
❖

DSC 40B
Lecture 5 : Best,

Worst Cases

❖

Correction (mic)

https://docs.google.com/presentation/d/1JsgA03S0rMCrWD6oORdvjVB1cdt0H
QHVHEx6zszylkA/edit?slide=id.g388f030f327_0_12#slide=id.g388f030f327_0
_12

https://docs.google.com/presentation/d/1JsgA03S0rMCrWD6oORdvjVB1cdt0HQHVHEx6zszylkA/edit?slide=id.g388f030f327_0_12#slide=id.g388f030f327_0_12
https://docs.google.com/presentation/d/1JsgA03S0rMCrWD6oORdvjVB1cdt0HQHVHEx6zszylkA/edit?slide=id.g388f030f327_0_12#slide=id.g388f030f327_0_12
https://docs.google.com/presentation/d/1JsgA03S0rMCrWD6oORdvjVB1cdt0HQHVHEx6zszylkA/edit?slide=id.g388f030f327_0_12#slide=id.g388f030f327_0_12

❖

Agenda

❖

Plan for the 5-6 lectures

● Best, Worst and Average cases.

❖

The Movie problem

❖

The Movie Problem

❖

The Movie Problem

● Given: an array movies of movie durations, and the flight
duration t

● Find: two movies whose durations add to t
○ If no two movies sum to t, return None.

❖

Exercise

● Design a brute force solution to the problem. What is its time
complexity?

❖

Brute force

❖

Time Complexity

● It looks like there is a best case and worst case.

● How do we formalize this?

❖

For the future...

● Can you come up with a better algorithm?

● What is the best possible time complexity?

❖

Best and Worst Cases

❖

Definition

● Define 𝑇best(𝑛) to be the least time taken by the algorithm
on any input of size 𝑛.

● The asymptotic growth (n-> infinity) of 𝑇best(𝑛) is the
algorithm’s best case time complexity.

❖

Example 1: mean. Best case?

❖

Example 1: mean

𝑇best(𝑛) = n

❖

Caution!

● The best case is never: “the input is of size one or empty”.

● The best case is about the structure of the input, not its
size.

● Not always constant time!

○ Example: sorting.

❖

def insertionSort(arr):
 for i in range(1, len(arr)):
 key = arr[i]
 j = i - 1
 while j >= 0 and key < arr[j]:
 arr[j + 1] = arr[j]
 j -= 1
 arr[j + 1] = key

❖

def insertionSort(arr):
 for i in range(1, len(arr)):
 key = arr[i]
 j = i - 1
 while j >= 0 and key < arr[j]:
 arr[j + 1] = arr[j]
 j -= 1
 arr[j + 1] = key

10 20 30 40 50

❖

def insertionSort(arr):
 for i in range(1, len(arr)):
 key = arr[i]
 j = i - 1
 while j >= 0 and key < arr[j]:
 arr[j + 1] = arr[j]
 j -= 1
 arr[j + 1] = key

10 20 30 40 50

❖

def insertionSort(arr):
 for i in range(1, len(arr)):
 key = arr[i]
 j = i - 1
 while j >= 0 and key < arr[j]:
 arr[j + 1] = arr[j]
 j -= 1
 arr[j + 1] = key

10 20 30 40 50

❖

def insertionSort(arr):
 for i in range(1, len(arr)):
 key = arr[i]
 j = i - 1
 while j >= 0 and key < arr[j]:
 arr[j + 1] = arr[j]
 j -= 1
 arr[j + 1] = key

10 20 30 40 50

❖

def insertionSort(arr):
 for i in range(1, len(arr)):
 key = arr[i]
 j = i - 1
 while j >= 0 and key < arr[j]:
 arr[j + 1] = arr[j]
 j -= 1
 arr[j + 1] = key

10 20 30 40 50

❖

def insertionSort(arr):
 for i in range(1, len(arr)):
 key = arr[i]
 j = i - 1
 while j >= 0 and key < arr[j]:
 arr[j + 1] = arr[j]
 j -= 1
 arr[j + 1] = key

10 20 30 40 50

𝑇best(𝑛) = n

❖

Time Complexity of mean

● Linear time for all inputs, Θ(𝑛).
● Depends only on the array’s size, 𝑛, not on its actual

elements.

❖

Example 2: Linear Search

● Given: an array arr of numbers and a target t.

● Find: the index of t in arr, or None if it is missing.

● Example: arr = [-3, -6, 7, 3, 0, 15, 4]

○ t is 7

○ 2 is returned (index of 7)

❖

Cool function!

❖

Exercise: Time complexity? Best?

A: Constant

B: n

C: Something else

❖

Exercise: Time complexity? Worst?

❖

Observation

● It looks like there are two extreme cases...

❖

The Best Case

● When the target, t, is the very first element.

● The loop exits after one iteration.

● Θ(1) time?

❖

The Worst Case

● When the target, t, is not in the array at all.

● The loop exits after 𝑛 iterations.

● Θ(𝑛) time?

❖

Time Complexity

● linear_search can take vastly different amounts of time
on two inputs of the same size.
○ Depends on actual elements as well as size.

● It has no single, overall time complexity.

● Instead we’ll report best and worst case time complexities.

❖

Best Case Time Complexity

● How does the time taken in the best case grow as the
input gets larger?

❖

Best Case

● In linear_search’s best case, 𝑇best(𝑛) = 𝑐, no matter how
large the array is.

● The best case time complexity is Θ(1).

❖

Worst Case Time Complexity

● How does the time taken in the worst case grow as the
input gets larger?

❖

Definition

● Define 𝑇worst(𝑛) to be the most time taken by the
algorithm on any input of size 𝑛.

● The asymptotic growth of 𝑇worst(𝑛) is the algorithm’s worst
case time complexity.

❖

Worst Case

● In the worst case, linear_search iterates through the
entire array.

● The worst case time complexity is Θ(𝑛).

❖

Exercise: times: Best and Worst

def func(arr):
n = len(arr)
for x in arr:

for y in arr:
if x + y == 10

return sum(arr)

A: Θ(1)

B: Θ(𝑛)

C: Θ(𝑛2)

D: Θ(𝑛3)

❖

Best Case

● Best case occurs when the first element is 5: 5 + 5 = 10

● sum(arr) takes Θ(𝑛) time

● Exists, taking Θ(𝑛) time in total

❖

Worst Case

● Worst case occurs when no two numbers add to 10.

● Has to loop over all Θ(𝑛2) pairs.

● Worst case time complexity: Θ(𝑛2).

● Note: Not Θ(𝑛3) since the sum(arr) only runs once.

❖

Note

● An algorithm like linear_search doesn’t have one
single time complexity.

● An algorithm like mean does, since the best and worst
case time complexities coincide.

❖

Main Idea

Reporting best and worst case time complexities gives us a
richer of the performance of the algorithm.

❖

Do you have any questions?

Thank you!

CampusWire!

