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DSC 40B
Lecture 4 : 

Big- Theta, Big-Oh 
and Omega, 
Formalized



❖

Agenda



❖

Plan for the lecture

● Formally define Θ, 𝑂, Ω notation. 
● Some useful properties. 



❖

Formally define Θ, 𝑂, Ω 
notations



❖

So Far

● Time Complexity Analysis: a picture of how an algorithm scales. 

● Can use Θ-notation to express time complexity. 

● Allows us to ignore details in a rigorous way:

○ Saves us work!

○ But what exactly can we ignore?



❖

Theta Notation, Informally

●  Θ(⋅) forgets constant factors, lower-order terms.

       5𝑛3 + 3𝑛2 + 42 = Θ(𝑛3 )



❖

Theta Notation, Informally

●  𝑓(𝑛) = Θ(𝑔(𝑛)) if 𝑓(𝑛) “grows like” 𝑔(𝑛).

5𝑛3 + 3𝑛2 + 42 = Θ(𝑛3 )



❖

Definition
We write 𝑓(𝑛) = Θ(𝑔(𝑛)) if there are positive constants 𝑁, 
𝑐1 and 𝑐2 such that for all 𝑛 ≥ 𝑁: 

𝑐1 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 ⋅ 𝑔(𝑛)



❖

Definition
We write 𝑓(𝑛) = Θ(𝑔(𝑛)) if there are positive constants 𝑁, 
𝑐1 and 𝑐2 such that for all 𝑛 ≥ 𝑁: 

𝑐1 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 ⋅ 𝑔(𝑛)

𝑐2 ⋅ 𝑔(𝑛)

𝑐1 ⋅ 𝑔(𝑛)



❖

Definition
We write 𝑓(𝑛) = Θ(𝑔(𝑛)) if there are positive constants 𝑁, 
𝑐1 and 𝑐2 such that for all 𝑛 ≥ 𝑁: 

𝑐1 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 ⋅ 𝑔(𝑛)

𝑐2 ⋅ 𝑔(𝑛)

𝑐1 ⋅ 𝑔(𝑛)

𝑓(𝑛) 



❖

Definition
We write 𝑓(𝑛) = Θ(𝑔(𝑛)) if there are positive constants 𝑁, 
𝑐1 and 𝑐2 such that for all 𝑛 ≥ 𝑁: 

𝑐1 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 ⋅ 𝑔(𝑛)

𝑐2 ⋅ 𝑔(𝑛)

𝑐1 ⋅ 𝑔(𝑛)

𝑓(𝑛) 

𝑁



❖

Main Idea

If 𝑓(𝑛) = Θ(𝑔(𝑛)), then when 𝑛 is large 𝑓 is “sandwiched” between 
copies of 𝑔.



❖

Proving Big-Theta

● We can prove that 𝑓(𝑛) = Θ(𝑔(𝑛)) by finding these constants. 

     𝑐1  𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2  𝑔(𝑛)                 (𝑛 ≥ 𝑁) 

● Requires a lower bound and an upper bound.



❖

Strategy: Chains of Inequalities

●  To show 𝑓(𝑛) ≤ 𝑐2𝑔(𝑛), we show: 

𝑓(𝑛) ≤ (something) ≤ (another thing) ≤ ... ≤ 𝑐2 𝑔(𝑛) 

● At each step: 
○ We can do anything to make value larger. 
○  But the goal is to simplify it to look like 𝑔(𝑛).



❖

Example

● Show that  4𝑛3 - 5𝑛2 + 50 = Θ(𝑛3 )

● Find constants 𝑐1 , 𝑐2 , 𝑁 such that for all 𝑛 > 𝑁:

𝑐1 𝑛
 3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2 𝑛

3

● They don’t have to be the “best” constants! Many solutions!



❖

Example

𝑐1𝑛
 3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛

3

● We want to make 4𝑛3 - 5𝑛2 + 50 “look like” 𝑐𝑛3 . 

● For the upper bound, can do anything that makes the 
function larger. 

● For the lower bound, can do anything that makes the 
function smaller.



