
❖

DSC 40B
Lecture 4 :

Big- Theta, Big-Oh
and Omega,
Formalized

❖

Agenda

❖

Plan for the lecture

● Formally define Θ, 𝑂, Ω notation.
● Some useful properties.

❖

Formally define Θ, 𝑂, Ω
notations

❖

So Far

● Time Complexity Analysis: a picture of how an algorithm scales.

● Can use Θ-notation to express time complexity.

● Allows us to ignore details in a rigorous way:

○ Saves us work!

○ But what exactly can we ignore?

❖

Theta Notation, Informally

● Θ(⋅) forgets constant factors, lower-order terms.

 5𝑛3 + 3𝑛2 + 42 = Θ(𝑛3)

❖

Theta Notation, Informally

● 𝑓(𝑛) = Θ(𝑔(𝑛)) if 𝑓(𝑛) “grows like” 𝑔(𝑛).

5𝑛3 + 3𝑛2 + 42 = Θ(𝑛3)

❖

Definition
We write 𝑓(𝑛) = Θ(𝑔(𝑛)) if there are positive constants 𝑁,
𝑐1 and 𝑐2 such that for all 𝑛 ≥ 𝑁:

𝑐1 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 ⋅ 𝑔(𝑛)

❖

Definition
We write 𝑓(𝑛) = Θ(𝑔(𝑛)) if there are positive constants 𝑁,
𝑐1 and 𝑐2 such that for all 𝑛 ≥ 𝑁:

𝑐1 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 ⋅ 𝑔(𝑛)

𝑐2 ⋅ 𝑔(𝑛)

𝑐1 ⋅ 𝑔(𝑛)

❖

Definition
We write 𝑓(𝑛) = Θ(𝑔(𝑛)) if there are positive constants 𝑁,
𝑐1 and 𝑐2 such that for all 𝑛 ≥ 𝑁:

𝑐1 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 ⋅ 𝑔(𝑛)

𝑐2 ⋅ 𝑔(𝑛)

𝑐1 ⋅ 𝑔(𝑛)

𝑓(𝑛)

❖

Definition
We write 𝑓(𝑛) = Θ(𝑔(𝑛)) if there are positive constants 𝑁,
𝑐1 and 𝑐2 such that for all 𝑛 ≥ 𝑁:

𝑐1 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 ⋅ 𝑔(𝑛)

𝑐2 ⋅ 𝑔(𝑛)

𝑐1 ⋅ 𝑔(𝑛)

𝑓(𝑛)

𝑁

❖

Main Idea

If 𝑓(𝑛) = Θ(𝑔(𝑛)), then when 𝑛 is large 𝑓 is “sandwiched” between
copies of 𝑔.

❖

Proving Big-Theta

● We can prove that 𝑓(𝑛) = Θ(𝑔(𝑛)) by finding these constants.

 𝑐1 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 𝑔(𝑛) (𝑛 ≥ 𝑁)

● Requires a lower bound and an upper bound.

❖

Strategy: Chains of Inequalities

● To show 𝑓(𝑛) ≤ 𝑐2𝑔(𝑛), we show:

𝑓(𝑛) ≤ (something) ≤ (another thing) ≤ ... ≤ 𝑐2 𝑔(𝑛)

● At each step:
○ We can do anything to make value larger.
○ But the goal is to simplify it to look like 𝑔(𝑛).

❖

Example

● Show that 4𝑛3 - 5𝑛2 + 50 = Θ(𝑛3)

● Find constants 𝑐1 , 𝑐2 , 𝑁 such that for all 𝑛 > 𝑁:

𝑐1 𝑛
 3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2 𝑛

3

● They don’t have to be the “best” constants! Many solutions!

❖

Example

𝑐1𝑛
 3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛

3

● We want to make 4𝑛3 - 5𝑛2 + 50 “look like” 𝑐𝑛3 .

● For the upper bound, can do anything that makes the
function larger.

● For the lower bound, can do anything that makes the
function smaller.

