
Lecture 3 | Part 1

Big Theta, Formalized

Today in DSC 40B...▶ Formally define Θ,𝑂, Ω notation.▶ Some useful properties.▶ The drawbacks of asymptotic time complexity.▶ Best, worst case time complexities.

News▶ There’s a set of course notes on dsc40b.com.▶ My office hours are Tuesdays, right after lecture.▶ HDSI 346

So Far▶ Time Complexity Analysis: a picture of how an
algorithm scales.▶ Can use Θ-notation to express time complexity.▶ Allows us to ignore details in a rigorous way.▶ Saves us work!▶ But what exactly can we ignore?

Theta Notation, Informally▶ Θ(⋅) forgets constant factors, lower-order terms.5𝑛3 + 3𝑛2 + 42 = Θ(𝑛3)

Theta Notation, Informally▶ 𝑓(𝑛) = Θ(𝑔(𝑛)) if 𝑓(𝑛) “grows like” 𝑔(𝑛).5𝑛3 + 3𝑛2 + 42 = Θ(𝑛3)

Definition
We write 𝑓(𝑛) = Θ(𝑔(𝑛)) if there are positive con-
stants 𝑁, 𝑐1 and 𝑐2 such that for all 𝑛 ≥ 𝑁:𝑐1 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 ⋅ 𝑔(𝑛)

Cg(n)

e

Main Idea
If 𝑓(𝑛) = Θ(𝑔(𝑛)), then when 𝑛 is large 𝑓 is “sand-
wiched” between copies of 𝑔.

Proving Big-Theta▶ We can prove that 𝑓(𝑛) = Θ(𝑔(𝑛)) by finding these
constants.𝑐1𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2𝑔(𝑛) (𝑛 ≥ 𝑁)▶ Requires an upper bound and a lower bound.

Strategy: Chains of Inequalities▶ To show 𝑓(𝑛) ≤ 𝑐2𝑔(𝑛), we show:𝑓(𝑛) ≤ (something) ≤ (another thing) ≤ ... ≤ 𝑐2𝑔(𝑛)▶ At each step:▶ We can do anything to make value larger.▶ But the goal is to simplify it to look like 𝑔(𝑛).

Example▶ Show that 4𝑛3 − 5𝑛2 + 50 = Θ(𝑛3).▶ Find constants 𝑐1, 𝑐2, 𝑁 such that for all 𝑛 > 𝑁:𝑐1𝑛3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛3▶ They don’t have to be the “best” constants! Many
solutions!

Example𝑐1𝑛3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛3▶ We want to make 4𝑛2 − 5𝑛2 + 50 “look like” 𝑐𝑛3.▶ For the upper bound, can do anything that
makes the function larger.▶ For the lower bound, can do anything that makes
the function smaller.

N

Y
3 54

n = 5

Example𝑐1𝑛3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛3▶ Upper bound:

4n3 - 5n2 +50 = 443 +50

= 443 +50n3
= 5443

E

Upper-Bounding Tips▶ “Promote” lower-order positive terms:3𝑛3 + 5𝑛 ≤ 3𝑛3 + 5𝑛3▶ “Drop” negative terms3𝑛3 − 5𝑛 ≤ 3𝑛3

Example𝑐1𝑛3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛3▶ Lower bound:

When is n3-5n2z0 ?
=> n3 = 5uz
=>u = 5

4n3 - 5n2 + 50 = 4n3 -542
= (343 +n3) - 5n2
= 3n3 + (n3 - 5nz)
- In (n = 5)
C

Lower-Bounding Tips▶ “Drop” lower-order positive terms:3𝑛3 + 5𝑛 ≥ 3𝑛3▶ “Promote and cancel” negative lower-order
terms if possible:4𝑛3 − 2𝑛 ≥ 4𝑛3 − 2𝑛3 = 2𝑛3

