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Lecture 4 :
Big- Theta, Big-Oh
and Omega,
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e Formally define ©, O, Q notation.

e Some useful properties.

Plan for the lecture
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Formally define ©, O, Q
notations
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So Far

e Time Complexity Analysis: a picture of how an algorithm scales.

e (Can use O-notation to express time complexity.
e Allows us to ignore details in a rigorous way:
o Saves us work!

o But what exactly can we ignore?
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O(n?)

O(-) forgets constant factors, lower-order terms.
S5n3 + 3n? + 42

Theta Notation, Informally
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O(g(n)) if fln) “grows like” g(n).

5n3 + 3n% + 42 = Q(n3)

Theta Notation, Informally

o f(n)
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=I..) Definition

We write fin) = ©O(g(n)) if there are positive constants N,
¢, and ¢, such that for all n 2 N:

o
< =8
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=I..) Definition

‘We write fln) = O(g(n)) if there are positive constants N,
¢, and ¢, such that for all n 2 N:

o
< =8
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.I,_) Main Idea

If f(n) = (n)), then when n is large fis "sandwiched” between
copies of g.

o
< =8
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Proving Big-Theta

e We can prove that fln) = ©(g(n)) by finding these constants.

c, g(n) = fln) = c, g(n) (n = N)

e Requires a lower bound and an upper bound.
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Strategy: Chains of Inequalities

e To show f(n) =< c,g(n), we show:
fAln) = (something) = (another thing) = ... < c, g(n)

e At each step:
o We can do anything to make value larger.
o But the goal is to simplify it to look like g(n).
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Example

Show that 4n° - 51#% + 50 = O )
Find constants c,.¢c,, N such that for all n > N:
c,n®=4n®-5n% + 50 = ¢, n’

They don’t have to be the “best” constants! Many solutions!
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I"‘. Example

cn3 < 43 - 5p2 + 50 Sc2n3

We want to make 4n3 - 512 + 50 “look like” cn?> .

For the upper bound, can do anything that makes the
function larger.

.P For the lower bound, can do anything that makes the

function smaller.
= o
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II.__.
B Example (n is a positive integer)

c1n3s4n3—5n2+505c2n3

e Upper bound:
4n® - 5n% + 50 < 4n3+ 50 = 4n° + 50n® = 54n3

o
< =8
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Upper-Bounding Tips

e "Promote” lower-order positive terms:
3n® + 5n < 3n> + 5p°
e "Drop” negative terms:

3n3 - 5n < 30
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.I"‘. Example

.t cn3<4n 5n2+50302n3

. e |ower bound:
. 4n> - 5n% + 50 2 4n3 - 5n°
>3p3 +(n3-5n%) 231 (n >=5)

True WHEN (n® - 5n?) >=0 => n>=5

T ————
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Lower-Bounding Tips

e "Drop” lower-order positive terms:
3n® + 5n 2 3n°
e “Promote and cancel” negative lower-order terms if possible:

4n® - 2n = 4n3 - 2n3 = 213
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B Lower-Bounding Tips

~ e "Cancel” negative lower-order terms with big constants by
“breaking off” a piece of high term.

4n3 - 10n° = (3n® + n®) - 10n?
.I
= L
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B Lower-Bounding Tips

~ e "Cancel” negative lower-order terms with big constants by
“breaking off” a piece of high term.

4nc - 10n% = 3n® +n3) - 10n? = 3n3 + (0 - 10n?)
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.I.__.
B Lower-Bounding Tips

~ e "Cancel” negative lower-order terms with big constants by
“breaking off” a piece of high term.

4nc - 10n% = 3n® +n3) - 10n? = 3n3 + (0 - 10n?)

n3-10n? =2 O when
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B Lower-Bounding Tips

~ e "Cancel” negative lower-order terms with big constants by
“breaking off” a piece of high term.