❖

Example (n is a positive integer)

𝑐1 𝑛
 3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2 𝑛 3

● Upper bound:

4𝑛3 − 5𝑛2 + 50 ≤ 4𝑛3 + 50 ≤ 4𝑛3 + 50n3 = 54n3

❖

Upper-Bounding Tips

● “Promote” lower-order positive terms:

3𝑛3 + 5𝑛 ≤ 3𝑛3 + 5𝑛3

● “Drop” negative terms:

 3𝑛3 − 5𝑛 ≤ 3𝑛3

❖

Example

𝑐1𝑛
 3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛

3

● Lower bound:

4𝑛3 − 5𝑛2 + 50 ≥ 4𝑛3 − 5𝑛2

 ≥ 3𝑛3 + (n3 - 5n2) ≥ 3𝑛3 (n >=5)

True WHEN (n3 - 5n2) >=0 => n>=5

❖

Lower-Bounding Tips

● “Drop” lower-order positive terms:

3𝑛3 + 5𝑛 ≥ 3𝑛3

● “Promote and cancel” negative lower-order terms if possible:

4𝑛3 − 2𝑛 ≥ 4𝑛3 − 2𝑛3 = 2𝑛3

❖

Lower-Bounding Tips

● “Cancel” negative lower-order terms with big constants by
“breaking off” a piece of high term.

 4𝑛3 − 10𝑛2 = (3𝑛3 + 𝑛3) − 10𝑛2

❖

Lower-Bounding Tips

● “Cancel” negative lower-order terms with big constants by
“breaking off” a piece of high term.

 4𝑛3 − 10𝑛2 = (3𝑛3 + 𝑛3) − 10𝑛2 = 3𝑛3 + (𝑛3 − 10𝑛2)

❖

Lower-Bounding Tips

● “Cancel” negative lower-order terms with big constants by
“breaking off” a piece of high term.

 4𝑛3 − 10𝑛2 = (3𝑛3 + 𝑛3) − 10𝑛2 = 3𝑛3 + (𝑛3 − 10𝑛2)

𝑛 3 − 10𝑛2 ≥ 0 when

❖

Lower-Bounding Tips

● “Cancel” negative lower-order terms with big constants by
“breaking off” a piece of high term.

 4𝑛3 − 10𝑛2 = (3𝑛3 + 𝑛3) − 10𝑛2 = 3𝑛3 + (𝑛3 − 10𝑛2)

𝑛 3 − 10𝑛2 ≥ 0 when 𝑛 3 ≥ 10𝑛2 ⟹ 𝑛 ≥ 10:

❖

Lower-Bounding Tips

● “Cancel” negative lower-order terms with big constants by
“breaking off” a piece of high term.

 4𝑛3 − 10𝑛2 = (3𝑛3 + 𝑛3) − 10𝑛2 = 3𝑛3 + (𝑛3 − 10𝑛2)

𝑛 3 − 10𝑛2 ≥ 0 when 𝑛 3 ≥ 10𝑛2 ⟹ 𝑛 ≥ 10:

 ≥ 3𝑛3 + 0 (𝑛 ≥ 10)

❖

Example

𝑐1𝑛
 3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛

3

● We want to make 4𝑛3 - 5𝑛2 + 50 “look like” 𝑐𝑛3 .

● For the upper bound, can do anything that makes the
function larger.

● For the lower bound, can do anything that makes the
function smaller.

❖

Example

3𝑛 3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 54 𝑛 3 (n >= 5) (N is 5)

● We want to make 4𝑛3 - 5𝑛2 + 50 “look like” 𝑐𝑛3 .

● For the upper bound, can do anything that makes the
function larger.

● For the lower bound, can do anything that makes the
function smaller.

❖

Exercise

True or False: 2𝑛2 + 𝑛 sin3𝑛 = Θ(𝑛2).

A: True

B: False

C: Impossible to determine

n2 <= 2𝑛2 - n <= 2𝑛2 + 𝑛 sin3𝑛 <= 2𝑛2 + n <= 3n2

❖

Exercise

True or False: 𝑓(𝑛) = Θ(𝑛2)

A: True

B: False

C: Impossible to
determine

❖

Big-Oh (Big-O) and
Big-Omega

❖

Other Bounds

● 𝑓 = Θ(𝑔) means that 𝑓 is both upper and lower bounded by
factors of 𝑔.

● Sometimes we only have (or care about) upper bound or lower
bound.

● We have notation for that, too.

❖

Big-O Notation, Informally

● Sometimes we only care about upper bound.

