DSC 408
Lecture 4 :
Big- Theta, Big-Oh
and Omega,
I-—' Formalized

©
Il: _
C
-

!lllllllllllllllllllll==ll

T ————
..............................

T ———
..............................

93333390

e Formally define ©, O, Q notation.

e Some useful properties.

Plan for the lecture

93322290

Formally define ©, O, Q
notations
Tt rrrrrrrrrrrrrrrrrrrrrrrrr

So Far

e Time Complexity Analysis: a picture of how an algorithm scales.

e (Can use O-notation to express time complexity.
e Allows us to ignore details in a rigorous way:
o Saves us work!

o But what exactly can we ignore?

199999949

T ————
.............................

93333390

O(n?)

O(-) forgets constant factors, lower-order terms.
S5n3 + 3n? + 42

Theta Notation, Informally

93333390

O(g(n)) if fln) “grows like” g(n).

5n3 + 3n% + 42 = Q(n3)

Theta Notation, Informally

o f(n)

==llllllllllllllllllllllll=l=
.-

=I..) Definition

We write fin) = ©O(g(n)) if there are positive constants N,
¢, and ¢, such that for all n 2 N:

o
< =8

L —————
e

==llllllllllllllllllllllll=l=
.-

=I..) Definition

We write fin) = ©O(g(n)) if there are positive constants N,
¢, and ¢, such that for all n 2 N:

o
< =8

L —————
e

==llllllllllllllllllllllll=l=
.-

=I..) Definition

We write fin) = ©O(g(n)) if there are positive constants N,
¢, and ¢, such that for all n 2 N:

o
< =8

L —————
e

==llllllllllllllllllllllll=l=
.-

=I..) Definition

‘We write fln) = O(g(n)) if there are positive constants N,
¢, and ¢, such that for all n 2 N:

o
< =8

L —————
e

I lllllllllllllllllllllll=l=
.-

.I,_) Main Idea

If f(n) = (n)), then when n is large fis "sandwiched” between
copies of g.

o
< =8

B ————T
e

lllIllllllllllllllllll=l=
.-

Proving Big-Theta

e We can prove that fln) = ©(g(n)) by finding these constants.

c, g(n) = fln) = c, g(n) (n = N)

e Requires a lower bound and an upper bound.

11113999

T ————
.............................

Strategy: Chains of Inequalities

e To show f(n) =< c,g(n), we show:
fAln) = (something) = (another thing) = ... < c, g(n)

e At each step:
o We can do anything to make value larger.
o But the goal is to simplify it to look like g(n).

11113999

T ————
.............................

!lllllllllllllllllllllll=l=
.-

Example

Show that 4n° - 51#% + 50 = O)
Find constants c,.¢c,, N such that for all n > N:
c,n®=4n®-5n% + 50 = ¢, n’

They don’t have to be the “best” constants! Many solutions!

"l'f‘l'f"f'!"!."!'

T ————
.............................

I lllllllllllllllllllllll=ll

B
. =
I"‘. Example

cn3 < 43 - 5p2 + 50 Sc2n3

We want to make 4n3 - 512 + 50 “look like” cn?> .

For the upper bound, can do anything that makes the
function larger.

.P For the lower bound, can do anything that makes the

function smaller.
= o

B ————T
.............................

==llllllllllllllllllllllll=ll

II.__.
B Example (n is a positive integer)

c1n3s4n3—5n2+505c2n3

e Upper bound:
4n® - 5n% + 50 < 4n3+ 50 = 4n° + 50n® = 54n3

o
< =8

B ————T
e

Upper-Bounding Tips

e "Promote” lower-order positive terms:
3n® + 5n < 3n> + 5p°
e "Drop” negative terms:

3n3 - 5n < 30

SN

T ————
.............................

ll lllllllllllllllllllllll=ll

.I"‘. Example

.t cn3<4n 5n2+50302n3

. e |ower bound:
. 4n> - 5n% + 50 2 4n3 - 5n°
>3p3 +(n3-5n%) 231 (n >=5)

True WHEN (n® - 5n?) >=0 => n>=5

T ————
e

Lower-Bounding Tips

e "Drop” lower-order positive terms:
3n® + 5n 2 3n°
e “Promote and cancel” negative lower-order terms if possible:

4n® - 2n = 4n3 - 2n3 = 213

11113999

T ————
.............................