4nc - 10n% = 3n® +n3) - 10n? = 3n3 + (0 - 10n?)

n3-10n?=z0whenn?3z10n’=n=10:
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B Lower-Bounding Tips

~ e "Cancel” negative lower-order terms with big constants by
“breaking off” a piece of high term.

4nc - 10n% = 3n® +n3) - 10n? = 3n3 + (0 - 10n?)

n3-10n?=z0whenn?3z10n’=n=10:

.P >3p3+ 0 (n=10)
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I"‘. Example

c1n3 < 4p3 - 502 + 50 < c,n 3

3

We want to make 4n3 - 5n% + 50 “look like” cn

For the upper bound, can do anything that makes the
function larger.

.P For the lower bound, can do anything that makes the

function smaller.
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I"‘. Example

3n<4n>-50°+50<54n°>(n>=5) (Nis 5)

e We want to make 4n3 - 512 + 50 “look like” cn?.

e For the upper bound, can do anything that makes the
function larger.

.P e For the lower bound, can do anything that makes the

function smaller.
= o
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(]
=I.’ n? <=2n%-n<=2n’+nsin3n <= 2n* + n <= 3n? -.=
= Exercise B
B ' B
= True or False: 2n? + nsin3n = O(n?). =
B B
. A: True .
=P B: False =
.p C: Impossible to determine .
¥ -
= B

T
-ttt



Exercise

True or False: fin) = O(n?)

Let A: True
n? if nis even

f(n) = {5 if n iS odd. B: False

C: Impossible to
determine
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Big-Oh (Big-0) and
Big-Omega
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Other Bounds

e f=0(g) means that fis both upper and lower bounded by
factors of g.

Sometimes we only have (or care about) upper bound or lower
bound.

We have notation for that, too.
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=I-—' Big-0 Notation, Informally

-~ e Sometimes we only care about upper bound.

e f(n) = O(g(n)) if f"grows at most as fast” as g.
e Examples:

o 4n? = 0(n'°)
.I". o 4 = O )
o 4n? = 0n?) and 4n° = O(r°)
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0
N Formal Definition

e We write filn) = O(g(n)) if there are positive constants N and ¢
such that for all n 2 N:

o
< =8
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Big-Omega Notation, Informally

e Sometimes we only care about lower bound.

e f(n) = Qg(n)) if f"grows at least as fast” as g.
e Examples:

o 4n'%° = Q(n>)

o 4n? = Q(n)

o 4n? = Q(n?) and 47° = O(n? )
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=I..) Formal Definition

e We write fln) = Q(g(n)) if there are positive constants N and ¢
such that for all n 2 N:

< f(n)

o
< =8
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FUN FACT

“Omega” in Greek literally means: big O.

So translated, “Big-Omega” means “big big O”.
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= Theta, Big-0, and Big-Omega

e Iff=0(g) thenf= 0(g) and f = Q(g).

o Iff=0(g)andf=Q(g) thenf=0(g)
Pictorially:
o 0O = (0andQ)

.P o (0andQ)=0
= o
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=l

O is kind of like = (at most)
Q is kind of like = (at least)

© is kind of like
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.I"‘. Practice: true/false

B
= f(n) = {n’- if n is even

L |5 ifnis odd.
0
. e True or False: fln) = O(n?).

EIF, L
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e True or False: fin) = Q(n?).

e True or False: fln) = Q(1).
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® |aziness.

e Sometimes finding an upper or lower bound would take
too much work, and/or we don’t really care about it
anyways.
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N Big-Oh B
., -
= e Often used when another part of the code would =
.t dominate time complexity anyways. .
n L
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Exercise: what is the complexity?

def foo(n):
for a in range(nx=x4):
print(a)

for i in range(n):
for j in range(ix*=*2):
print(i + j)

"l'f'!.'f"f'!"!."!'
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Exercise: what is the complexity?

def foo(n):

for a in range(nx=x4): .
print(a) ©(n")

for i in range(n):
for j in range(ix*=*2):
print(i + j)