❖

Example  (n is a positive integer)

𝑐1 𝑛
 3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2 𝑛 3

● Upper bound: 

4𝑛3 − 5𝑛2 + 50 ≤ 4𝑛3 + 50 ≤ 4𝑛3 + 50n3  = 54n3

  



❖

Upper-Bounding Tips

● “Promote” lower-order positive terms: 

3𝑛3 + 5𝑛 ≤ 3𝑛3 + 5𝑛3 

●  “Drop” negative terms: 

 3𝑛3 − 5𝑛 ≤ 3𝑛3



❖

Example

𝑐1𝑛
 3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛 

3

● Lower bound:  

4𝑛3 − 5𝑛2 + 50 ≥ 4𝑛3 − 5𝑛2 

                        ≥ 3𝑛3 + (n3 - 5n2) ≥ 3𝑛3   (n >=5) 

True WHEN (n3 - 5n2) >=0    =>  n>=5



❖

Lower-Bounding Tips

● “Drop” lower-order positive terms: 

3𝑛3 + 5𝑛 ≥ 3𝑛3 

●  “Promote and cancel” negative lower-order terms if possible: 

4𝑛3 − 2𝑛 ≥ 4𝑛3 − 2𝑛3 = 2𝑛3



❖

Lower-Bounding Tips

● “Cancel” negative lower-order terms with big constants by 
“breaking off” a piece of high term.

    4𝑛3 − 10𝑛2 = (3𝑛3 + 𝑛3 ) − 10𝑛2



❖

Lower-Bounding Tips

● “Cancel” negative lower-order terms with big constants by 
“breaking off” a piece of high term.

    4𝑛3 − 10𝑛2 = (3𝑛3 + 𝑛3 ) − 10𝑛2 = 3𝑛3 + (𝑛3 − 10𝑛2 ) 



❖

Lower-Bounding Tips

● “Cancel” negative lower-order terms with big constants by 
“breaking off” a piece of high term.

    4𝑛3 − 10𝑛2 = (3𝑛3 + 𝑛3 ) − 10𝑛2 = 3𝑛3 + (𝑛3 − 10𝑛2 ) 

𝑛 3 − 10𝑛2 ≥ 0 when 



❖

Lower-Bounding Tips

● “Cancel” negative lower-order terms with big constants by 
“breaking off” a piece of high term.

    4𝑛3 − 10𝑛2 = (3𝑛3 + 𝑛3 ) − 10𝑛2 = 3𝑛3 + (𝑛3 − 10𝑛2 ) 

𝑛 3 − 10𝑛2 ≥ 0 when 𝑛 3 ≥ 10𝑛2 ⟹ 𝑛 ≥ 10: 

                                     



❖

Lower-Bounding Tips

● “Cancel” negative lower-order terms with big constants by 
“breaking off” a piece of high term.

    4𝑛3 − 10𝑛2 = (3𝑛3 + 𝑛3 ) − 10𝑛2 = 3𝑛3 + (𝑛3 − 10𝑛2 ) 

𝑛 3 − 10𝑛2 ≥ 0 when 𝑛 3 ≥ 10𝑛2 ⟹ 𝑛 ≥ 10: 

                                     ≥ 3𝑛3 + 0 (𝑛 ≥ 10)



❖

Example

𝑐1𝑛
 3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛 

3

● We want to make 4𝑛3 - 5𝑛2 + 50 “look like” 𝑐𝑛3 . 

● For the upper bound, can do anything that makes the 
function larger. 

● For the lower bound, can do anything that makes the 
function smaller.



❖

Example

3𝑛 3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 54 𝑛 3  (n >= 5)  (N is 5)

● We want to make 4𝑛3 - 5𝑛2 + 50 “look like” 𝑐𝑛3 . 

● For the upper bound, can do anything that makes the 
function larger. 

● For the lower bound, can do anything that makes the 
function smaller.



❖

Exercise

True or False: 2𝑛2 + 𝑛 sin3𝑛 = Θ(𝑛2 ).

A: True

B: False

C: Impossible to determine

n2  <= 2𝑛2 - n <= 2𝑛2 + 𝑛 sin3𝑛 <= 2𝑛2 + n <= 3n2



❖

Exercise

True or False: 𝑓(𝑛) = Θ(𝑛2 )

A: True

B: False

C: Impossible to 
determine



❖

Big-Oh  (Big-O) and 
Big-Omega



❖

Other Bounds

● 𝑓 = Θ(𝑔) means that 𝑓 is both upper and lower bounded by 
factors of 𝑔.

● Sometimes we only have (or care about) upper bound or lower 
bound. 

● We have notation for that, too.



❖

Big-O Notation, Informally

●  Sometimes we only care about upper bound.

