
DSC 40B - Midterm Review

The questions below are indicative of what you will see on the midterm. However, note that the midterm
itself will be longer. The exam will contain around 25 questions, with each taking an average of 2 to 3
minutes. The time limit for the exam will be 90 minutes.

Problem 1.
Questions that gave you trouble on the homeworks:

a) Give a Θ simplification for the following expression. Do not use limits, instead go back to the definition
with constants:

f(n) =
(n− 2)(n3 + n+ 2)

n2 + 1

b) Give a tight theoretical lower bound for the following problem:
Given a list of n numbers, all assumed to be integers between 1 and 100, sort them.

Problem 2.
What is the time complexity of this piece of code?

def factorial(n):
r = 1
i = n
while i > 0:

r = r*i
i -= 1

return r

� θ(n2)

� θ(n3)

� θ(nlogn)

� θ(n)

Solution: θ(n)

Problem 3.
What is the time complexity of this piece of code?

def foo(n):
for i in range(5, 10):

for j in range(i):
for k in range(n):

print(i, j, k)

� θ(n2)

� θ(n3)

� θ(nlogn)

� θ(n)
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Solution: θ(n)
The two outer loops run for only a constant number of iterations and the inner most loop runs for θ(n)
iterations. Therefore, the total time complexity is θ(n).

Problem 4.
This piece of code returns the number of ”pairs” of the form (x, -x) in a collection of numbers. What is the
time complexity of this piece of code if the input is a Python list of size n?

def count_pairs(numbers):
count = 0
for x in numbers:

if -x in numbers:
count += 1/2

return count

� θ(n2)

� θ(n3)

� θ(nlogn)

� θ(n)

Solution: θ(n2)
Checking if an element is in the list using the Python in operator takes time linear in the size of the
list. Therefore, the if statement in the code takes θ(n) time. The for loop executes for θ(n) iterations.
Hence, the total time complexity is θ(n2).

Problem 5.
The below code shows the iterative version of binary search.

def binary_search(arr, t, start, stop):
while start < stop:

middle = start + (stop -start) // 2
if(arr[middle] == t):

return middle
if(arr[middle]<t):

start = middle + 1
else:

stop = middle

Let n = stop - start. What is the worst-case time complexity of this version of binary search?

� θ(n2)

� θ(logn)

� θ(nlogn)

� θ(n)

Solution: θ(logn)

Problem 6.
Here is a recursive algorithm for computing the factorial of n:

2



def factorial(n):
if n == 0:

return 1
return n * factorial(n-1)

What is the recurrence relation describing this function’s run time?

Solution: T(n) = 1 + T(n-1)

Problem 7.
Suppose f1(n) = Θ(n3) and f2(n) = Ω(n). Which is true about the upper bound of f1 + f2?

� f1(n) + f2(n) = O(n)

� It cannot be determined
� f1(n) + f2(n) = O(n3)

Solution: It cannot be determined

Problem 8.
Suppose f1(n) = Ω(n2) and O(n5) and f2(n) = Ω(n3) and O(n6). Which is true about f1 + f2?

� It is O(n5) and Ω(n2)

� It is O(n6) and Ω(n3)

� It is O(n6) and Ω(n2)

� It is O(n5) and Ω(n3)

Solution: It is O(n6) and Ω(n3)

Problem 9.
If f(n) = O(n2), then f(n) = Ω(n2)

� True
� False

Solution: False
Assume f(n) = n. In this case, f(n) = O(n2), but f(n) 6= Ω(n2)

Problem 10.
If f(n) = O(n5), and g(n) = O(n2) then f(n)/g(n) = O(n3)

� True
� False

Solution: False
Assume f(n) = n5 and g(n) = 1. In this case, f(n) = O(n5), and g(n) = O(n2).
But f(n)/g(n) = n5 6= O(n3).
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Problem 11.
The best case and worst case time complexity of merge sort is θ(nlogn)

� True
� False

Solution: True

Problem 12.
The recursive calls made by mergesort are always on arrays of strictly smaller size than the input array.

