DSC 40B - Discussion 07

Problem 1.

Consider a breadth-first search on the graph shown in the figure, starting with node c.

a) Suppose you call bfs_shortest_ paths(graph, ’c’) on the graph above. This function returns dictionaries
distance and predecessor. Write down the contents of these dictionaries as they are when the function
exits.

def bfs_shortest_paths(graph, source):
status = {node:'undiscovered' for node in graph.nodes}
distance= {node:float('inf') for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}
status[source] = 'pending'
distance [source]=0
pending = deque([sourcel])
# while there are still pending nodes
while pending:
= pending.popleft()
for v in graph.neighbors(u):
# explore edge (u,v)
if status[v] == 'undiscovered':
status[v]='pending'
distance[v]=distance[u]+1
predecessor [v]=u
# append to rTight
pending.append (v)
status[u]='visited'
return predecessor, distance

Solution:
distance: {
"a’:00,
'b’:2,

c”:0,

d’:1,

e’:2

1,

g3

}
predecessor:{
a’:None,




7b7:7f7,
"c’:None,
7d’:7c77
767:7(177
7f?:7c7,
9 9.9,

g'e

}

b) Mark the BFS trees produced on executing BFS on this graph.

Solution:

C LN




Problem 2.
Consider the following directed graph.

O———)

a) Run Full_DFS on the graph above. Make a bold arrow from node u to node v if u is the predecessor
of node v in DFS. Use the convention that nodes are processed in ascending order by label.

Solution:

b) Fill in the table below so that it contains the start and finish times of each node after a Full DFS is

performed on the above graph. Assume node 1 as the source for the first DFS call. Begin your start
times with 1.

Node Start Finish

) 1 10 Node Start Finish
6 15 16

2 11 14
7 17 18

3 12 13
8 3 6

4 2 7
9 4 5

5 8 9

Problem 3.



Given an undirected graph G=(V,E), give an algorithm to find if the graph is disconnected.

Solution: A connected graph is a graph with one connected component, this means the only CC must
have |V| nodes.

Note that running BFS or DFS on a node in an undirected graph will visit all nodes in the connected
component containing that node.

Thus, we can run BFS or DFS on a node in G (since G is undirected, any node will do). If the size of
the set of visited nodes does not equal |V|, then the graph is disconnected.




