DSC 40B Lecture 4: Big-Theta, Big-Oh and Omega, Formalized

Plan for the lecture

- Formally define Θ , O, Ω notation.
- Some useful properties.

Formally define Θ , O, Ω notations

So Far

- Time Complexity Analysis: a picture of how an algorithm **scales**.
- Can use Θ -notation to express time complexity.
- Allows us to **ignore** details in a rigorous way:
 - Saves us work!
 - Out what exactly can we ignore?

Theta Notation, Informally

• $\Theta(\cdot)$ **forgets** constant factors, lower-order terms.

$$5n^3 + 3n^2 + 42 = \Theta(n^3)$$

Theta Notation, Informally

• $f(n) = \Theta(g(n))$ if f(n) "grows like" g(n).

$$5n^3 + 3n^2 + 42 = \Theta(n^3)$$

We write $f(n) = \Theta(g(n))$ if there are **positive** constants N, c_1 and c_2 such that for all $n \ge N$:

$$c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$$

We write $f(n) = \Theta(g(n))$ if there are **positive** constants N, c_1 and c_2 such that for all $n \ge N$:

$$c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$$

$$c_2 \cdot g(n)$$

$$c_1 \cdot g(n)$$

We write $f(n) = \Theta(g(n))$ if there are **positive** constants N, c_1 and c_2 such that for all $n \ge N$:

$$c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$$

$$c_2 \cdot g(n)$$

$$c_1 \cdot g(n)$$

We write $f(n) = \Theta(g(n))$ if there are **positive** constants N, c_1 and c_2 such that for all $n \ge N$:

$$c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$$

Main Idea

If $f(n) = \Theta(g(n))$, then when **n** is large f is "sandwiched" between copies of g.

Proving Big-Theta

• We can prove that $f(n) = \Theta(g(n))$ by finding these constants.

$$c_1 g(n) \leq f(n) \leq c_2 g(n)$$
 $(n \geq N)$

Requires a lower bound and an upper bound.

Strategy: Chains of Inequalities

• To show $f(n) \le c_2 g(n)$, we show:

```
f(n) \leq (something) \leq (another thing) \leq ... \leq c_2 g(n)
```

- At each step:
 - We can do anything to make value larger.
 - \circ But the goal is to simplify it to look like g(n).

Example

- Show that $4n^3 5n^2 + 50 = \Theta(n^3)$
- Find constants c_1 , c_2 , N such that for all n > N:

$$c_1 n^3 \le 4n^3 - 5n^2 + 50 \le c_2 n^3$$

• They don't have to be the "best" constants! Many solutions!

Example

$$c_1 n^3 \le 4n^3 - 5n^2 + 50 \le c_2 n^3$$

- We want to make $4n^3 5n^2 + 50$ "look like" cn^3 .
- For the upper bound, can do anything that makes the function **larger**.
- For the lower bound, can do anything that makes the function **smaller**.

Example (n is a positive integer)

$$c_1 n^3 \le 4n^3 - 5n^2 + 50 \le c_2 n^3$$

• Upper bound:

$$4n^3 - 5n^2 + 50 \le 4n^3 + 50 \le 4n^3 + 50n^3 = 54n^3$$

Upper-Bounding Tips

• "Promote" lower-order **positive** terms:

$$3n^3 + 5n \le 3n^3 + 5n^3$$

• "Drop" **negative** terms:

$$3n^3 - 5n \le 3n^3$$

Example

$$c_1 n^3 \le 4n^3 - 5n^2 + 50 \le c_2 n^3$$

• Lower bound:

$$4n^3 - 5n^2 + 50 \ge 4n^3 - 5n^2$$

$$\geq 3n^3 + (n^3 - 5n^2) \geq 3n^3 \quad (n > = 5)$$

True WHEN
$$(n^3 - 5n^2) >= 0 => n>= 5$$

• "Drop" lower-order **positive** terms:

$$3n^3 + 5n \ge 3n^3$$

• "Promote and cancel" **negative** lower-order terms if possible:

$$4n^3 - 2n \ge 4n^3 - 2n^3 = 2n^3$$

$$4n^3 - 10n^2 = (3n^3 + n^3) - 10n^2$$

$$4n^3 - 10n^2 = (3n^3 + n^3) - 10n^2 = 3n^3 + (n^3 - 10n^2)$$

$$4n^3 - 10n^2 = (3n^3 + n^3) - 10n^2 = 3n^3 + (n^3 - 10n^2)$$

$$n^{3} - 10n^{2} \ge 0$$
 when

$$4n^3 - 10n^2 = (3n^3 + n^3) - 10n^2 = 3n^3 + (n^3 - 10n^2)$$

$$n^{3} - 10n^{2} \ge 0$$
 when $n^{3} \ge 10n^{2} \implies n \ge 10$:

$$4n^3 - 10n^2 = (3n^3 + n^3) - 10n^2 = 3n^3 + (n^3 - 10n^2)$$

$$n^{3} - 10n^{2} \ge 0$$
 when $n^{3} \ge 10n^{2} \implies n \ge 10$:

$$\geq 3n^3 + 0 (n \geq 10)$$

Example

$$c_1 n^3 \le 4n^3 - 5n^2 + 50 \le c_2 n^3$$

- We want to make $4n^3 5n^2 + 50$ "look like" cn^3 .
- For the upper bound, can do anything that makes the function **larger**.
- For the lower bound, can do anything that makes the function **smaller**.

Example

$$3n^3 \le 4n^3 - 5n^2 + 50 \le 54 n^3 \text{ (n >= 5)} \text{ (N is 5)}$$

- We want to make $4n^3 5n^2 + 50$ "look like" cn^3 .
- For the upper bound, can do anything that makes the function larger.
- For the lower bound, can do anything that makes the function smaller.

$$n^2 <= 2n^2 - n <= 2n^2 + n \sin 3n <= 2n^2 + n <= 3n^2$$

Exercise

True or False: $2n^2 + n \sin 3n = \Theta(n^2)$.

A: True

B: False

C: Impossible to determine

Exercise

True or False: $f(n) = \Theta(n^2)$

Let

$$f(n) = \begin{cases} n^2 & \text{if } n \text{ is even} \\ 5 & \text{if } n \text{ is odd.} \end{cases}$$

A: True

B: False

C: Impossible to determine

Other Bounds

- $f = \Theta(g)$ means that f is both **upper** and **lower** bounded by factors of g.
- Sometimes we only have (or care about) upper bound or lower bound.
- We have notation for that, too.

Big-O Notation, Informally

- Sometimes we only care about upper bound.
- f(n) = O(g(n)) if f "grows at most as fast" as g.
- Examples:

$$\circ$$
 4 $n^2 = O(n^{100})$

$$\circ$$
 4 $n^2 = O(n^3)$

$$\circ$$
 4n² = $O(n^2)$ and 4n² = $\Theta(n^2)$

Formal Definition

• We write f(n) = O(g(n)) if there are positive constants N and c such that for all $n \ge N$:

$$f(n) \leq \boldsymbol{c} \cdot g(n)$$

Big-Omega Notation, Informally

- Sometimes we only care about lower bound.
- $f(n) = \Omega(g(n))$ if f "grows at least as fast" as g.
- Examples:

$$\circ$$
 4 $n^{100} = \Omega(n^5)$

$$\circ$$
 $4n^2 = \Omega(n)$

$$\circ$$
 $4n^2 = \Omega(n^2)$ and $4n^2 = \Theta(n^2)$

Formal Definition

• We write $f(n) = \Omega(g(n))$ if there are positive constants N and c such that for all $n \ge N$:

$$c \cdot g(n) \leq f(n)$$

FUN FACT

"Omega" in Greek literally means: big O. So translated, "Big-Omega" means "big big O".

Theta, Big-O, and Big-Omega

- If $f = \Theta(g)$ then f = O(g) and $f = \Omega(g)$.
- If f = O(g) and $f = \Omega(g)$ then $f = \Theta(g)$.
- Pictorially:
 - \circ $\Theta \Rightarrow (O \text{ and } \Omega)$
 - \circ (O and Ω) $\Rightarrow \Theta$

Analogies

- Θ is kind of like =
- O is kind of like ≤ (at most)
- Ω is kind of like \geq (at least)

Practice: true/false

Let

$$f(n) = \begin{cases} n^2 & \text{if } n \text{ is even} \\ 5 & \text{if } n \text{ is odd.} \end{cases}$$

• True or False: $f(n) = O(n^2)$.

• True or False: $f(n) = \Omega(n^2)$.

• True or False: $f(n) = \Omega(1)$.

A: True

B: False

Why?

mic

- Laziness.
- Sometimes finding an upper or lower bound would take too much work, and/or we don't really care about it anyways.

Big-Oh

 Often used when another part of the code would dominate time complexity anyways.