� True
� False

Solution: True

Problem 13.
Consider the modified mergesort given below:

def mergesort(arr):
if len(arr)>1 :

middle=math.floor(len(arr)/2)
left=arr[:middle]
right=arr[middle:]
for i in range(len(arr)):

for j in range(len(arr)):
print("Mergesort")

mergesort(left)
mergesort(right)
merge(left, right, arr)

What is the time complexity of this modified mergesort?

� Θ(n2)

� Θ(n3)

� Θ(nlogn)

� Θ(n)

Solution: θ(n2)
The recurrence relation for the modified mergesort is T (n) = n2 + 2T (n/2). Let’s try to solve the
recurrence by unrolling the loop.
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T (n) = 2T (n/2) + n2

= 2[2T (n/4) + (
n

2
)2] + n2

= 4T (n/4) + 2(
n2

22
) + n2

= 4T (n/4) + n2(1 +
1

2
)

= 4[2T (n/8) + (
n

4
)2] + n2(1 +

1

2
)

= 8T (n/8) + 4(
n2

42
) + n2(1 +

1

2
)

= 8T (n/8) + n2(1 +
1

2
+

1

4
)

At k-th step, we have T (n) = 2kT (n/2k) + n2(1 + 1
2 + 1

4 + ...+ 1
2k−1 )

Base case is T(1).

n = 2k

=> logn = k

Substituting the value of k, we get

T (n) = 2lognT (1) + n2(1 + 1/2 + ...)

= θ(n2)

Problem 14.
Suppose you are given n numbers in a Python list in sorted order. Describe an efficient algorithm for checking
to see if there is any number in the list which occurs 42 times. Do not use a dictionary/hash map.

Solution: Iterate over the elements in the list at indices from 0 to len(list) - 42 using a for loop. For
each index i, check if the element at i+41 is equal to the element at i. If yes, return the element.

Problem 15.
Consider this version of quicksort given below. It is essentially the same as that given in lecture, except that
1) it always uses the last element of the array as the pivot, and 2) it has a print statement inserted at a
crucial place.

def quicksort(arr, start, stop):
"""Sort arr[start:stop] in-place."""
if stop - start > 1:

pivot_ix = partition(arr, start, stop, stop-1)
quicksort(arr, start, pivot_ix)
quicksort(arr, pivot_ix+1, stop)

def partition(arr, start, stop, pivot_ix):
def swap(ix_1, ix_2):

arr[ix_1], arr[ix_2] = arr[ix_2], arr[ix_1]
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pivot = arr[pivot_ix]
swap(pivot_ix, stop-1)
middle_barrier = start
for end_barrier in range(start, stop - 1):

if arr[end_barrier] < pivot:
print('hello')
swap(middle_barrier, end_barrier)
middle_barrier += 1

# else:
# do nothing

swap(middle_barrier, stop-1)
return middle_barrier

Suppose arr is an array of length n with entries [1, 2, 3, ..., n], where n is some large integer. If
quicksort(arr, 0, n) is run, exactly how many times will "hello" be printed to the screen? Your answer
should be an expression involving n, and should not involve

∑
or . . .. Show your work.

Solution: Suppose we make a call to quicksort on a sorted array of size k. The pivot is set to the
last (and largest) element in the array, therefore the condition of the if-statement in partition always
evaluates to true, printing "hello" k − 1 times.
When the array is sorted, the root call to quicksort spawns two recursive calls; one on an array of size
n− 1 and the other on an array of size zero. The first recursive call spawns two calls; one on an array
of size n− 2 and the other on an array of size zero. And so forth. Only the recursive calls to arrays of
size > 1 result in a call to partition. Therefore partition is called on arrays of size n, n− 1, n− 2,
n− 3, . . ., 3, 2, and the total number of printed "hello"s is:

(n− 1) + (n− 2) + (n− 3) + . . .+ 3 + 2 + 1 =
(n− 1)n

2
.
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