==llllllllllllllllllllllll=ll

.I.__.
B Lower-Bounding Tips

~ e "Cancel” negative lower-order terms with big constants by
“breaking off” a piece of high term.

4n3 - 10n° = (3n® + n®) - 10n?
.I
= L

B ————T
.............................

==llllllllllllllllllllllll=ll

.I.__.
B Lower-Bounding Tips

~ e "Cancel” negative lower-order terms with big constants by
“breaking off” a piece of high term.

4nc - 10n% = 3n® +n3) - 10n? = 3n3 + (0 - 10n?)

B ————T
.............................

==llllllllllllllllllllllll=ll

.I.__.
B Lower-Bounding Tips

~ e "Cancel” negative lower-order terms with big constants by
“breaking off” a piece of high term.

4nc - 10n% = 3n® +n3) - 10n? = 3n3 + (0 - 10n?)

n3-10n? =2 O when
.I
= L

B ————T
.............................

.I)
B Lower-Bounding Tips

~ e "Cancel” negative lower-order terms with big constants by
“breaking off” a piece of high term.

4nc - 10n% = 3n® +n3) - 10n? = 3n3 + (0 - 10n?)

n3-10n?=z0whenn?3z10n’=n=10:

B ————T
.............................

HEE ..
B,

.I)
B Lower-Bounding Tips

~ e "Cancel” negative lower-order terms with big constants by
“breaking off” a piece of high term.

4nc - 10n% = 3n® +n3) - 10n? = 3n3 + (0 - 10n?)

n3-10n?=z0whenn?3z10n’=n=10:

.P >3p3+ 0 (n=10)

B ————T
.............................

HEE ..
B,

I lllllllllllllllllllllll=ll

1 N O O N
. =
I"‘. Example

c1n3 < 4p3 - 502 + 50 < c,n 3

3

We want to make 4n3 - 5n% + 50 “look like” cn

For the upper bound, can do anything that makes the
function larger.

.P For the lower bound, can do anything that makes the

function smaller.
= o

B ————T
.............................

I lllllllllllllllllllllll=ll

B
. =
I"‘. Example

3n<4n>-50°+50<54n°>(n>=5) (Nis 5)

e We want to make 4n3 - 512 + 50 “look like” cn?.

e For the upper bound, can do anything that makes the
function larger.

.P e For the lower bound, can do anything that makes the

function smaller.
= o

B ————T
.............................

..............................
(]
=I.’ n? <=2n%-n<=2n’+nsin3n <= 2n* + n <= 3n? -.=
= Exercise B
B ' B
= True or False: 2n? + nsin3n = O(n?). =
B B
. A: True .
=P B: False =
.p C: Impossible to determine .
¥ -
= B

T
-ttt

Exercise

True or False: fin) = O(n?)

Let A: True
n? if nis even

f(n) = {5 if n iS odd. B: False

C: Impossible to
determine

11113999

T ————
.............................

=l

Big-Oh (Big-0) and
Big-Omega
T T 1T Tt Tt rrr T TP T TP i rrr i1

-

CEEREREREY

Other Bounds

e f=0(g) means that fis both upper and lower bounded by
factors of g.

Sometimes we only have (or care about) upper bound or lower
bound.

We have notation for that, too.

CCCCCCCee

T ————
.............................

==llllllllllllllllllllllll=ll

=I-—' Big-0 Notation, Informally

-~ e Sometimes we only care about upper bound.

e f(n) = O(g(n)) if f"grows at most as fast” as g.
e Examples:

o 4n? = 0(n'°)
.I". o 4 = O)
o 4n? = 0n?) and 4n° = O(r°)

B ————T
.............................