Exercise: what is the complexity?

```
def foo(n):
    for a in range(n**4):
        print(a)

    for i in range(n):
        for j in range(i**2):
            print(i + j)
```

Exercise: what is the complexity?

```
def foo(n):
    for a in range(n**4):
        print(a)

    for i in range(n):
        for j in range(i**2):
            print(i + j)
```

Exercise: what is the complexity?

```
def foo(n):
    for a in range(n**4):
        print(a)

    for i in range(n):
        for j in range(i**2):
            print(i + j)
```


Big-Omega

• Often used when the time complexity will be **so large** that we don't care what it is, exactly.

```
best_separation = float('inf')
best_clustering = None

for clustering in all_clusterings(data):
    sep = calculate_separation(clustering)
    if sep < best_separation:
        best_separation = sep
        best_clustering = clustering

print(best_clustering)</pre>
```

```
best_separation = float('inf')
best_clustering = None

for clustering in all_clusterings(data):
    sep = calculate_separation(clustering)
    if sep < best_separation:
        best_separation = sep
        best_clustering = clustering

print(best_clustering)</pre>
```

We have 2ⁿ pairs

```
best_separation = float('inf')
best_clustering = None

We have 2<sup>n</sup> pairs

for clustering in all_clusterings(data):
    sep = calculate_separation(clustering)
    if sep < best_separation:
        best_separation = sep
        best_clustering = clustering

print(best_clustering)
```

```
best_separation = float('inf')
best clustering = None
                                              We have 2<sup>n</sup> pairs
for clustering in all_clusterings(data):
    sep = calculate_separation(clustering)
    if sep < best_separation:</pre>
        best_separation = sep
                                                Θ(?)
        best_clustering = clustering
print(best_clustering)
```

```
best_separation = float('inf')
best clustering = None
                                               We have 2<sup>n</sup> pairs
for clustering in all_clusterings(data):
    sep = calculate_separation(clustering)
    if sep < best_separation:</pre>
         best_separation = sep
                                                 Θ(?)
         best_clustering = clustering
print(best_clustering)
                                       T(n) = \Omega(2^n)
```

Other Notations

- f(n) = o(g(n)) if f grows "much slower" than g.
 - Whatever c you choose, eventually f < cg(n).
 - \circ Example: $n^2 = o(n^3)$

Other Notations

- f(n) = o(g(n)) if f grows "much slower" than g.
 - Whatever c you choose, eventually f < cg(n).
 - \circ Example: $n^2 = o(n^3)$

- $f(n) = \omega(g(n))$ if f grows "much faster" than g
 - Whatever c you choose, eventually f > cg(n).
 - \circ Example: $n^3 = \omega(n^2)$

Other Notations

- f(n) = o(g(n)) if f grows "much slower" than g.
 - Whatever c you choose, eventually f < cg(n).
 - Example: $n^2 = o(n^3)$
- $f(n) = \omega(g(n))$ if f grows "much faster" than g
 - Whatever c you choose, eventually f > cg(n).
 - \circ Example: $n^3 = \omega(n^2)$
 - We won't really use these.

Properties

- We don't usually go back to the definition when using Θ .
- Instead, we use a few basic *properties*.

Properties of Θ

- Symmetry: If $f = \Theta(g)$, then $g = \Theta(f)$.
- Transitivity: If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.
- Reflexivity: $f = \Theta(f)$

Practice: T/F

- If f = O(g) and g = O(h), then f = O(h).
- If $f = \Omega(h)$ and $g = \Omega(h)$, then $f = \Omega(g)$.
- If $f_1 = \Theta(g_1)$ and $f_2 = O(g_2)$, then $f_1 + f_2 = \Theta(g_1 + g_2)$.
- If $f_1 = \Theta(g_1)$ and $f_2 = \Theta(g_2)$, then $f_1 \times f_2 = \Theta(g_1 \times g_2)$.

A: F, F, F, T

B: F, T, F, F

C: T, F, F, T

D: T, T, T, T

E: None of the above

Practice: T/F

- If f = O(g) and g = O(h), then f = O(h).
- If $f = \Omega(h)$ and $g = \Omega(h)$, then $f = \Omega(g)$.
- If $f_1 = \Theta(g_1)$ and $f_2 = O(g_2)$, then $f_1 + f_2 = \Theta(g_1 + g_2)$.
- If $f_1 = \Theta(g_1)$ and $f_2 = \Theta(g_2)$, then $f_1 \times f_2 = \Theta(g_1 \times g_2)$.

