DSC 40B - Homework 04
Due: Wednesday, April 30

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Unless otherwise noted by the problem’s instructions, show your work or provide some
justification for your answer. Homeworks are due via Gradescope at 11:59 p.m.

This homework is a little shorter than usual, due to the midterm. Because of that, it will be worth
fewer points than the other homeworks.

Problem 1.

For each of the sequences of numbers shown below, insert the numbers into a binary search tree (BST) in
the exact order given. Draw the binary tree that results (each node in the tree should be labeled by the
number it contains).

a) 50,30, 70,20, 40, 60, 80, 10, 35, 45, 55, 65, 75, 85, 5

b) 5,10,20, 30, 35,40, 50, 55, 45, 60, 70, 80, 85, 75, 65

Problem 2.

Suppose a binary search tree has been augmented so that each node contains an additional attribute called
size which contains the number of nodes in the subtree rooted at that node. Complete the following code
so that it computes the value of the kth smallest key in the subtree rooted at node, where k = 1 is the
minimum.

def order_statistic(node, k):
if node.left is Nomne:
left_size = 0
else:
left_size = node.left.size

order = left_size + 1

if order ==

return node.key
elif order < k:

return order_statistic(...)
else:

return order_statistic(...)

Programming Problem 1.

Suppose you are trying to remove outliers from a data set consisting of points in R%. One of the simplest
approaches is to remove points that are in “sparse” regions — that is, points that don’t have many other
points close by. To do this, we might calculate the distance from a point to it’s kth closest neighbor. If this
distance is above some threshold, we consider the point an outlier.

More generally, the task of finding the distance from a query point to its kth closest “neighbor” is a
common one in data science and machine learning. Here, we’ll consider the 1-dimensional version of the
problem of finding kth neighbor distance. In a file named knn_distance.py, write a function named
knn_distance(arr, q, k) that returns a pair of two things:



o the distance between q and the kth closest point to q in arr;
o the kth closest point to q in arr itself

The query point q does not need to be in arr. For simplicity, arr will be a Python list of numbers, and q
will be a number. k should start counting at one, so that knn_distance(arr, q, 1) returns the distance
between q and the point in arr closest to q. Your approach should have an expected time of ©(n), where n
is the size of the input list. Your function may modify arr. In cases of a tie, the point you return is arbitrary
(though the distance is not). Your code can assume that k will be < len(arr).

Example:

>>> knn_distance([3, 10, 52, 15], 19, 1)

(4, 15)
>>> knn_distance([3, 10, 52, 15,1, 19, 2)
9, 10)
>>> knn_distance([3, 10, 52, 15], 19, 3)
(16, 3)

As this is a programming problem, submit your code to the Gradescope autograder.



