 

● Worst case time complexity: Θ(𝑛2 ).

● Note: Not Θ(𝑛3 ) since the sum(arr) only runs once.
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Note

● An algorithm like linear_search doesn’t have one 
single time complexity.

● An algorithm like mean does, since the best and worst 
case time complexities coincide.
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Main Idea

Reporting best and worst case time complexities gives us a 
richer of the performance of the algorithm.
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Do you have any questions?

Thank you!

CampusWire!