==llllllllllllllllllllllll=l=
.-

0
N Formal Definition

e We write filn) = O(g(n)) if there are positive constants N and ¢
such that for all n 2 N:

o
< =8

e ————————
e

Big-Omega Notation, Informally

e Sometimes we only care about lower bound.

e f(n) = Qg(n)) if f"grows at least as fast” as g.
e Examples:

o 4n'%° = Q(n>)

o 4n? = Q(n)

o 4n? = Q(n?) and 47° = O(n?)

11113999

T ————
.............................

==llllllllllllllllllllllll=l=
.-

=I..) Formal Definition

e We write fln) = Q(g(n)) if there are positive constants N and ¢
such that for all n 2 N:

< f(n)

o
< =8

B ————T
e

FUN FACT

“Omega” in Greek literally means: big O.

So translated, “Big-Omega” means “big big O”.

11113999

T ————
.............................

==llllllllllllllllllllllll=ll

II.__,
= Theta, Big-0, and Big-Omega

e Iff=0(g) thenf= 0(g) and f = Q(g).

o Iff=0(g)andf=Q(g) thenf=0(g)
Pictorially:
o 0O = (0andQ)

.P o (0andQ)=0
= o

B ————T
.............................

=l

O is kind of like = (at most)
Q is kind of like = (at least)

© is kind of like

CEEREREREY

==llllllllllllllllllllllll=ll

N
.I"‘. Practice: true/false

B
= f(n) = {n’- if n is even

L |5 ifnis odd.
0
. e True or False: fln) = O(n?).

EIF, L

B ————T
e

e True or False: fin) = Q(n?).

e True or False: fln) = Q(1).

§
<
‘N

® |aziness.

e Sometimes finding an upper or lower bound would take
too much work, and/or we don’t really care about it
anyways.

11113999

T ————
.............................

e -
| 4 L
.I.__. L
n L
N Big-Oh B
., -
= e Often used when another part of the code would =
.t dominate time complexity anyways. .
n L
O B
O -
O N
= L

T —————
-ttt

!llllllllllllllllllllll=l=
.-

Exercise: what is the complexity?

def foo(n):
for a in range(nx=x4):
print(a)

for i in range(n):
for j in range(ix*=*2):
print(i + j)

"l'f'!.'f"f'!"!."!'

T ————
.............................

!llllllllllllllllllllll=l=
.-

Exercise: what is the complexity?

def foo(n):

for a in range(nx=x4): .
print(a) ©(n")

for i in range(n):
for j in range(ix*=*2):
print(i + j)

"l'f'!.'f"f'!"!."!'

T ————
.............................

!llllllllllllllllllllll=l=
.-

Exercise: what is the complexity?

def foo(n):

for a in range(nx=x4): .
print(a) ©(n™)

for j in range(ix*=*2):

for i in range(n):
} O(n3)
print(i + j)

"l'f‘l'f"f'!"!."!'

T ————
.............................

Big-Omega

e Often used when the time complexity will be so large that
we don’t care what it is, exactly.

11113999

T ————
.............................

II,
B Example: Big-Omega

=I~—'

B W ————T
e

best_separation = float('inf"')
best_clustering = None

for clustering in all_clusterings(data):
sep = calculate_separation(clustering)
if sep < best_separation:
best_separation = sep
best_clustering = clustering

print(best_clustering)

HEE ..
B,

==llllllllllllllllllllllll=ll

II.__,
B Example: Big-Omega

=I~—'

B ————T
e

best_separation = float('inf"')
best_clustering = None We have 2" pairs

for clustering in all_clusterings(data):
sep = calculate_separation(clustering)
if sep < best_separation:
best_separation = sep
best_clustering = clustering

print(best_clustering)

==llllllllllllllllllllllll=ll

II.__,
B Example: Big-Omega

=I~—'