● 𝑓(𝑛) = 𝑂(𝑔(𝑛)) if 𝑓 “grows at most as fast” as 𝑔. 
● Examples: 

○ 4𝑛2 = 𝑂(𝑛100) 

○ 4𝑛2 = 𝑂(𝑛3 ) 

○ 4𝑛2 = 𝑂(𝑛2 ) and 4𝑛2 = Θ(𝑛2)



❖

Formal Definition

● We write 𝑓(𝑛) = 𝑂(𝑔(𝑛)) if there are positive constants 𝑁 and 𝑐 
such that for all 𝑛 ≥ 𝑁: 

         𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛)



❖

Big-Omega Notation, Informally

●  Sometimes we only care about lower bound.

● 𝑓(𝑛) = Ω(𝑔(𝑛)) if 𝑓 “grows at least as fast” as 𝑔. 
● Examples: 

○ 4𝑛100 = Ω(𝑛5) 

○ 4𝑛2 = Ω(𝑛) 
○ 4𝑛2 = Ω(𝑛2) and 4𝑛2 = Θ(𝑛2 )



❖

Formal Definition

● We write 𝑓(𝑛) = Ω(𝑔(𝑛)) if there are positive constants 𝑁 and 𝑐 
such that for all 𝑛 ≥ 𝑁:

        𝑐 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛)



❖



❖

Theta, Big-O, and Big-Omega

●  If 𝑓 = Θ(𝑔) then 𝑓 = 𝑂(𝑔) and 𝑓 = Ω(𝑔). 

●  If 𝑓 = 𝑂(𝑔) and 𝑓 = Ω(𝑔) then 𝑓 = Θ(𝑔). 
●  Pictorially: 

○  Θ ⟹ (𝑂 and Ω) 

○  (𝑂 and Ω) ⟹ Θ



❖

Analogies

●  Θ is kind of like = 

●  𝑂 is kind of like ≤ (at most)

●  Ω is kind of like ≥ (at least)



❖

Practice: true/false

● True or False: 𝑓(𝑛) = 𝑂(𝑛2).

● True or False: 𝑓(𝑛) = Ω(𝑛2). 

● True or False: 𝑓(𝑛) = Ω(1).

A: True

B: False



❖

Why?                                         mic

● Laziness. 

● Sometimes finding an upper or lower bound would take 
too much work, and/or we don’t really care about it 
anyways.



❖

Big-Oh

● Often used when another part of the code would 
dominate time complexity anyways.



❖

Exercise: what is the complexity?



❖

Exercise: what is the complexity?

Θ(n4)



❖

Exercise: what is the complexity?

Θ(n4)

O(n3)



❖

Big-Omega

● Often used when the time complexity will be so large that 
we don’t care what it is, exactly.



❖

Example: Big-Omega



❖

Example: Big-Omega

We have 2n pairs



❖

Example: Big-Omega

We have 2n pairs

Θ(?)



❖

Example: Big-Omega

We have 2n pairs

Θ(?)



❖

Example: Big-Omega

We have 2n pairs

Θ(?)

T(n) = Ω(2n)



❖

Other Notations

●  𝑓(𝑛) = 𝑜(𝑔(𝑛)) if 𝑓 grows “much slower” than 𝑔. 
○  Whatever 𝑐 you choose, eventually 𝑓 < 𝑐𝑔(𝑛).
○  Example: 𝑛 2 = 𝑜(𝑛3 ) 



❖

Other Notations

●  𝑓(𝑛) = 𝑜(𝑔(𝑛)) if 𝑓 grows “much slower” than 𝑔. 
○  Whatever 𝑐 you choose, eventually 𝑓 < 𝑐𝑔(𝑛).
○  Example: 𝑛 2 = 𝑜(𝑛3 ) 

● 𝑓(𝑛) = 𝜔(𝑔(𝑛)) if 𝑓 grows “much faster” than 𝑔 
○ Whatever 𝑐 you choose, eventually 𝑓 > 𝑐𝑔(𝑛). 
○ Example: 𝑛 3 = 𝜔(𝑛2 ) 



❖

Other Notations

●  𝑓(𝑛) = 𝑜(𝑔(𝑛)) if 𝑓 grows “much slower” than 𝑔. 
○  Whatever 𝑐 you choose, eventually 𝑓 < 𝑐𝑔(𝑛).
○  Example: 𝑛 2 = 𝑜(𝑛3 ) 

● 𝑓(𝑛) = 𝜔(𝑔(𝑛)) if 𝑓 grows “much faster” than 𝑔 
○ Whatever 𝑐 you choose, eventually 𝑓 > 𝑐𝑔(𝑛). 
○ Example: 𝑛 3 = 𝜔(𝑛2 ) 

● We won’t really use these.