Lower-Bounding Tips▶ “Cancel” negative lower-order terms with big
constants by “breaking off” a piece of high term.4𝑛3 − 10𝑛2 = (3𝑛3 + 𝑛3) − 10𝑛2= 3𝑛3 + (𝑛3 − 10𝑛2)𝑛3 − 10𝑛2 ≥ 0 when 𝑛3 ≥ 10𝑛2 ⟹ 𝑛 ≥ 10:≥ 3𝑛3 + 0 (𝑛 ≥ 10)

Caution▶ To upper bound a fraction 𝐴/𝐵, you must:▶ Upper bound the numerator, 𝐴.▶ Lower bound the denominator, 𝐵.▶ And to lower bound a fraction 𝐴/𝐵, you must:▶ Lower bound the numerator, 𝐴.▶ Upper bound the denominator, 𝐵.

Exercise
True or False: 2𝑛2 + 𝑛 sin 3𝑛 = Θ(𝑛2).

In2-n1f? Zu2+ n

O

H

Exercise
Let 𝑓(𝑛) = {𝑛2 if 𝑛 is even5 if 𝑛 is odd.
True or False: 𝑓(𝑛) = Θ(𝑛2).

cn2

↑

a

-

O
↑

1
.

~
o

I -

·

5 - a

·

a ...

-

Lecture 3 | Part 2

Big-Oh and Big-Omega

Other Bounds▶ 𝑓 = Θ(𝑔) means that 𝑓 is both upper and lower
bounded by factors of 𝑔.▶ Sometimes we only have (or care about) upper
bound or lower bound.▶ We have notation for that, too.

Big-O Notation, Informally▶ Sometimes we only care about upper bound.▶ 𝑓(𝑛) = 𝑂(𝑔(𝑛)) if 𝑓 “grows at most as fast” as 𝑔.▶ Examples:▶ 4𝑛2 = 𝑂(𝑛100)▶ 4𝑛2 = 𝑂(𝑛3)▶ 4𝑛2 = 𝑂(𝑛2) and 4𝑛2 = Θ(𝑛2)

Definition
We write 𝑓(𝑛) = 𝑂(𝑔(𝑛)) if there are positive con-
stants 𝑁 and 𝑐 such that for all 𝑛 ≥ 𝑁:𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛)

Big-Omega Notation▶ Sometimes we only care about lower bound.▶ Intuitively: 𝑓(𝑛) = Ω(𝑔(𝑛)) if 𝑓 “grows at least as
fast” as 𝑔.▶ Examples:▶ 4𝑛100 = Ω(𝑛5)▶ 4𝑛2 = Ω(𝑛)▶ 4𝑛2 = Ω(𝑛2) and 4𝑛2 = Θ(𝑛2)

Definition
We write 𝑓(𝑛) = Ω(𝑔(𝑛)) if there are positive con-
stants 𝑁 and 𝑐 such that for all 𝑛 ≥ 𝑁:𝑐1 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛)

FUN FACT
“Omega” in Greek literally means: big O.
So translated, “Big-Omega” means “big big O”.

Theta, Big-O, and Big-Omega▶ If 𝑓 = Θ(𝑔) then 𝑓 = 𝑂(𝑔) and 𝑓 = Ω(𝑔).▶ If 𝑓 = 𝑂(𝑔) and 𝑓 = Ω(𝑔) then 𝑓 = Θ(𝑔).▶ Pictorially:▶ Θ ⟹ (𝑂 and Ω)▶ (𝑂 and Ω) ⟹ Θ

Analogies▶ Θ is kind of like =▶ 𝑂 is kind of like ≤▶ Ω is kind of like ≥
443 - 5n2 = 0(13)

Exercise
Let 𝑓(𝑛) = {𝑛2 if 𝑛 is even5 if 𝑛 is odd.▶ True or False: 𝑓(𝑛) = 𝑂(𝑛2).▶ True or False: 𝑓(𝑛) = Ω(𝑛2).▶ True or False: 𝑓(𝑛) = Ω(1).

+ O(nz)

E
G
E

Why?▶ Laziness.▶ Sometimes finding an upper or lower bound
would take too much work, and/or we don’t
really care about it anyways.

Big-Oh▶ Often used when another part of the code would
dominate time complexity anyways.