B ————T
e

best_separation = float('inf"')
best_clustering = None We have 2" pairs

for clustering in all_clusterings(data):
sep = calculate_separation(clustering)
if sep < best_separation:
best_separation = sep
best_clustering = clustering

print(best_clustering)

==llllllllllllllllllllllll=ll

II.__,
B Example: Big-Omega

=I~—'

B ————T
e

best_separation = float('inf')

best_clustering = None We have 2" pairs

for clustering in all_clusterings(data):
sep = calculate_separation(clustering)

if sep < best_separation:‘\\\\\\\\\\\\
best_separation = sep 0(?)

best_clustering = clustering

print(best_clustering)

==llllllllllllllllllllllll=ll

II.__,
B Example: Big-Omega

=I—'

B ————T
e

best_separation = float('inf')
best_clustering = None We have 2" pairs

for clustering in all_clusterings(data):
sep = calculate_separation(clustering)

if sep < best_separation:‘\\\\\\\\\\\\
best_separation = sep 0(?)

best_clustering = clustering

print(best_clustering)
T(n) = Q(27)

=lllllllllllllllllllllllll=l=
.-

Other Notations

e f(n) = ol(g(n)) if fgrows “much slower” than g.
o Whatever c you choose, eventually f < cg(n).
o Example: n? = o(n®)

'l' '!.'f"f'!"!."!"

= T —— T ———

v
| o |

.I'-’ Other Notations
t e f(n) = ol(g(n)) if fgrows “much slower” than g. .
O Whatever ¢ you choose, eventually f < cg(n). .

t o Example: n?=o(n®) =
. o

e f(n) = w(g(n)) if fgrows "much faster” than g
o Whatever ¢ you choose, eventually f > cg(n).

o
o Example: n3 = w(n?) =
o
o

T R ————
-ttt

IIIllIllllllllllllllllllllllll
(B
s :
= Other Notations

= L
. e f(n) = ol(g(n)) if fgrows “much slower” than g. .

. O Whatever ¢ you choose, eventually f < cg(n).

o
. o Example: n?=o(n®) .
o o
o . o

. e f(n) = w(g(n)) if fgrows "much faster” than g
P o Whatever ¢ you choose, eventually f > cg(n).

L
o Example: n3 = w(n?) =
L
L

EP e We won't really use these.

T ———
-ttt

Properties

T ———
..............................

Properties

e We don't usually go back to the definition when using ©.

e Instead, we use a few basic properties.

11113999

T ————
.............................

Properties of ©

e Symmetry: If = O(g), then g = O().

e Transitivity: If f = O(g) and g = O(h) then f = O(h
e Reflexivity: /= O(f)

11113999

T ————
.............................

=I..) Practice: T/F

o If f=0(g) and g = O(h), then f = O(h)
o If f=Q(h) and g = Q(h), then f = Q(g)

o Iff =0(g)andf, =0(g,) thenf +f =0(g +g,).
o Iff =0O(g)andf, =0l(g,) thenf xf =0(g xg,).

A: F,F,F, T
.P B: F, T,F, F

C: TFF,T

D: TTTT
=i.,. E: None of the above

HEE ..
B,

=I..) Practice: T/F

o If f=0(g) and g = O(h), then f = O(h)
o If f=Q(h) and g = Q(h), then f = Q(g)

o Iff =0(g)andf, =0(g,) thenf +f =0(g +g,).
o Iff =0O(g)andf, =0l(g,) thenf xf =0(g xg,).

A: F,F,F, T
.P B: F, T,F, F

C: TFF, T

D: TTTT
=i.,. E: None of the above

HEE ..
B,

Proving/Disproving Properties

e Start by trying to disprove.
e Easiest way: find a counterexample.
e Example: If f= Q(h) and g = Q(h), then f = Q(g).

o Falsel Letf=n?,g=n>,andh =n?.

11113999

T ————
.............................

Proving the Property

e If you can’t disprove, maybe it is true.
e Example:
o Suppose f, = O(g,) and f, = O(g,).
o Prove that f, x f, = O(g, x g,).

