
DSC 40B - Discussion 04

Problem 1.

a) State (but do not solve) the recurrence relation describing this function’s run time.
import random
def foo(n):

if n <= 2:
return

for i in range(n):
for j in range(i,n):

print(i)
return foo(n//2) + foo(n//2)

Solution: T (n) = 2T (n/2) + Θ(n2)

b) Suppose a binary search is performed on the following array using the implementation of binary_search
from lecture. What is the worst case number of equality comparisons that would be made to search for
an element in the array? That is, what is the greatest number of times that arr[middle] == target
can be run?
[1, 4, 7, 8, 8, 10, 15, 51, 60, 65, 71, 72, 101]

Solution: 4.
The worst case number of comparisons occurs when what we’re looking for is not in the array.
Assume that the target is -999 so that every recursive call looks left (it actually matters whether
we always look left or look right; if we look right, the number of comparisons will be one fewer).
On the first call, start is 0 and the stop is 13. One comparison is made during this call to check
if the middle element is the target.
On the second call, start is 0 and the stop is 6. One comparison is made during this call to
check if the middle element is the target.
On the third call, start is 0 and the stop is 3. One comparison is made during this call to check
if the middle element is the target.
On the fourth call, start is 0 and the stop is 1. One comparison is made during this call to
check if the middle element is the target.
On the fifth call, start is 0 and the stop is 0. However, no comparisons between the target and
other numbers are made during this call since the base case (any empty array) has been reached.

c) State (but do not solve) the recurrence relation describing this function’s run time.
def fibonacci(n):

if n == 0:
return 0

if n == 1:
return 1

return fibonacci(n - 1) + fibonacci(n - 2)

How can we improve the run time of this function?

1



Solution: T (n) = c+ T (n− 1) + T (n− 2)

To improve the run time, we can have the function output both the nth and (n− 1)th fibonacci
numbers, which means we only need one recursive call.

Below is some sample code for the improved function.

def fib_improved(n):
if n == 0:

return (0, 0)
if n == 1:

return (1, 0)
(a, b) = fib_improved(n - 1)
return (a + b, a)

The new recurrence relation is T (n) = c+ T (n− 1), which is Θ(n).

Problem 2.

Solve the following recurrence relations.

a) T(n) = T(n-1) + n
T(0)=0

Solution:

T (n) = T (n− 1) + n

= [T (n− 2) + n− 1] + n

= T (n− 2) + 2n− 1

= [T (n− 3) + n− 2] + 2n− 1

= T (n− 3) + 3n− (1 + 2)

= [T (n− 4) + n− 3] + 3n− (1 + 2)

= T (n− 4) + 4n− (1 + 2 + 3)

We can infer that T (n) = T (n− k) + kn−
∑k−1

i=1 i in the k-th step.
T(0) is the base case. n− k = 0 when n = k.

n−1∑
i=1

i =
(n− 1)n

2
=

n2 − n

2

T (n) = T (n− n) + n · n−
n−1∑
i=1

i

= T (0) + n2 − n2 − n

2

= 0 + n2 − n2 − n

2

= θ(n2)

2



b) T(n)=4T(n/4) + n
T(1)=1

Solution:

T (n) = 4 · T (n/4) + n

= 4 [4 · T (n/16) + n/4] + n

= 16 · T (n/16) + 2n

= 16 [4 · T (n/64) + n/16] + 2n

= 64 · T (n/64) + 3n

We can infer that in the k-th step, we have:

= 4k · T (n/4k) + k · n

The base case will be reached when n/4k = 1, that is, when k = log4 n. Substituting this value
of k into the general expression:

T (n) = 4log4 n · T (n/4log4 n) + n · log4 n
= n · T (n/n) + n · log4 n
= n · T (1) + n · log4 n

Since T (1) = 1, we have:

= n+ n · log4 n
= Θ(n log4 n)

Since logarithms of different bases differ only by a constant factor, we typically omit the base
when using asymptotic notation:

= Θ(n log n)

3