❖

Properties



❖

Properties

●  We don’t usually go back to the definition when using Θ. 

●  Instead, we use a few basic properties.



❖

Properties of Θ

● Symmetry: If 𝑓 = Θ(𝑔), then 𝑔 = Θ(𝑓). 

● Transitivity: If 𝑓 = Θ(𝑔) and 𝑔 = Θ(ℎ) then 𝑓 = Θ(ℎ).

● Reflexivity: 𝑓 = Θ(𝑓)



❖

Practice: T/F
● If 𝑓 = 𝑂(𝑔) and 𝑔 = 𝑂(ℎ), then 𝑓 = 𝑂(ℎ).

● If 𝑓 = Ω(ℎ) and 𝑔 = Ω(ℎ), then 𝑓 = Ω(𝑔).

● If 𝑓1 = Θ(𝑔1 ) and 𝑓2 = 𝑂(𝑔2), then 𝑓1 + 𝑓2 = Θ(𝑔1 + 𝑔2).

● If 𝑓1 = Θ(𝑔1 ) and 𝑓2 = Θ(𝑔2 ), then 𝑓1 × 𝑓2 = Θ(𝑔1 × 𝑔2).

A:  F, F, F, T

B:  F, T, F, F

C:  T, F, F, T

D:  T, T, T, T

E:  None of the above



❖

Practice: T/F
● If 𝑓 = 𝑂(𝑔) and 𝑔 = 𝑂(ℎ), then 𝑓 = 𝑂(ℎ).

● If 𝑓 = Ω(ℎ) and 𝑔 = Ω(ℎ), then 𝑓 = Ω(𝑔).

● If 𝑓1 = Θ(𝑔1 ) and 𝑓2 = 𝑂(𝑔2), then 𝑓1 + 𝑓2 = Θ(𝑔1 + 𝑔2).

● If 𝑓1 = Θ(𝑔1 ) and 𝑓2 = Θ(𝑔2 ), then 𝑓1 × 𝑓2 = Θ(𝑔1 × 𝑔2).

A:  F, F, F, T

B:  F, T, F, F

C:  T, F, F, T

D:  T, T, T, T

E:  None of the above



❖

Proving/Disproving Properties

● Start by trying to disprove.

● Easiest way: find a counterexample.

● Example: If 𝑓 = Ω(ℎ) and 𝑔 = Ω(ℎ), then 𝑓 = Ω(𝑔). 
○  False! Let 𝑓 = 𝑛3 , 𝑔 = 𝑛5 , and ℎ = 𝑛2 .



❖

Proving the Property

● If you can’t disprove, maybe it is true.
● Example: 

○ Suppose 𝑓1 = 𝑂(𝑔1) and 𝑓2 = 𝑂(𝑔2). 
○ Prove that 𝑓1 × 𝑓2 = 𝑂(𝑔1 × 𝑔2).



❖

Step 1: State the assumption

● We know that 𝑓1 = 𝑂(𝑔1) and 𝑓2 = 𝑂(𝑔2).

● So there are constants 𝑐1, 𝑐2, 𝑁1, 𝑁2 so that for all 𝑛 ≥ 𝑁1 and 𝑛 ≥ 𝑁2: 

𝑓1 (𝑛) ≤ 𝑐1 𝑔1 (𝑛)      (𝑛 ≥ 𝑁1) 

𝑓2 (𝑛) ≤ 𝑐2 𝑔2 (𝑛)      (𝑛 ≥ 𝑁2)



❖

Use the assumption

● Chain of inequalities, starting with 𝑓1 × 𝑓2 , ending with ≤ 𝑐 𝑔1 × 𝑔2 . 

● Using the following piece of information:

𝑓1 (𝑛) ≤ 𝑐1 𝑔1 (𝑛)     (𝑛 ≥ 𝑁1) 

𝑓2 (𝑛) ≤ 𝑐2 𝑔2 (𝑛)     (𝑛 ≥ 𝑁2 )



❖

Use the assumption

● Chain of inequalities, starting with 𝑓1 × 𝑓2 , ending with ≤ 𝑐 𝑔1 × 𝑔2 . 