● 𝑓(𝑛) = 𝑂(𝑔(𝑛)) if 𝑓 “grows at most as fast” as 𝑔.
● Examples:

○ 4𝑛2 = 𝑂(𝑛100)

○ 4𝑛2 = 𝑂(𝑛3)

○ 4𝑛2 = 𝑂(𝑛2) and 4𝑛2 = Θ(𝑛2)

❖

Formal Definition

● We write 𝑓(𝑛) = 𝑂(𝑔(𝑛)) if there are positive constants 𝑁 and 𝑐
such that for all 𝑛 ≥ 𝑁:

 𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛)

❖

Big-Omega Notation, Informally

● Sometimes we only care about lower bound.

● 𝑓(𝑛) = Ω(𝑔(𝑛)) if 𝑓 “grows at least as fast” as 𝑔.
● Examples:

○ 4𝑛100 = Ω(𝑛5)

○ 4𝑛2 = Ω(𝑛)
○ 4𝑛2 = Ω(𝑛2) and 4𝑛2 = Θ(𝑛2)

❖

Formal Definition

● We write 𝑓(𝑛) = Ω(𝑔(𝑛)) if there are positive constants 𝑁 and 𝑐
such that for all 𝑛 ≥ 𝑁:

 𝑐 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛)

❖

❖

Theta, Big-O, and Big-Omega

● If 𝑓 = Θ(𝑔) then 𝑓 = 𝑂(𝑔) and 𝑓 = Ω(𝑔).

● If 𝑓 = 𝑂(𝑔) and 𝑓 = Ω(𝑔) then 𝑓 = Θ(𝑔).
● Pictorially:

○ Θ ⟹ (𝑂 and Ω)

○ (𝑂 and Ω) ⟹ Θ

❖

Analogies

● Θ is kind of like =

● 𝑂 is kind of like ≤ (at most)

● Ω is kind of like ≥ (at least)

❖

Practice: true/false

● True or False: 𝑓(𝑛) = 𝑂(𝑛2).

● True or False: 𝑓(𝑛) = Ω(𝑛2).

● True or False: 𝑓(𝑛) = Ω(1).

A: True

B: False

❖

Why? mic

● Laziness.

● Sometimes finding an upper or lower bound would take
too much work, and/or we don’t really care about it
anyways.

❖

Big-Oh

● Often used when another part of the code would
dominate time complexity anyways.

❖

Exercise: what is the complexity?

❖

Exercise: what is the complexity?

Θ(n4)

❖

Exercise: what is the complexity?

Θ(n4)

O(n3)

❖

Big-Omega

● Often used when the time complexity will be so large that
we don’t care what it is, exactly.

❖

Example: Big-Omega

❖

Example: Big-Omega

We have 2n pairs

❖

Example: Big-Omega

We have 2n pairs

Θ(?)

❖

Example: Big-Omega

We have 2n pairs

Θ(?)

❖

Example: Big-Omega

We have 2n pairs

Θ(?)

T(n) = Ω(2n)

❖

Other Notations

● 𝑓(𝑛) = 𝑜(𝑔(𝑛)) if 𝑓 grows “much slower” than 𝑔.
○ Whatever 𝑐 you choose, eventually 𝑓 < 𝑐𝑔(𝑛).
○ Example: 𝑛 2 = 𝑜(𝑛3)

❖

Other Notations

● 𝑓(𝑛) = 𝑜(𝑔(𝑛)) if 𝑓 grows “much slower” than 𝑔.
○ Whatever 𝑐 you choose, eventually 𝑓 < 𝑐𝑔(𝑛).
○ Example: 𝑛 2 = 𝑜(𝑛3)

● 𝑓(𝑛) = 𝜔(𝑔(𝑛)) if 𝑓 grows “much faster” than 𝑔
○ Whatever 𝑐 you choose, eventually 𝑓 > 𝑐𝑔(𝑛).
○ Example: 𝑛 3 = 𝜔(𝑛2)

❖

Other Notations

● 𝑓(𝑛) = 𝑜(𝑔(𝑛)) if 𝑓 grows “much slower” than 𝑔.
○ Whatever 𝑐 you choose, eventually 𝑓 < 𝑐𝑔(𝑛).
○ Example: 𝑛 2 = 𝑜(𝑛3)

● 𝑓(𝑛) = 𝜔(𝑔(𝑛)) if 𝑓 grows “much faster” than 𝑔
○ Whatever 𝑐 you choose, eventually 𝑓 > 𝑐𝑔(𝑛).
○ Example: 𝑛 3 = 𝜔(𝑛2)

● We won’t really use these.

