DSC 40B - Homework 06
Due: Wednesday, February 25

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Unless otherwise noted by the problem’s instructions, show your work or provide some
justification for your answer. Homeworks are due via Gradescope at 11:59 p.m.

Problem 1.

For the following problems, recall that (u,v) is a tree edge if node v is discovered while visiting node u
during a breadth-first or depth-first search. Assume the convention that a node’s neighbors are produced in
ascending order by label. You do not need to show your work for this problem.

a) Suppose a breadth-first search is performed on the graph below, starting at node 5. Mark every BFS
tree edge with a bold arrow emanating from the predecessor.

OUENOamnC

b) Suppose a depth-first search is performed on the graph below, starting at node 5. Mark every DFS
tree edge with a bold arrow emanating from the predecessor.

c) Fill in the table below so that it contains the start and finish times of each node after a DFS is
performed on the above graph using node 5 as the source. Begin your start times with 5.

Node Start Finish

Problem 2.

(True or False): Suppose you run the BFS algorithm as described in class from source node s. Suppose at
some point during the algorithm, the status of u is 'undiscovered’. Then the status of v must be 'undiscov-
ered’. [You don’t need to justify your answer.]

(Fill in the blanks) Suppose the shortest path distance from s to w is 10. Then the smallest possible shortest
path distance from stowvis _______________

(True or False): Suppose you run the DFS algorithm as described in class from source node s. Suppose at
some point during the algorithm, the status of v is 'pending’. Then it is possible that the status of u is
'visited’. [You don’t need to justify your answer.]

Problem 3.

Consider the following code (which does not do anything meaningful) that take an undirected and con-
nected graph G = (V, E) as input. Assume that the graph is represented by the adjacency list representation.

Here ’dfs’ within the code is the same DFS procedure that we described in class (e.g, on slide 6 of Lecture
13).

Analyze its time complexity in terms of |V| and |E| using asymptotic language. Make your answer as tight
as possible, and loose bound receives fewer points. [You don’t need to justify your answer.]

def SomeGraphFunction(G):
for u in G.nodes:
for v in G.neighbors(u):
status = {node: 'undiscovered' for node in G.nodes}
dfs(G, v, status)
print("Hello!")

Problem 4.
Give an example of a DAG G = (V, E) of |V| = n nodes, yet with |E| = ©(n?) edges.

Problem 5.

Topologically sort the vertices of the following graph. Note that there may be multiple, equally-correct
topological sorts.

You do not need to show your work for this problem.

Programming Problem 1.

You are given a directed graph representing a tree and a dictionary value which contains a value for each
node. Define the biggest descendent value of a node u to be the largest value of any node which is a descendent
of w in the tree (for this problem, you should consider u to be a descendent of itself.

For instance, given the following tree where each node’s label is replaced by its value:

1
value: 2
2 3
value: 1 value: 4
4 5 6 7
value: 8 value: 5 value: 2 value: 10
8 9
value: 3 value: 9

The biggest descendent value for each node is:

1
biggest: 10

2 3
biggest: 9 biggest: 10

VRN VAN
4 5 6 7
biggest: 9| |biggest: 5 biggest: 2| |biggest: 10
VAN
8 9

biggest: 3| |biggest: 9

In a file named biggest_descendent.py, write a function biggest_descendent (graph, root, value)
which accepts the graph, the label of the root node, and the dictionary of values and returns a dictionary
mapping each node in the graph to its biggest descendent value.

The input graph will be an instance of dsc40graph.DirectedGraph().

Example:

>>>
>>>
>>>
>>>
>>>

{1:

edges = [(1, 2), (1, 3), (2, 4), (2, 5), (4, 8), (4, 9, (3, 6), (3, 7]
g = dsc40graph.DirectedGraph()

for edge in edges: g.add_edge(xedge)

value = {1: 2, 2: 1, 3: 4, 4: 8, 5: 5, 6: 2, 7: 10, 8:3, 9: 9}
biggest_descendent(g, 1, value)

10, 2: 9, 3: 10:, 4: 9, 5: 5, 6: 2, 7: 10, 8: 3, 9: 9}

