
DSC 40B - Discussion 06

Problem 1.

a

b

c

f

d

e

g

a) Consider a breadth-first search on the graph shown in the figure, starting with node c. Which nodes
are visited, and in what order? Use the convention that graph.neighbors() produces successors in
ascending order of label.

Solution: c,d,f,e,b,g

b) Consider a breadth-first search on the graph shown in the figure, starting with node a. Which nodes
are visited, and in what order? Use the convention that graph.neighbors() produces successors in
ascending order of label.

Solution: a,b,f,c,d,e,g

c) Consider a breadth-first search on the graph shown in the figure, starting with node g. Which nodes
are visited, and in what order? Use the convention that graph.neighbors() produces successors in
ascending order of label.

Solution: g,d,e

Problem 2.
Consider line 6 in Algorithm 1 shown on the next page. Whenever this line is executed, is it possible...

a) ...that node is ’pending’?

Solution: No
All ’pending’ nodes marked in bfs are dequeued and marked as visited in the same call. Thus,
only ’visited’ and ’undiscovered’ after a call to bfs.

b) ...that node is ’visited’?

1



Solution: Yes

c) ...that some other node is ’pending’?

Solution: No

d) ...that some other node is ’visited’?

Solution: Yes

Figure 1: Algorithm 1

1. from collections import deque
2.
3. def full_bfs(graph):
4. status = {node: 'undiscovered' for node in graph.nodes}
5. for node in graph.nodes:
6. if status[node] == 'undiscovered'
7. bfs(graph, node, status)
8.
9. def bfs(graph, source, status=None):
10. """Start a BFS at `source`."""
11. if status is None:
12. status = {node: 'undiscovered' for node in graph.nodes}
13.
14. status[source] = 'pending'
15. pending = deque([source])
16.
17. # while there are still pending nodes
18. while pending:
19. u = pending.popleft()
20. for v in graph.neighbors(u):
21. # explore edge (u,v)
22. if status[v] == 'undiscovered':
23. status[v] = 'pending'
24. # append to right
25. pending.append(v)
26. status[u] = 'visited'

Problem 3.
An edge weighted graph G = (V,E, ω) is a graph along with a function ω : E → R which assigns a weight to
every edge in the graph. One of the uses of edges weights is to encode dissimilarities. That is, the greater
the weight of an edge, the more dissimilar the nodes at either end.
A natural task involving weighted graphs is to cluster the nodes of the graph into groups such that nodes in
the same group are similar to one another while two nodes in different groups are dissimilar.
Here is a simple way of clustering a weighted, undirected graph G = (V,E, ω). Given a real number t, place

2



two nodes u and v in the same cluster if (and only if) there is a path between u and v along which every
edge has weight ≤ t. For instance, consider the graph below:

1

2

3

4

5

6

3.41.3

2.7 0.3

0.90.5 0.7
2.1

If t = 1, there are three clusters: {1, 2}, {4, 5, 6} and
{3}. If t = 2, there are two clusters: {1, 2, 3} and
{4, 5, 6}. And if t = 3, there is one cluster containing
all of the nodes.

Design an algorithm which returns the clusters given an input graph, a weight function, weights, and a
threshold t. Your algorithm should take Θ(V + E) time. To receive full credit, your algorithm should not
modify the graph or create a copy of it. Provide pseudocode (or Python).

Solution:

def cluster(graph, weights, t):
status = {'undiscovered' for node in graph.nodes}
clusters = []
for node in graph.nodes:

if status[node] == 'undiscovered':
cluster = bfs_cluster(graph, node, weights, status, t)
clusters.append(cluster)

def bfs_connected_components_with_threshold(
graph, source, weights, status, t):

cluster = [source]
pending = deque([source])
status[source] = 'pending'
while pending:

u = pending.popleft()
for v in graph.neighbors(u):

if status[v] == 'undiscovered' and weight(u, v) <= t:
pending.append(v)
status[v] = 'pending'
cluster.append(v)

status[u] = 'visited'
return cluster

3