A: F, F, F, T

B: F, T, F, F

C: T, F, F, T

D: T, T, T, T

E: None of the above

Proving/Disproving Properties

- Start by trying to **disprove**.
- Easiest way: find a counterexample.
- **Example**: If $f = \Omega(h)$ and $g = \Omega(h)$, then $f = \Omega(g)$.
 - \circ False! Let $f = n^3$, $g = n^5$, and $h = n^2$.

Proving the Property

- If you can't disprove, maybe it is true.
- Example:
 - \circ Suppose $f_1 = O(g_1)$ and $f_2 = O(g_2)$.
 - \circ Prove that $f_1 \times f_2 = O(g_1 \times g_2)$.

Step 1: State the assumption

- We know that $f_1 = O(g_1)$ and $f_2 = O(g_2)$.
- So there are constants c_1 , c_2 , N_1 , N_2 so that for all $n \ge N_1$ and $n \ge N_2$:

$$f_1(n) \le c_1 g_1(n) \qquad (n \ge N_1)$$

$$f_2(n) \le c_2 g_2(n) \qquad (n \ge N_2)$$

Use the assumption

Prove that $f_1 \times f_2 = O(g_1 \times g_2)$.

- Chain of inequalities, starting with $f_1 \times f_2$, ending with $\leq c g_1 \times g_2$.
- Using the following piece of information:

$$f_1(n) \le c_1 g_1(n) \quad (n \ge N_1)$$

$$f_2(n) \le c_2 g_2(n) \qquad (n \ge N_2)$$

- Chain of inequalities, starting with $f_1 \times f_2$, ending with $\leq c g_1 \times g_2$.
- Using the following piece of information:

$$f_1(n) \le c_1 g_1(n) \qquad (n \ge N_1)$$

$$f_2(n) \le c_2 g_2(n) \quad (n \ge N_2)$$

$$f_1(n) \times f_2(n) \leq \dots \leq c g_1 \times g_2$$

- Chain of inequalities, starting with $f_1 \times f_2$, ending with $\leq c g_1 \times g_2$.
- Using the following piece of information:

$$f_1(n) \le c_1 g_1(n) \qquad (n \ge N_1)$$

$$f_2(n) \le c_2 g_2(n) \quad (n \ge N_2)$$

$$f_1(n) \times f_2(n) \le c_1 g_1(n) \times f_2(n) \qquad (n \ge N_1)$$

- Chain of inequalities, starting with $f_1 \times f_2$, ending with $\leq c g_1 \times g_2$.
- Using the following piece of information:

$$f_1(n) \le c_1 g_1(n) \qquad (n \ge N_1)$$

$$f_2(n) \le c_2 g_2(n) \quad (n \ge N_2)$$

$$f_1(n) \times f_2(n) \le c_1 g_1(n) \times f_2(n)$$
 $(n \ge N_1)$

$$\leq c_1 g_1(n) \times c_2 g_2(n)$$
 $(n \geq N_1)$ and $(n \geq N_2)$

- Chain of inequalities, starting with $f_1 \times f_2$, ending with $\leq c g_1 \times g_2$.
- Using the following piece of information:

$$f_1(n) \le c_1 g_1(n) \qquad (n \ge N_1)$$

$$f_2(n) \le c_2 g_2(n) \quad (n \ge N_2)$$

$$f_1(n) \times f_2(n) \le c_1 g_1(n) \times f_2(n)$$
 $(n \ge N_1)$

$$\leq c_1 g_1(n) \times c_2 g_2(n)$$
 $(n \geq N_1)$ and $(n \geq N_2)$

$$\leq c g_1(n) \times g_2(n)$$
 $(n \geq \max(N_1, N_2)) \text{ and } c = c_1 \cdot c_2$

Analyzing Code

- The properties of Θ (and O and Ω) are useful when analyzing code.
- We can analyze pieces, put together the results.

Sums of Theta

- Property: If $f_1 = \Theta(g_1)$ and $f_2 = \Theta(g_2)$, then $f_1 + f_2 = \Theta(g_1 + g_2)$
- Used when analyzing sequential code.

Example

- Say bar takes $\Theta(n^3)$,
- baz takes $\Theta(n^4)$.
- foo takes $\Theta(n^4 + n^3) = \Theta(n^4)$.
- baz is the **bottleneck**.