11113999

T ————
.............................

Step 1: State the assumption

e We know that f, = O(g,) and f, = O(g,).

e So there are constants ., Cy, N1, N2 so that for all n = N1 andn 2 NZ:
fin)=c g (n) (nzN)

fon)=c,g,(n) (nzN,)

S

T ————
.............................

=I-’ Use the assumption Prove that f T 0(81 82)

~ e Chain of inequalities, starting with f; x f, , ending with = c g, x g, .
e Using the following piece of information:
fi(n)sc g (n) (n=zN)

f,(n)sc,g,(n) (nzN,)
.I
= L

B ————T
.............................

=I-’ Use the assumption Prove that f T 0(81 82)

~ e Chain of inequalities, starting with f; x f, , ending with = c g, x g, .
e Using the following piece of information:
fi(n)sc g (nzN)

f,(n)<c,gm) (n=zN,)

. fi(m)xfo(n) < sl S cg xg,

2 o

B ————T
e

=I-’ Use the assumption Prove that f T 0(81 82)

~ e Chain of inequalities, starting with f; x f, , ending with = c g, x g, .
e Using the following piece of information:
fi(n)sc g (nzN)

f,n)sc,g,n) (nzN,)

. f1 sz =c g1 (n) sz (n = N1)

< =8

B ————T
e

=I-’ Use the assumption Prove that f " 0(81 82)

~ e Chain of inequalities, starting with f; x f, , ending with = c g, x g, .
e Using the following piece of information:
f(n)=c gln) (n=zN)

f,n)sc,g,(n) (nz=N,)

. [, (n) xf,(n) <c g (n) xf,(n) (nzN.)

<cg1 Xcgz)
= L

B ————T
.............................

h
=I-’ Use the assumption Prove that f " 0(81 82)

~ e Chain of inequalities, starting with f; x f, , ending with = c g, x g, .
e Using the following piece of information:
f(n)=c gln) (n=zN)

f,n)sc,g,(n) (nz=N,)

. fi () x 1, (n) = ¢ g, (n) Xf, (n (nzN)
<c g (n) x c,g,(n) (nzN,) and (nzN,)

=I-—' <cg, () x gyln) (n=max(N,, N)and e = ¢,.c,

B ————T
e

Analyzing Code

e The properties of © (and O and Q) are useful when analyzing
code.

e \We can analyze pieces, put together the results.

11111999

T ————
.............................

Sums of Theta

o Property: If f, = ©(g,) and f, = O(g,), then f, + f, = O(g,

e Used when analyzing sequential code.

1111119

T ————
.............................

Example

def foo(n): Say bar takes O(n>),
bar(n) baz takes O(n*).

baz(n) foo takes O(n* + n?) = On).

baz is the bottleneck.

11113999

T ————
.............................

Products of Theta

e Property: If f, = ©O(g,) and f, = O(g,), then
fi ;=01 g,)

e Useful when analyzing nested loops.

SN

T ————
.............................

B .
| 4 B
.I.__. B
B B
D Example L
B ' B
. def foo(n): .
. for i in range(3*n + 4, 5n**2 - 2%n + 5): .
. for j in range(500*n, n*%3): .
. print(i, j) .
B B
" =
¥ -
= B

T
-ttt

I lllllllllllllllllllllll=l=
.-

.I..) Example

def foo(n):
for i in range(3*n + 4, 5n**2 - 2%n + 5):
for j in range(500%*n, n*=*3):
print(i, j)

A: O(n°)
B: O(n?)

.
II" C: O(n%)
D: O(n3)
=P E: Something else
L

B ————T
e

ll lllllllllllllllllllllll=l=
.-

I-" Carefull

t If inner loop index depends on outer loop, you have to be more

careful.

def foo(n):
for 1 in range(n):
for j in range(i):

. print(i, j)

T ————
e

Caution

e To upper bound a fraction A/B, you must:

o Upper bound the numerator, A.
o Lower bound the denominator, B.

e And to lower bound a fraction A/B, you must:

o Lower bound the numerator, A.
o Upper bound the denominator, B.

