
DSC 40B - Discussion 07

Problem 1.
Consider a breadth-first search on the graph shown in the figure, starting with node c.

a

b

c

f

d

e

g

a) Suppose you call bfs_shortest_paths(graph, ’c’) on the graph above. This function returns dictionaries
distance and predecessor. Write down the contents of these dictionaries as they are when the function
exits.

def bfs_shortest_paths(graph, source):
status = {node:'undiscovered' for node in graph.nodes}
distance= {node:float('inf') for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}
status[source] = 'pending'
distance[source]=0
pending = deque([source])
while there are still pending nodes
while pending:

u = pending.popleft()
for v in graph.neighbors(u):

explore edge (u,v)
if status[v] == 'undiscovered':

status[v]='pending'
distance[v]=distance[u]+1
predecessor[v]=u
append to right
pending.append(v)

status[u]='visited'
return predecessor, distance

Solution:
distance: {
’a’:∞,
’b’:2,
’c’:0,
’d’:1,
’e’:2,
’f’:1,
’g’:3
}
predecessor:{
’a’:None,

1

’b’:’f’,
’c’:None,
’d’:’c’,
’e’:’d’,
’f’:’c’,
’g’:’e’
}

b) Mark the BFS trees produced on executing BFS on this graph.

Solution:

a

b

c

f

d

e

g

2

Problem 2.
Consider the following directed graph.

1 2 3

4 5 6

7 8 9

a) Run Full_DFS on the graph above. Make a bold arrow from node u to node v if u is the predecessor
of node v in DFS. Use the convention that nodes are processed in ascending order by label.

Solution:

1 2 3

4 5 6

7 8 9

b) Fill in the table below so that it contains the start and finish times of each node after a Full_DFS is
performed on the above graph. Assume node 1 as the source for the first DFS call. Begin your start
times with 1.

Node Start Finish

1 1 10

2 11 14

3 12 13

4 2 7

5 8 9

Node Start Finish

6 15 16

7 17 18

8 3 6

9 4 5

Problem 3.

3

Given an undirected graph G=(V,E), give an algorithm to find if the graph is disconnected.

Solution: A connected graph is a graph with one connected component, this means the only CC must
have |V | nodes.
Note that running BFS or DFS on a node in an undirected graph will visit all nodes in the connected
component containing that node.
Thus, we can run BFS or DFS on a node in G (since G is undirected, any node will do). If the size of
the set of visited nodes does not equal |V |, then the graph is disconnected.

4