Exercise
What is the time complexity of foo?

def foo(n):
for a in range(n**4):

print(a)

for i in range(n):
for j in range(i**2):

print(i + j)

⑯(4)
* 30(n3)

Example: Big-Oh
def foo(n):

for a in range(n**4):
print(a)

for i in range(n):
for j in range(i**2):

print(i + j)

⑦(n4)

Big-Omega▶ Often used when the time complexity will be so
large that we don’t care what it is, exactly.

Example: Big-Omega
best_separation = float('inf')
best_clustering = None

for clustering in all_clusterings(data):
sep = calculate_separation(clustering)
if sep < best_separation:

best_separation = sep
best_clustering = clustering

print(best_clustering)

0(2"nz)

O(?)
2n T(n) =r(24)

Other Notations▶ 𝑓(𝑛) = 𝑜(𝑔(𝑛)) if 𝑓 grows “much slower” than 𝑔.▶ Whatever 𝑐 you choose, eventually 𝑓 < 𝑐𝑔(𝑛).▶ Example: 𝑛2 = 𝑜(𝑛3)▶ 𝑓(𝑛) = 𝜔(𝑔(𝑛)) if 𝑓 grows “much faster” than 𝑔▶ Whatever 𝑐 you choose, eventually 𝑓 > 𝑐𝑔(𝑛).▶ Example: 𝑛3 = 𝜔(𝑛2)▶ We won’t really use these.

Lecture 3 | Part 3

Properties

Properties▶ We don’t usually go back to the definition when
using Θ.▶ Instead, we use a few basic properties.

Properties of Θ
1. Symmetry: If 𝑓 = Θ(𝑔), then 𝑔 = Θ(𝑓).
2. Transitivity: If 𝑓 = Θ(𝑔) and 𝑔 = Θ(ℎ) then 𝑓 = Θ(ℎ).
3. Reflexivity: 𝑓 = Θ(𝑓)

Exercise
Which of the following properties are true?▶ T or F: If 𝑓 = 𝑂(𝑔) and 𝑔 = 𝑂(ℎ), then 𝑓 = 𝑂(ℎ).▶ T or F: If 𝑓 = Ω(ℎ) and 𝑔 = Ω(ℎ), then 𝑓 = Ω(𝑔).▶ T or F: If 𝑓1 = Θ(𝑔1) and 𝑓2 = 𝑂(𝑔2), then 𝑓1 + 𝑓2 =Θ(𝑔1 + 𝑔2).▶ T or F: If 𝑓1 = Θ(𝑔1) and 𝑓2 = Θ(𝑔2), then 𝑓1 × 𝑓2 =Θ(𝑔1 × 𝑔2).

O

O
O O

O

Proving/Disproving Properties▶ Start by trying to disprove.▶ Easiest way: find a counterexample.▶ Example: If 𝑓 = Ω(ℎ) and 𝑔 = Ω(ℎ), then 𝑓 = Ω(𝑔).▶ False! Let 𝑓 = 𝑛3, 𝑔 = 𝑛5, and ℎ = 𝑛2.

Proving the Property▶ If you can’t disprove, maybe it is true.▶ Example:▶ Suppose 𝑓1 = 𝑂(𝑔1) and 𝑓2 = 𝑂(𝑔2).▶ Prove that 𝑓1 × 𝑓2 = 𝑂(𝑔1 × 𝑔2).

Step 1: State the assumption▶ We know that 𝑓1 = 𝑂(𝑔1) and 𝑓2 = 𝑂(𝑔2).▶ So there are constants 𝑐1, 𝑐2, 𝑁1, 𝑁2 so that for all𝑛 ≥ 𝑁: 𝑓1(𝑛) ≤ 𝑐1𝑔1(𝑛) (𝑛 ≥ 𝑁1)𝑓2(𝑛) ≤ 𝑐2𝑔2(𝑛) (𝑛 ≥ 𝑁2)