❖

Properties

❖

Properties

● We don’t usually go back to the definition when using Θ.

● Instead, we use a few basic properties.

❖

Properties of Θ

● Symmetry: If 𝑓 = Θ(𝑔), then 𝑔 = Θ(𝑓).

● Transitivity: If 𝑓 = Θ(𝑔) and 𝑔 = Θ(ℎ) then 𝑓 = Θ(ℎ).

● Reflexivity: 𝑓 = Θ(𝑓)

❖

Practice: T/F
● If 𝑓 = 𝑂(𝑔) and 𝑔 = 𝑂(ℎ), then 𝑓 = 𝑂(ℎ).

● If 𝑓 = Ω(ℎ) and 𝑔 = Ω(ℎ), then 𝑓 = Ω(𝑔).

● If 𝑓1 = Θ(𝑔1) and 𝑓2 = 𝑂(𝑔2), then 𝑓1 + 𝑓2 = Θ(𝑔1 + 𝑔2).

● If 𝑓1 = Θ(𝑔1) and 𝑓2 = Θ(𝑔2), then 𝑓1 × 𝑓2 = Θ(𝑔1 × 𝑔2).

A: F, F, F, T

B: F, T, F, F

C: T, F, F, T

D: T, T, T, T

E: None of the above

❖

Practice: T/F
● If 𝑓 = 𝑂(𝑔) and 𝑔 = 𝑂(ℎ), then 𝑓 = 𝑂(ℎ).

● If 𝑓 = Ω(ℎ) and 𝑔 = Ω(ℎ), then 𝑓 = Ω(𝑔).

● If 𝑓1 = Θ(𝑔1) and 𝑓2 = 𝑂(𝑔2), then 𝑓1 + 𝑓2 = Θ(𝑔1 + 𝑔2).

● If 𝑓1 = Θ(𝑔1) and 𝑓2 = Θ(𝑔2), then 𝑓1 × 𝑓2 = Θ(𝑔1 × 𝑔2).

A: F, F, F, T

B: F, T, F, F

C: T, F, F, T

D: T, T, T, T

E: None of the above

❖

Proving/Disproving Properties

● Start by trying to disprove.

● Easiest way: find a counterexample.

● Example: If 𝑓 = Ω(ℎ) and 𝑔 = Ω(ℎ), then 𝑓 = Ω(𝑔).
○ False! Let 𝑓 = 𝑛3 , 𝑔 = 𝑛5 , and ℎ = 𝑛2 .

❖

Proving the Property

● If you can’t disprove, maybe it is true.
● Example:

○ Suppose 𝑓1 = 𝑂(𝑔1) and 𝑓2 = 𝑂(𝑔2).
○ Prove that 𝑓1 × 𝑓2 = 𝑂(𝑔1 × 𝑔2).

❖

Step 1: State the assumption

● We know that 𝑓1 = 𝑂(𝑔1) and 𝑓2 = 𝑂(𝑔2).

● So there are constants 𝑐1, 𝑐2, 𝑁1, 𝑁2 so that for all 𝑛 ≥ 𝑁1 and 𝑛 ≥ 𝑁2:

𝑓1 (𝑛) ≤ 𝑐1 𝑔1 (𝑛) (𝑛 ≥ 𝑁1)

𝑓2 (𝑛) ≤ 𝑐2 𝑔2 (𝑛) (𝑛 ≥ 𝑁2)

❖

Use the assumption

● Chain of inequalities, starting with 𝑓1 × 𝑓2 , ending with ≤ 𝑐 𝑔1 × 𝑔2 .

● Using the following piece of information:

𝑓1 (𝑛) ≤ 𝑐1 𝑔1 (𝑛) (𝑛 ≥ 𝑁1)

𝑓2 (𝑛) ≤ 𝑐2 𝑔2 (𝑛) (𝑛 ≥ 𝑁2)

❖

Use the assumption

● Chain of inequalities, starting with 𝑓1 × 𝑓2 , ending with ≤ 𝑐 𝑔1 × 𝑔2 .