Products of Theta

• Property: If $f_1 = \Theta(g_1)$ and $f_2 = \Theta(g_2)$, then

$$f_1 \cdot f_2 = \Theta(g_1 \cdot g_2)$$

• Useful when analyzing **nested loops.**

Example

```
def foo(n):
    for i in range(3*n + 4, 5n**2 - 2*n + 5):
        for j in range(500*n, n**3):
            print(i, j)
```

Example

```
def foo(n):
    for i in range(3*n + 4, 5n**2 - 2*n + 5):
        for j in range(500*n, n**3):
            print(i, j)
```

 $A: \Theta(n^5)$

B: $\Theta(n^2)$

C: $\Theta(n^4)$

D: $\Theta(n^3)$

E: Something else

Careful!

If inner loop index **depends** on outer loop, you have to be more careful.

```
def foo(n):
    for i in range(n):
        for j in range(i):
            print(i, j)
```


Caution

- To upper bound a fraction A/B, you must:
 - \circ Upper bound the numerator, A.
 - Lower bound the denominator, B.
- And to lower bound a fraction A/B, you must:
 - \circ Lower bound the numerator, A.
 - \circ Upper bound the denominator, B.

Caution

- To upper bound a fraction A/B, you must:
 - \circ Upper bound the numerator, A.
 - \circ Lower bound the denominator, B.
- Example:
 - O What is larger? % or %?
 - % since numerator is larger (4 > 3)
 - What is larger? 4/3 or %?
 - \blacksquare 4/3 since the denominator is smaller (3 < 4)

Caution

- To upper bound a fraction A/B, you must:
 - \circ Upper bound the numerator, A.
 - Lower bound the denominator, B.
- To make a fraction as large as possible, you should:
 - \circ Make the **numerator (A)** as **large as possible** \rightarrow that's upper bounding A.
 - \circ Make the **denominator (B)** as **small as possible** \rightarrow that's lower bounding B.

- To make a fraction **as large as possible**, you should:
 - a. Make the **numerator (A)** as **large as possible** \rightarrow that's upper bounding A.
 - b. Make the **denominator (B)** as **small as possible** \rightarrow that's lower bounding B.
- If A=3x+2 and B=x+1 and you know that $1 \le x \le 4$

What is the best upper bound for A/B?

B: 5/4

A: 6

C: 7

D: 14

Asymptotic Notation Practicalities

In this part...

- Other ways asymptotic notation is used.
- Asymptotic notation slip ups.
- Downsides of asymptotic notation.

Not Just for Time Complexity!

- We most often see asymptotic notation used to express time complexity.
- But it can be used to express any type of growth!

Example: Combinatorics

- Recall: $\binom{n}{k}$ is number of ways of choosing k things from a set of n.
- How fast does this grow with n? For fixed k:

$$\binom{n}{k} = \Theta(n^k)$$

• **Example**: the number of ways of choosing 3 things out of n is $\Theta(n^3)$.

Example: Central Limit Theorem

- Recall (DSC10): the CLT says that the sample mean has a normal distribution with standard deviation $\sigma_{\rm pop}/\surd n$
- The **error** in the sample mean is: $O(1/\sqrt{n})$

Common Slip-ups

- Asymptotic notation can be used **improperly**.
 - Might be technically correct, but defeats the purpose.
- Don't do these in, e.g., interviews!

- Don't include constants, lower-order terms in the notation.
- Bad: $3n^2 + 2n + 5 = \Theta(3n^2)$.
- Good: $3n^2 + 2n + 5 = \Theta(n^2)$.
- It isn't wrong to do so, just defeats the purpose.

- Don't include base in logarithm.
- Bad: $\Theta(\log_2 n)$
- **Good**: Θ(log *n*)
- Why? $\log_2 n = c \cdot \log_3 n = c' \log_4 n = ...$

- Don't misinterpret meaning of $\Theta(\cdot)$.
- $f(n) = \Theta(n^3)$ does **not** mean that there are constants so that $f(n) = c_3 n^3 + c_2 n^2 + c_1 n + c_0$.

- Time complexity is not a **complete** measure of efficiency.
- $\Theta(n)$ is not always "better" than $\Theta(n^2)$.
- Why?

- Why? Asymptotic notation "hides the constants".
- $T_1(n) = 1,000,000n = \Theta(n)$
- $T_2(n) = 0.00001n^2 = \Theta(n^2)$
- But T_1 (n) is worse for all but really large n.

Main Idea

- Time Complexity is **not** the only way to measure efficiency, and it can be misleading.
- Sometimes even a $\Theta(2^n)$ algorithm is better than a $\Theta(n)$ algorithm, if the data size is small.

Thank you!

Do you have any questions?

CampusWire!