"l'f'!.'f"f'!"!."!'
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Exercise: what is the complexity?

def foo(n):

for a in range(nx=x4): .
print(a) ©(n™)

for j in range(ix*=*2):

for i in range(n):
} O(n3)
print(i + j)

"l'f‘l'f"f'!"!."!'
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Big-Omega

e Often used when the time complexity will be so large that
we don’t care what it is, exactly.
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II,
B Example: Big-Omega

=I~—'
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best_separation = float('inf"')
best_clustering = None

for clustering in all_clusterings(data):
sep = calculate_separation(clustering)
if sep < best_separation:
best_separation = sep
best_clustering = clustering

print(best_clustering)

HEE ..
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II.__,
B Example: Big-Omega

=I~—'
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best_separation = float('inf"')
best_clustering = None We have 2" pairs

for clustering in all_clusterings(data):
sep = calculate_separation(clustering)
if sep < best_separation:
best_separation = sep
best_clustering = clustering

print(best_clustering)
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B Example: Big-Omega
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best_separation = float('inf"')
best_clustering = None We have 2" pairs

for clustering in all_clusterings(data):
sep = calculate_separation(clustering)
if sep < best_separation:
best_separation = sep
best_clustering = clustering

print(best_clustering)
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B Example: Big-Omega
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best_separation = float('inf')

best_clustering = None We have 2" pairs

for clustering in all_clusterings(data):
sep = calculate_separation(clustering)

if sep < best_separation:‘\\\\\\\\\\\\
best_separation = sep 0(?)

best_clustering = clustering

print(best_clustering)
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II.__,
B Example: Big-Omega

=I—'
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best_separation = float('inf')
best_clustering = None We have 2" pairs

for clustering in all_clusterings(data):
sep = calculate_separation(clustering)

if sep < best_separation:‘\\\\\\\\\\\\
best_separation = sep 0(?)

best_clustering = clustering

print(best_clustering)
T(n) = Q(27)
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Other Notations

e f(n) = ol(g(n)) if fgrows “much slower” than g.
o Whatever c you choose, eventually f < cg(n).
o Example: n? = o(n®)

'l' '!.'f"f'!"!."!"
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.I'-’ Other Notations
t e f(n) = ol(g(n)) if fgrows “much slower” than g. .
O Whatever ¢ you choose, eventually f < cg(n). .

t o Example: n?=o(n®) =
. o

e f(n) = w(g(n)) if fgrows "much faster” than g
o Whatever ¢ you choose, eventually f > cg(n).

o
o Example: n3 = w(n?) =
o
o

T R ————
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= Other Notations

= L
. e f(n) = ol(g(n)) if fgrows “much slower” than g. .

. O Whatever ¢ you choose, eventually f < cg(n).

o
. o Example: n?=o(n®) .
o o
o . o

. e f(n) = w(g(n)) if fgrows "much faster” than g
P o Whatever ¢ you choose, eventually f > cg(n).

L
o Example: n3 = w(n?) =
L
L

EP e We won't really use these.
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Properties

e We don't usually go back to the definition when using ©.

e Instead, we use a few basic properties.
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Properties of ©

e Symmetry: If = O(g), then g = O().

e Transitivity: If f = O(g) and g = O(h) then f = O(h
e Reflexivity: /= O(f)
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=I..) Practice: T/F

o If f=0(g) and g = O(h), then f = O(h)
o If f=Q(h) and g = Q(h), then f = Q(g)

o Iff =0(g )andf, =0(g,) thenf +f =0(g +g,).
o Iff =0O(g )andf, =0l(g,) thenf xf =0(g xg,).

A: F,F,F, T
.P B: F, T,F, F

C: TFF,T

D: TTTT
=i.,. E: None of the above

HEE ..
B,



=I..) Practice: T/F

o If f=0(g) and g = O(h), then f = O(h)
o If f=Q(h) and g = Q(h), then f = Q(g)

o Iff =0(g )andf, =0(g,) thenf +f =0(g +g,).
o Iff =0O(g )andf, =0l(g,) thenf xf =0(g xg,).