● Using the following piece of information:

𝑓1 (𝑛) ≤ 𝑐1 𝑔1(𝑛)     (𝑛 ≥ 𝑁1) 

𝑓2 (𝑛) ≤ 𝑐2 𝑔2(𝑛)     (𝑛 ≥ 𝑁2 )

𝑓1 (𝑛) x 𝑓2 (𝑛) ≤ ………….≤……………..≤  𝑐 𝑔1 × 𝑔2



❖

Use the assumption

● Chain of inequalities, starting with 𝑓1 × 𝑓2 , ending with ≤ 𝑐 𝑔1 × 𝑔2 . 

● Using the following piece of information:

𝑓1 (𝑛) ≤ 𝑐1 𝑔1(𝑛)     (𝑛 ≥ 𝑁1) 

𝑓2 (𝑛) ≤ 𝑐2 𝑔2(𝑛)     (𝑛 ≥ 𝑁2 )

𝑓1 (𝑛) x 𝑓2 (𝑛) ≤ 𝑐1 𝑔1 (𝑛)  x 𝑓2 (𝑛)       (𝑛 ≥ 𝑁1) 



❖

Use the assumption

● Chain of inequalities, starting with 𝑓1 × 𝑓2 , ending with ≤ 𝑐 𝑔1 × 𝑔2 . 

● Using the following piece of information:

𝑓1 (𝑛) ≤ 𝑐1 𝑔1(𝑛)     (𝑛 ≥ 𝑁1) 

𝑓2 (𝑛) ≤ 𝑐2 𝑔2(𝑛)     (𝑛 ≥ 𝑁2 )

𝑓1 (𝑛) x 𝑓2 (𝑛) ≤ 𝑐1 𝑔1 (𝑛)  x 𝑓2 (𝑛)            (𝑛 ≥ 𝑁1) 

                     ≤ 𝑐1 𝑔1 (𝑛)  x  𝑐2 𝑔2(𝑛)         (𝑛 ≥ 𝑁1)  and (𝑛 ≥ 𝑁2) 



❖

Use the assumption

● Chain of inequalities, starting with 𝑓1 × 𝑓2 , ending with ≤ 𝑐 𝑔1 × 𝑔2 . 

● Using the following piece of information:

𝑓1 (𝑛) ≤ 𝑐1 𝑔1(𝑛)     (𝑛 ≥ 𝑁1) 

𝑓2 (𝑛) ≤ 𝑐2 𝑔2(𝑛)     (𝑛 ≥ 𝑁2 )

𝑓1 (𝑛) x 𝑓2 (𝑛) ≤ 𝑐1 𝑔1 (𝑛)  x 𝑓2 (𝑛)            (𝑛 ≥ 𝑁1) 

                     ≤ 𝑐1 𝑔1 (𝑛)  x  𝑐2 𝑔2(𝑛)         (𝑛 ≥ 𝑁1)  and (𝑛 ≥ 𝑁2) 

                     ≤ 𝑐 𝑔1 (𝑛)  x  𝑔2(𝑛)         (𝑛 ≥ max(𝑁1 , 𝑁2)) and 𝑐 = 𝑐1 . 𝑐2



❖

Analyzing Code

● The properties of Θ (and 𝑂 and Ω) are useful when analyzing 
code. 

● We can analyze pieces, put together the results.



❖

Sums of Theta

● Property: If 𝑓1 = Θ(𝑔1 ) and 𝑓2 = Θ(𝑔2 ), then 𝑓1 + 𝑓2 = Θ(𝑔1 + 𝑔2 ) 

● Used when analyzing sequential code.



❖

Example

● Say bar takes Θ(𝑛3 ), 

● baz takes Θ(𝑛4 ). 

● foo takes Θ(𝑛4 + 𝑛3 ) = Θ(𝑛4 ). 

● baz is the bottleneck.



❖

Products of Theta

●  Property: If 𝑓1 = Θ(𝑔1 ) and 𝑓2 = Θ(𝑔2 ), then

 𝑓1 ⋅ 𝑓2 = Θ(𝑔1 ⋅ 𝑔2 )  

● Useful when analyzing nested loops.



❖

Example



❖

Example

A: Θ(n5)

B: Θ(n2)

C: Θ(n4)

D: Θ(n3)

E: Something else



❖

Careful!