● Using the following piece of information:

𝑓1 (𝑛) ≤ 𝑐1 𝑔1(𝑛) (𝑛 ≥ 𝑁1)

𝑓2 (𝑛) ≤ 𝑐2 𝑔2(𝑛) (𝑛 ≥ 𝑁2)

𝑓1 (𝑛) x 𝑓2 (𝑛) ≤ ………….≤……………..≤ 𝑐 𝑔1 × 𝑔2

❖

Use the assumption

● Chain of inequalities, starting with 𝑓1 × 𝑓2 , ending with ≤ 𝑐 𝑔1 × 𝑔2 .

● Using the following piece of information:

𝑓1 (𝑛) ≤ 𝑐1 𝑔1(𝑛) (𝑛 ≥ 𝑁1)

𝑓2 (𝑛) ≤ 𝑐2 𝑔2(𝑛) (𝑛 ≥ 𝑁2)

𝑓1 (𝑛) x 𝑓2 (𝑛) ≤ 𝑐1 𝑔1 (𝑛) x 𝑓2 (𝑛) (𝑛 ≥ 𝑁1)

❖

Use the assumption

● Chain of inequalities, starting with 𝑓1 × 𝑓2 , ending with ≤ 𝑐 𝑔1 × 𝑔2 .

● Using the following piece of information:

𝑓1 (𝑛) ≤ 𝑐1 𝑔1(𝑛) (𝑛 ≥ 𝑁1)

𝑓2 (𝑛) ≤ 𝑐2 𝑔2(𝑛) (𝑛 ≥ 𝑁2)

𝑓1 (𝑛) x 𝑓2 (𝑛) ≤ 𝑐1 𝑔1 (𝑛) x 𝑓2 (𝑛) (𝑛 ≥ 𝑁1)

 ≤ 𝑐1 𝑔1 (𝑛) x 𝑐2 𝑔2(𝑛) (𝑛 ≥ 𝑁1) and (𝑛 ≥ 𝑁2)

❖

Use the assumption

● Chain of inequalities, starting with 𝑓1 × 𝑓2 , ending with ≤ 𝑐 𝑔1 × 𝑔2 .

● Using the following piece of information:

𝑓1 (𝑛) ≤ 𝑐1 𝑔1(𝑛) (𝑛 ≥ 𝑁1)

𝑓2 (𝑛) ≤ 𝑐2 𝑔2(𝑛) (𝑛 ≥ 𝑁2)

𝑓1 (𝑛) x 𝑓2 (𝑛) ≤ 𝑐1 𝑔1 (𝑛) x 𝑓2 (𝑛) (𝑛 ≥ 𝑁1)

 ≤ 𝑐1 𝑔1 (𝑛) x 𝑐2 𝑔2(𝑛) (𝑛 ≥ 𝑁1) and (𝑛 ≥ 𝑁2)

 ≤ 𝑐 𝑔1 (𝑛) x 𝑔2(𝑛) (𝑛 ≥ max(𝑁1 , 𝑁2)) and 𝑐 = 𝑐1 . 𝑐2

❖

Analyzing Code

● The properties of Θ (and 𝑂 and Ω) are useful when analyzing
code.

● We can analyze pieces, put together the results.

❖

Sums of Theta

● Property: If 𝑓1 = Θ(𝑔1) and 𝑓2 = Θ(𝑔2), then 𝑓1 + 𝑓2 = Θ(𝑔1 + 𝑔2)

● Used when analyzing sequential code.

❖

Example

● Say bar takes Θ(𝑛3),

● baz takes Θ(𝑛4).

● foo takes Θ(𝑛4 + 𝑛3) = Θ(𝑛4).

● baz is the bottleneck.

❖

Products of Theta

● Property: If 𝑓1 = Θ(𝑔1) and 𝑓2 = Θ(𝑔2), then

 𝑓1 ⋅ 𝑓2 = Θ(𝑔1 ⋅ 𝑔2)

● Useful when analyzing nested loops.

❖

Example

❖

Example

A: Θ(n5)

B: Θ(n2)

C: Θ(n4)

D: Θ(n3)

E: Something else

❖

Careful!