Step 2: Use the assumption▶ Chain of inequalities, starting with 𝑓1 × 𝑓2, ending with ≤ 𝑐𝑔1 × 𝑔2.▶ Using the following piece of information:𝑓1(𝑛) ≤ 𝑐1𝑔1(𝑛) (𝑛 ≥ 𝑁1)𝑓2(𝑛) ≤ 𝑐2𝑔2(𝑛) (𝑛 ≥ 𝑁2)G fife = 0 (g
,

" (n)
L

f (n) fi(n) = (C , g,(n) fz(n) (n =N,)
= (C , g ,(2)((g(n) (n = maxN,N23)
=

c g ,

(n) g(u)
where c = CYC2

Analyzing Code▶ The properties of Θ (and 𝑂 and Ω) are useful
when analyzing code.▶ We can analyze pieces, put together the results.

Sums of Theta▶ Property: If 𝑓1 = Θ(𝑔1) and 𝑓2 = Θ(𝑔2), then𝑓1 + 𝑓2 = Θ(𝑔1 + 𝑔2)▶ Used when analyzing sequential code.

Example

def foo(n):
bar(n)
baz(n)

▶ Say bar takes Θ(𝑛3), baz takes Θ(𝑛4).▶ foo takes Θ(𝑛4 + 𝑛3) = Θ(𝑛4).▶ baz is the bottleneck.

Products of Theta▶ Property: If 𝑓1 = Θ(𝑔1) and 𝑓2 = Θ(𝑔2), then𝑓1 ⋅ 𝑓2 = Θ(𝑔1 ⋅ 𝑔2)▶ Useful when analyzing nested loops.

Example
def foo(n):

for i in range(3*n + 4, 5n**2 - 2*n + 5):
for j in range(500*n, n**3):

print(i, j)

O(n5)

Careful!▶ If inner loop index depends on outer loop, you
have to be more careful.

def foo(n):
for i in range(n):

for j in range(i):
print(i, j)

Lecture 3 | Part 4

Asymptotic Notation Practicalities

In this part...▶ Other ways asymptotic notation is used.▶ Asymptotic notation faux pas.▶ Downsides of asymptotic notation.

Not Just for Time Complexity!▶ We most often see asymptotic notation used to
express time complexity.▶ But it can be used to express any type of growth!

Example: Combinatorics▶ Recall: (𝑛𝑘) is number of ways of choosing 𝑘 things
from a set of 𝑛.▶ How fast does this grow with 𝑛? For fixed 𝑘:(𝑛𝑘) = Θ(𝑛𝑘)▶ Example: the number of ways of choosing 3
things out of 𝑛 is Θ(𝑛3).

Example: Central Limit Theorem▶ Recall: the CLT says that the sample mean has a
normal distribution with standard deviation𝜎pop/√𝑛▶ The error in the sample mean is: 𝑂(1/√𝑛)

Faux Pas▶ Asymptotic notation can be used improperly.▶ Might be technically correct, but defeats the purpose.▶ Don’t do these in, e.g., interviews!

Faux Pas #1▶ Don’t include constants, lower-order terms in the
notation.▶ Bad: 3𝑛2 + 2𝑛 + 5 = Θ(3𝑛2).▶ Good: 3𝑛2 + 2𝑛 + 5 = Θ(𝑛2).▶ It isn’t wrong to do so, just defeats the purpose.

Faux Pas #2▶ Don’t include base in logarithm.▶ Bad: Θ(log2 𝑛)▶ Good: Θ(log 𝑛)▶ Why? log2 𝑛 = 𝑐 ⋅ log3 𝑛 = 𝑐′ log4 𝑛 = …

Faux Pas #3▶ Don’t misinterpret meaning of Θ(⋅).▶ 𝑓(𝑛) = Θ(𝑛3) does not mean that there are
constants so that 𝑓(𝑛) = 𝑐3𝑛3 + 𝑐2𝑛2 + 𝑐1𝑛 + 𝑐0.

Faux Pas #4▶ Time complexity is not a complete measure of
efficiency.▶ Θ(𝑛) is not always “better” than Θ(𝑛2).▶ Why?