If inner loop index depends on outer loop, you have to be more 
careful.



❖

Caution

● To upper bound a fraction 𝐴/𝐵, you must: 

○ Upper bound the numerator, 𝐴. 
○ Lower bound the denominator, 𝐵.

● And to lower bound a fraction 𝐴/𝐵, you must: 

○ Lower bound the numerator, 𝐴. 
○ Upper bound the denominator, 𝐵.



❖

Caution
● To upper bound a fraction 𝐴/𝐵, you must: 

○ Upper bound the numerator, 𝐴. 
○ Lower bound the denominator, 𝐵.

● Example: 
○ What is larger? ⅗ or ⅘ ?

■ ⅘ since numerator is larger (4 > 3)
○ What is larger? 4/3 or ⅘?

■ 4/3 since the denominator is smaller (3 < 4)



❖

Caution
● To upper bound a fraction 𝐴/𝐵, you must: 

○ Upper bound the numerator, 𝐴. 
○ Lower bound the denominator, 𝐵.

● To make a fraction as large as possible, you should:

○ Make the numerator (A) as large as possible → that’s upper bounding A.

○ Make the denominator (B) as small as possible → that’s lower bounding B.



❖

Caution
● To make a fraction as large as possible, you should:

a. Make the numerator (A) as large as possible → that’s upper bounding A.
b. Make the denominator (B) as small as possible → that’s lower bounding B.

If A=3x+2 and B=x+1  and you know that 1≤x≤4

What is the best upper bound for A/B? 
A:  6

B:  5/4

C:  7

D:  14



❖

Asymptotic Notation 
Practicalities



❖

In this part...

● Other ways asymptotic notation is used. 

● Asymptotic notation slip ups. 

● Downsides of asymptotic notation.



❖

Not Just for Time Complexity!

● We most often see asymptotic notation used to express 
time complexity.

● But it can be used to express any type of growth!



❖

Example: Combinatorics

● Recall:              is number of ways of choosing 𝑘 things from a set of 𝑛. 
● How fast does this grow with 𝑛? For fixed 𝑘:  

● Example: the number of ways of choosing 3 things out of 𝑛 is Θ(𝑛3 ).



❖

Example: Central Limit Theorem

● Recall (DSC10): the CLT says that the sample mean has a 
normal distribution with standard deviation 𝜎pop/√𝑛 

● The error in the sample mean is: 𝑂(1/√𝑛)



❖

Common Slip-ups

● Asymptotic notation can be used improperly.
○  Might be technically correct, but defeats the purpose. 

● Don’t do these in, e.g., interviews!



❖

Slip-up #1 

● Don’t include constants, lower-order terms in the notation.

● Bad: 3𝑛2 + 2𝑛 + 5 = Θ(3𝑛2 ). 

● Good: 3𝑛2 + 2𝑛 + 5 = Θ(𝑛2 ).

● It isn’t wrong to do so, just defeats the purpose.



❖

Slip-up #2

● Don’t include base in logarithm.

● Bad: Θ(log2 𝑛) 
● Good: Θ(log 𝑛) 
● Why? log2 𝑛 = 𝑐 ⋅ log3 𝑛 = 𝑐′ log4 𝑛 = …



❖

Slip-up #3

● Don’t misinterpret meaning of Θ(⋅).

● 𝑓(𝑛) = Θ(𝑛3 ) does not mean that there are constants so 
that   𝑓(𝑛) = 𝑐3𝑛

3 + 𝑐2𝑛 
2 + 𝑐1𝑛 + 𝑐0 .



❖

Slip-up #4

● Time complexity is not a complete measure of efficiency. 

●  Θ(𝑛) is not always “better” than Θ(𝑛2 ). 

● Why?



❖

Slip-up #4

● Why? Asymptotic notation “hides the constants”. 

● 𝑇1 (𝑛) = 1,000,000𝑛 = Θ(𝑛) 
● 𝑇2 (𝑛) = 0.00001𝑛2 = Θ(𝑛2) 

● But 𝑇1 (𝑛) is worse for all but really large 𝑛.



❖

Main Idea

● TIme Complexity is not the only way to measure efficiency, 
and it can be misleading. 

● Sometimes even a Θ(2𝑛 ) algorithm is better than a Θ(𝑛) 
algorithm, if the data size is small.



❖

Do you have any questions?

Thank you!

CampusWire!