A: F,F,F, T
.P B: F, T,F, F

C: TFF, T

D: TTTT
=i.,. E: None of the above
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Proving/Disproving Properties

e Start by trying to disprove.
e Easiest way: find a counterexample.
e Example: If f= Q(h) and g = Q(h), then f = Q(g).

o Falsel Letf=n?,g=n>,andh =n?.

11113999
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Proving the Property

e If you can’t disprove, maybe it is true.
e Example:
o Suppose f, = O(g,) and f, = O(g,).
o Prove that f, x f, = O(g, x g,).

11113999
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Step 1: State the assumption

e We know that f, = O(g,) and f, = O(g,).

e So there are constants ., Cy, N1, N2 so that for all n = N1 andn 2 NZ:
fin)=c g (n) (nzN)

fon)=c,g,(n) (nzN,)

S
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=I-’ Use the assumption Prove that f T 0(81 82)

~ e Chain of inequalities, starting with f; x f, , ending with = c g, x g, .
e Using the following piece of information:
fi(n)sc g (n) (n=zN)

f,(n)sc,g,(n) (nzN,)
.I
= L
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=I-’ Use the assumption Prove that f T 0(81 82)

~ e Chain of inequalities, starting with f; x f, , ending with = c g, x g, .
e Using the following piece of information:
fi(n)sc g (nzN)

f,(n)<c,gm) (n=zN,)

. fi(m)xfo(n) < sl S cg xg,

2 o
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=I-’ Use the assumption Prove that f T 0(81 82)

~ e Chain of inequalities, starting with f; x f, , ending with = c g, x g, .
e Using the following piece of information:
fi(n)sc g (nzN)

f,n)sc,g,n) (nzN,)

. f1 sz =c g1 (n) sz (n = N1)

< =8
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=I-’ Use the assumption Prove that f " 0(81 82)

~ e Chain of inequalities, starting with f; x f, , ending with = c g, x g, .
e Using the following piece of information:
f(n)=c gln) (n=zN)

f,n)sc,g,(n) (nz=N,)

. [, (n) xf,(n) <c g (n) xf,(n) (nzN.)

<cg1 Xcgz)
= L
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h
=I-’ Use the assumption Prove that f " 0(81 82)

~ e Chain of inequalities, starting with f; x f, , ending with = c g, x g, .
e Using the following piece of information:
f(n)=c gln) (n=zN)

f,n)sc,g,(n) (nz=N,)

. fi () x 1, (n) = ¢ g, (n) Xf, (n (nzN)
<c g (n) x c,g,(n) (nzN,) and (nzN,)

=I-—' <cg, () x gyln)  (n=max(N,, N)and e = ¢,.c,
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Analyzing Code

e The properties of © (and O and Q) are useful when analyzing
code.

e \We can analyze pieces, put together the results.
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Sums of Theta

o Property: If f, = ©(g, ) and f, = O(g, ), then f, + f, = O(g,

e Used when analyzing sequential code.

1111119
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Example

def foo(n): Say bar takes O(n> ),
bar(n) baz takes O(n* ).

baz(n) foo takes O(n* + n?) = On).

baz is the bottleneck.
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Products of Theta

e Property: If f, = ©O(g, ) and f, = O(g, ), then
fi ;=01 g,)

e Useful when analyzing nested loops.

SN
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.I.__. B
B B
D Example L
B ' B
. def foo(n): .
. for i in range(3*n + 4, 5n**2 - 2%n + 5): .
. for j in range(500*n, n*%3): .
. print(i, j) .
B B
" =
¥ -
= B
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.I..) Example

def foo(n):
for i in range(3*n + 4, 5n**2 - 2%n + 5):
for j in range(500%*n, n*=*3):
print(i, j)

A: O(n°)
B: O(n?)