Faux Pas #4▶ Why? Asymptotic notation “hides the constants”.▶ 𝑇1(𝑛) = 1,000,000𝑛 = Θ(𝑛)▶ 𝑇2(𝑛) = 0.00001𝑛2 = Θ(𝑛2)▶ But 𝑇1(𝑛) is worse for all but really large 𝑛.

Main Idea
Time complexity is not the only way to measure
efficiency, and it can be misleading.

Sometimes even a Θ(2𝑛) algorithm is better than aΘ(𝑛) algorithm, if the data size is small.

Lecture 3 | Part 5

The Movie Problem

The Movie Problem

The Movie Problem▶ Given: an array movies of movie durations, and
the flight duration t▶ Find: two movies whose durations add to t.▶ If no two movies sum to t, return None.

Exercise
Design a brute force solution to the problem. What
is its time complexity?

def find_movies(movies, t):
n = len(movies)
for i in range(n):

for j in range(i + 1, n):
if movies[i] + movies[j] == t:

return (i, j)
return None

Time Complexity▶ It looks like there is a best case and worst case.▶ How do we formalize this?

For the future...▶ Can you come up with a better algorithm?▶ What is the best possible time complexity?

Lecture 3 | Part 6

Best and Worst Cases

Example 1: mean
def mean(arr):

total = 0
for x in arr:

total += x
return total / len(arr)

Time Complexity of mean▶ Linear time, Θ(𝑛).▶ Depends only on the array’s size, 𝑛, not on its
actual elements.

Example 2: Linear Search▶ Given: an array arr of numbers and a target t.▶ Find: the index of t in arr, or None if it is missing.

def linear_search(arr, t):
for i, x in enumerate(arr):

if x == t:
return i

return None

Exercise
What is the time complexity of linear_search?

def linear_search(arr, t):
for i, x in enumerate(arr):

if x == t:
return i

return None

Observation▶ It looks like there are two extreme cases...

The Best Case▶ When the target, t, is the very first element.▶ The loop exits after one iteration.▶ Θ(1) time?

The Worst Case▶ When the target, t, is not in the array at all.▶ The loop exits after 𝑛 iterations.▶ Θ(𝑛) time?

Time Complexity▶ linear_search can take vastly different
amounts of time on two inputs of the same size.▶ Depends on actual elements as well as size.▶ It has no single, overall time complexity.▶ Instead we’ll report best and worst case time
complexities.

Best Case Time Complexity▶ How does the time taken in the best case grow
as the input gets larger?

Definition
Define 𝑇best(𝑛) to be the least time taken by the al-
gorithm on any input of size 𝑛.
The asymptotic growth of 𝑇best(𝑛) is the algorithm’s
best case time complexity.

Best Case▶ In linear_search’s best case, 𝑇best(𝑛) = 𝑐, no
matter how large the array is.▶ The best case time complexity is Θ(1).

Worst Case Time Complexity▶ How does the time taken in the worst case grow
as the input gets larger?

Definition
Define 𝑇worst(𝑛) to be the most time taken by the
algorithm on any input of size 𝑛.
The asymptotic growth of 𝑇worst(𝑛) is the algo-
rithm’s worst case time complexity.

Worst Case▶ In the worst case, linear_search iterates
through the entire array.▶ The worst case time complexity is Θ(𝑛).

Exercise
What are the best case and worst case time com-
plexities of find_movies?

def find_movies(movies, t):
n = len(movies)
for i in range(n):

for j in range(i + 1, n):
if movies[i] + movies[j] == t:

return (i, j)
return None

Best Case▶ Best case occurs when movie 1 and movie 2 add
to the target.▶ Takes constant time, independent of number of
movies.▶ Best case time complexity: Θ(1).

Worst Case▶ Worst case occurs when no two movies add to
target.▶ Has to loop over all Θ(𝑛2) pairs.▶ Worst case time complexity: Θ(𝑛2).

Caution!▶ The best case is never: “the input is of size one”.▶ The best case is about the structure of the input,
not its size.▶ Not always constant time! Example: sorting.