If inner loop index depends on outer loop, you have to be more
careful.

❖

Caution

● To upper bound a fraction 𝐴/𝐵, you must:

○ Upper bound the numerator, 𝐴.
○ Lower bound the denominator, 𝐵.

● And to lower bound a fraction 𝐴/𝐵, you must:

○ Lower bound the numerator, 𝐴.
○ Upper bound the denominator, 𝐵.

❖

Caution
● To upper bound a fraction 𝐴/𝐵, you must:

○ Upper bound the numerator, 𝐴.
○ Lower bound the denominator, 𝐵.

● Example:
○ What is larger? ⅗ or ⅘ ?

■ ⅘ since numerator is larger (4 > 3)
○ What is larger? 4/3 or ⅘?

■ 4/3 since the denominator is smaller (3 < 4)

❖

Caution
● To upper bound a fraction 𝐴/𝐵, you must:

○ Upper bound the numerator, 𝐴.
○ Lower bound the denominator, 𝐵.

● To make a fraction as large as possible, you should:

○ Make the numerator (A) as large as possible → that’s upper bounding A.

○ Make the denominator (B) as small as possible → that’s lower bounding B.

❖

Caution
● To make a fraction as large as possible, you should:

a. Make the numerator (A) as large as possible → that’s upper bounding A.
b. Make the denominator (B) as small as possible → that’s lower bounding B.

If A=3x+2 and B=x+1 and you know that 1≤x≤4

What is the best upper bound for A/B?
A: 6

B: 5/4

C: 7

D: 14

❖

Asymptotic Notation
Practicalities

❖

In this part...

● Other ways asymptotic notation is used.

● Asymptotic notation slip ups.

● Downsides of asymptotic notation.

❖

Not Just for Time Complexity!

● We most often see asymptotic notation used to express
time complexity.

● But it can be used to express any type of growth!

❖

Example: Combinatorics

● Recall: is number of ways of choosing 𝑘 things from a set of 𝑛.
● How fast does this grow with 𝑛? For fixed 𝑘:

● Example: the number of ways of choosing 3 things out of 𝑛 is Θ(𝑛3).

❖

Example: Central Limit Theorem

● Recall (DSC10): the CLT says that the sample mean has a
normal distribution with standard deviation 𝜎pop/√𝑛

● The error in the sample mean is: 𝑂(1/√𝑛)

❖

Common Slip-ups

● Asymptotic notation can be used improperly.
○ Might be technically correct, but defeats the purpose.

● Don’t do these in, e.g., interviews!

❖

Slip-up #1

● Don’t include constants, lower-order terms in the notation.

● Bad: 3𝑛2 + 2𝑛 + 5 = Θ(3𝑛2).

● Good: 3𝑛2 + 2𝑛 + 5 = Θ(𝑛2).

● It isn’t wrong to do so, just defeats the purpose.

❖

Slip-up #2

● Don’t include base in logarithm.

● Bad: Θ(log2 𝑛)
● Good: Θ(log 𝑛)
● Why? log2 𝑛 = 𝑐 ⋅ log3 𝑛 = 𝑐′ log4 𝑛 = …

❖

Slip-up #3

● Don’t misinterpret meaning of Θ(⋅).

● 𝑓(𝑛) = Θ(𝑛3) does not mean that there are constants so
that 𝑓(𝑛) = 𝑐3𝑛

3 + 𝑐2𝑛
2 + 𝑐1𝑛 + 𝑐0 .

❖

Slip-up #4

● Time complexity is not a complete measure of efficiency.

● Θ(𝑛) is not always “better” than Θ(𝑛2).

● Why?

❖

Slip-up #4

● Why? Asymptotic notation “hides the constants”.

● 𝑇1 (𝑛) = 1,000,000𝑛 = Θ(𝑛)
● 𝑇2 (𝑛) = 0.00001𝑛2 = Θ(𝑛2)

● But 𝑇1 (𝑛) is worse for all but really large 𝑛.

❖

Main Idea

● TIme Complexity is not the only way to measure efficiency,
and it can be misleading.

● Sometimes even a Θ(2𝑛) algorithm is better than a Θ(𝑛)
algorithm, if the data size is small.

❖

Do you have any questions?

Thank you!

CampusWire!