.
II" C: O(n%)
D: O(n3)
=P E: Something else
L

B ————T
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I-" Carefull

t If inner loop index depends on outer loop, you have to be more

careful.

def foo(n):
for 1 in range(n):
for j in range(i):

. print(i, j)

T ————
e



Caution

e To upper bound a fraction A/B, you must:

o Upper bound the numerator, A.
o Lower bound the denominator, B.

e And to lower bound a fraction A/B, you must:

o Lower bound the numerator, A.
o Upper bound the denominator, B.

11113999
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.I..’ Caution

e To upper bound a fraction A/B, you must:

o Upper bound the numerator, A.
o Lower bound the denominator, B.
e Example:
o What is larger? % or % ?
m % since numerator is larger (4 > 3)

.P o What is larger? 4/3 or %?
m 4/3 since the denominator is smaller (3 < 4)

=I~—'
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e
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.I..’ Caution

e To upper bound a fraction A/B, you must:
‘o Upper bound the numerator, A.
o Lower bound the denominator, B.

® To make a fraction as large as possible, you should:

o
< =8

B ————T
e

O Make the numerator (A) as large as possible — that’s upper bounding A.

O Make the denominator (B) as small as possible — that’s lower bounding B.
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.I..’ Caution

e To make a fraction as large as possible, you should:
3. Make the numerator (A) as large as possible — that’s upper bounding A.
b. Make the denominator (B) as small as possible — that’s lower bounding B.

If A=3x+2 and B=x+1 and you know that 1=x<4

PWhat is the best upper bound for A/B?
C: 7

=i) D: 14
L

B ————T
e

A: 6
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Asymptotic Notation
Practicalities



In this part...

e Other ways asymptotic notation is used.

e Asymptotic notation slip ups.

e Downsides of asymptotic notation.
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Not Just for Time Complexity!

e \We most often see asymptotic notation used to express
time complexity.

e But it can be used to express any type of growth!
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II.__.
= Example: Combinatorics

e Recall: (g) is number of ways of choosing k things from a set of .

e How fast do-es this grow with n? For fixed k:

p ¢)-ee

I e Example: the number of ways of choosing 3 things out of n is ©(rn> ).
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Example: Central Limit Theorem

e Recall (DSC10): the CLT says that the sample mean has a
normal distribution with standard deviation apop/w/n

e The error in the sample mean is: O(1/vn)

T ————
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Common Slip-ups

e Asymptotic notation can be used improperly.
o Might be technically correct, but defeats the purpose.

e Don’t do these in, e.q., interviews!
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Slip-up #1

e Don’t include constants, lower-order terms in the notation.
e Bad: 3n’+2n+5=0(3n?).
e Good: 3n?+2n+5=0(n).

e Itisn't wrong to do so, just defeats the purpose.
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Slip-up #2

_ A
I
Al

e Don’tinclude base in logarithm.
e Bad: O(log, n)
e Good: O(log n)

e Why?log,n=c log,n=clog,n= ..

C

IIIIIIIII%HE%FII
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1 N O
=I..) Slip-up #3

- e Don’t misinterpret meaning of O(-).

o fln)= ) does not mean that there are constants so

3 2
= + + +
that ﬂn =cn” +c,n cn+cy .

o
< =8

B ————T
e




Slip-up #4

e Time complexity is not a complete measure of efficiency.

e O(n) is not always “better” than O(n? ).
e Why?
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Slip-up #4

e Why? Asymptotic notation “hides the constants”.
e T, (n)=1,000,000n =0O(n)
o T, (n)= 0.00001n? = O(n?)

e ButT, (n)is worse for all but really large n.
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Main Idea

TIme Complexity is not the only way to measure efficiency,
and it can be misleading.

Sometimes even a ©(2" ) algorithm is better than a O(n)
algorithm, if the data size is small.
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---------------------------

Thank you!
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