Note▶ An algorithm like linear_search doesn’t have
one single time complexity.▶ An algorithm like mean does, since the best and
worst case time complexities coincide.

Main Idea
Reporting best and worst case time complexities
gives us a richer of the performance of the algo-
rithm.

Lecture 3 | Part 7

Appendix: About Notation

A Common Mistake▶ You’ll sometimes see people equate 𝑂(⋅) with
worst case and Ω(⋅) with best case.▶ This isn’t right!

Why?▶ 𝑂(⋅) expresses ignorance about a lower bound.▶ 𝑂(⋅) is like ≤▶ Ω(⋅) expresses ignorance about an upper bound.▶ Ω(⋅) is like ≥▶ Having both bounds is actually important here.

Example▶ Suppose we said: “the worst case time
complexity of find_movies is 𝑂(𝑛2).”▶ Technically true, but not precise.▶ This is like saying: “I don’t know how bad it
actually is, but it can’t be worse than quadratic.”▶ It could still be linear!”▶ Better: the worst case time complexity is Θ(𝑛2).

Example▶ Suppose we said: “the best case time complexity
of find_movies is Ω(1).”▶ This is like saying: “I don’t know how good it
actually is, but it can’t be better than constant.”▶ It could be linear!▶ Correct: the best case time complexity is Θ(1).

Put Another Way...▶ It isn’t technically wrong to say worst case for
find_movies is 𝑂(𝑛2)...▶ ...but it isn’t technically wrong to say it is 𝑂(𝑛100),
either!

Lecture 3 | Part 8

Appendix: Asymptotic Notation and Limits

Limits and Θ,𝑂, Ω▶ You might prefer to use limits when reasoning
about asymptotic notation.▶ Warning! There are some tricky subtleties.▶ Be able to “fall back” to the formal definitions.

Theta and Limits▶ Claim: If lim𝑛→∞ 𝑓(𝑛)𝑔(𝑛) = 𝑐, then 𝑓(𝑛) = Θ(𝑔(𝑛)).▶ Example: 4𝑛3 − 5𝑛2 + 50.

Warning!▶ Converse isn’t true: if 𝑓(𝑛) = Θ(𝑔(𝑛)), it need not
be that lim𝑛→∞ 𝑓(𝑛)𝑔(𝑛) = 𝑐.▶ The limit can be undefined.▶ Example: 5 + sin(𝑛) = Θ(1), but the limit d.n.e.

Big-O and Limits▶ If lim𝑛→∞ 𝑓(𝑛)𝑔(𝑛) < ∞, then 𝑓(𝑛) = 𝑂(𝑔(𝑛)).▶ Namely, the limit can be zero. e.g., 𝑛 = 𝑂(𝑛2).

▶ Warning! Converse not true. Limit may not exist.

Big-O and Limits▶ If lim𝑛→∞ 𝑓(𝑛)𝑔(𝑛) < ∞, then 𝑓(𝑛) = 𝑂(𝑔(𝑛)).▶ Namely, the limit can be zero. e.g., 𝑛 = 𝑂(𝑛2).▶ Warning! Converse not true. Limit may not exist.

Big-Omega and Limits▶ If lim𝑛→∞ 𝑓(𝑛)𝑔(𝑛) > 0, then 𝑓(𝑛) = Ω(𝑔(𝑛)).▶ Namely, the limit can be∞. e.g., 𝑛2 = Ω(𝑛).

▶ Warning! Converse not true. Limit may not exist.

Big-Omega and Limits▶ If lim𝑛→∞ 𝑓(𝑛)𝑔(𝑛) > 0, then 𝑓(𝑛) = Ω(𝑔(𝑛)).▶ Namely, the limit can be∞. e.g., 𝑛2 = Ω(𝑛).▶ Warning! Converse not true. Limit may not exist.

Good to Know▶ log𝑏 𝑛 grows slower than 𝑛𝑝, as long as 𝑝 > 0.▶ Example: lim𝑛→∞ log2 𝑛𝑛0.000001 = 0