11113999

T ————
.............................

.I..’ Caution

e To upper bound a fraction A/B, you must:

o Upper bound the numerator, A.
o Lower bound the denominator, B.
e Example:
o What is larger? % or % ?
m % since numerator is larger (4 > 3)

.P o What is larger? 4/3 or %?
m 4/3 since the denominator is smaller (3 < 4)

=I~—'

B W ————T
e

HEE ..
B,

I lllllllllllllllllllllll=l=
.-

.I..’ Caution

e To upper bound a fraction A/B, you must:
‘o Upper bound the numerator, A.
o Lower bound the denominator, B.

® To make a fraction as large as possible, you should:

o
< =8

B ————T
e

O Make the numerator (A) as large as possible — that’s upper bounding A.

O Make the denominator (B) as small as possible — that’s lower bounding B.

I lllllllllllllllllllllll=l=
.-

.I..’ Caution

e To make a fraction as large as possible, you should:
3. Make the numerator (A) as large as possible — that’s upper bounding A.
b. Make the denominator (B) as small as possible — that’s lower bounding B.

If A=3x+2 and B=x+1 and you know that 1=x<4

PWhat is the best upper bound for A/B?
C: 7

=i) D: 14
L

B ————T
e

A: 6

93322290

Asymptotic Notation
Practicalities

In this part...

e Other ways asymptotic notation is used.

e Asymptotic notation slip ups.

e Downsides of asymptotic notation.

11113999

T ————
.............................

Not Just for Time Complexity!

e \We most often see asymptotic notation used to express
time complexity.

e But it can be used to express any type of growth!

11113999

T ————
.............................

==llllllllllllllllllllllll=ll

II.__.
= Example: Combinatorics

e Recall: (g) is number of ways of choosing k things from a set of .

e How fast do-es this grow with n? For fixed k:

p ¢)-ee

I e Example: the number of ways of choosing 3 things out of n is ©(rn>).

T ————
.............................

ceeecece

Example: Central Limit Theorem

e Recall (DSC10): the CLT says that the sample mean has a
normal distribution with standard deviation apop/w/n

e The error in the sample mean is: O(1/vn)

T ————
.............................

Common Slip-ups

e Asymptotic notation can be used improperly.
o Might be technically correct, but defeats the purpose.

e Don’t do these in, e.q., interviews!

11113999

T ————
.............................

Slip-up #1

e Don’t include constants, lower-order terms in the notation.
e Bad: 3n’+2n+5=0(3n?).
e Good: 3n?+2n+5=0(n).

e Itisn't wrong to do so, just defeats the purpose.

11113999

T ————
.............................

Slip-up #2

_ A
I
Al

e Don’tinclude base in logarithm.
e Bad: O(log, n)
e Good: O(log n)

e Why?log,n=c log,n=clog,n= ..

C

IIIIIIIII%HE%FII

T ————
e

==llllllllllllllllllllllll=l=
.-

1 N O
=I..) Slip-up #3

- e Don’t misinterpret meaning of O(-).

o fln)=) does not mean that there are constants so

3 2
= + + +
that ﬂn =cn” +c,n cn+cy .

o
< =8

B ————T
e

Slip-up #4

e Time complexity is not a complete measure of efficiency.

e O(n) is not always “better” than O(n?).
e Why?

11113999

T ————
.............................

Slip-up #4

e Why? Asymptotic notation “hides the constants”.
e T, (n)=1,000,000n =0O(n)
o T, (n)= 0.00001n? = O(n?)

e ButT, (n)is worse for all but really large n.

11113999

T ————
.............................

Main Idea

TIme Complexity is not the only way to measure efficiency,
and it can be misleading.

Sometimes even a ©(2") algorithm is better than a O(n)
algorithm, if the data size is small.

11113999

T ————
.............................

Thank you!

.I CampusWire!
=l--

)

