DSC 408

Thtm/é%ca/ Founolatong 7L

Lecture 14 Part 1

Shortest Paths in Weighted Graphs

Google Maps

- Saz{ailw’"\'"

c¥Y

\ 7

4p — Livsioll

N
(37,

Google Maps

5 ettt
\ 241

S 2
\O N
oy o
% | 20%
N
s

|[oF
\\2
740

5019

Weighted Graphs

An edge weighted graph G = (V, E, w) is a triple where
(V,E)isagraphand w : E - R maps each edge to a
weight.

Can be directqd or undirected.. . .
In general, weights can be positive, negative, zero.
Many uses, such as representing metric spaces.

Path Lengths

The length of a path in a weighted graph (usually)
refers to the total weight of all edges in the path.

Example: (SD, Riverside, Bakersfield, SF) 0

= Sazra\wvﬂ*’ '08:’;'
5% 2490 “
Iz 207 Zq o
pl— K{\/U/S(d!«
® = 685

N
sQ

Shortest Paths

A shortest path between u and v is a path

between u and v with minimum length.
In other words, minimum total weight.

Example

What is the shortest path from v, to v,?

F2O—>@),
~ %@
2 g N
@_4%@‘/0‘ >

Today (and next time)

How do we find shortest paths in weighted graphs?

Idea #0

Does BFS work?
No, not really. Only if all weights are the same.

Can we “convert” a weighted graph to an
unweighted one?

Idea #0
2

©

O,

Idea #0

@®—0—0—Q

Idea #0

Step 1: “Convert” weighted graph to unweighted
one with dummy nodes.

Step 2: Call BFS on this new graph.

Idea #0

Very inefficient for large weights.

do
% WM
= Sam:\ -

9? 2490

o9
e

4 A _,,27— K{VU/S{M
N
50

What if edge weights are floats, or negative?

Ideas #1 and #2

We'll look at two algorithms: Bellman-Ford and
Dijkstra’s.

INPUT: weighted graph, source vertex s.
OuTPUT: shortest paths from s to every other node.

Both work by:
keeping track of shortest known path (estimates).
iteratively updating these until they're correct.

Shortest Path Estimates

B-F and Dijkstra’s keep track of the shortest
paths found so far; we call these the estimated
shortest paths.

For each node u, remember u's:
predecessor in estimated shortest path;
distance from source s in estimated shortest path.

Key: estimated distance will always be > actual
distance.

Updates

Both algorithms work by iteratively updating
their estimates.

On each iteration, consider a new edge (u,v)@
Ask: is the best known shortest path from

source = - > U =V

shorter than the best known shortest path from

source — - — predecessor[v] = V?

If it is, we have discovered a shorter path to v.

Example: Updating (u,, v):

7\ curvent
‘ @ ﬂ()"'(ma‘}‘{d
| =

% ?vedumm
7
10

]
2
@
' CMVL+
He——0u etimated

distarces

Example: Updating (u,, v):

estimated length of s » u, = v
= (estimated length of s - u,) + w(u,, V)
=4+2=6<10

Example: After Updating (u,, v):

A shorter path has been found.

Let:

Updating, in Code
est be a dictionary of estimated shortest
path distances.

predecessor be a dictionary of estimated
shortest path predecessors.

weights be a function which returns edge
weights.

Updating, in Code
Pyza(fv]
A
def update(u, v, weights, est, predecessor):
"""Update edge (u,v).”””
if est[v] > est[u] + weights(u,v):
est[v] = est[u] + weights(u,v)

predecessor[v] = u \\\\\§>(32;>

return True €9+Ey]
else: IA W‘N

return False es*ﬁi]

Time complexity: Q(Q

When does an update discover a
shortest path?

Supposing (u,,v) finds a shorter path to v.

True or(he actual shortest path must go through u,.

When does an update discover a
shortest path?

Suppose updating (u,, v) finds a shorter path to v.
True or False: the actual shortest path must go through u,.
False: we might later discover a better path to u,.

When does an update discover the
shortest path?

Let (u,v) be an edge.

Suppose:
the actual shortest path to u has been found;
the actual shortest path to v goes through (u, v).

Then after updating (u, v), the estimated shortest
path to v is correct.

psc 408

77’(101/37400// Founolatong 7L

Lecture 14 Part 2

Bellman-Ford

Intuition

Shortest paths that have many edges are
“harder” to discover.
May require many updates.

Shortest paths that have few edges are “easier”
to discover.

Once we've discovered all of the shortest paths
with few edges, it makes it easier to discover the
shortest paths with more edges.

Updating All Edges

AO—>@,
o >@

; \
@—*—»@/

Suppose we update all of the edges, one by one.

Then all nodes whose shortest path from s has
only one edge are guaranteed to be estimated
correctly.

Updating All Edges

%@%@;\GD
N\
>

Suppose we update all of the edges again.

®

Then all nodes whose shortest path from s has
at most two edges are guaranteed to be
estimated correctly.

Loop Invariant
One iteration: update all edges in arbitrary order.

Loop invariant: After a iterations, all nodes
whose shortest path from s has < a edges are
guaranteed to be estimated correctly.

The Bellman-Ford Algorithm

def bellman_ford(graph, weights, source):
"""Assume graph is directed.”””
est = {node: float('inf') for node in graph.nodes}
est[source] = o
predecessor = {node: None for node in graph.nodes}

for i in range([?):
for (u, v) in graph.edges:
update(u, v, weights, est, predecessor)

return est, predecessor

Bellman-Ford

Claim: each node must have a shortest path
which is simple’.

The most edges a simple path can have is |V| -1

Idea of Bellman-Ford: iteratively update all
edges, repeat |V| - 1 times.

"Edge case: cycles of weight zero.

The Bellman-Ford Algorithm

def bellman_ford(graph, weights, source):
"""Assume graph is directed.”””
est = {node: float('inf') for node in graph.nodes}
est[source] = o
predecessor = {node: None for node in graph.nodes}

for i in range(len(graph.nodes) - 1):
for (u, v) in graph.edges:
update(u, v, weights, est, predecessor)

return est, predecessor

Example

Suppose graph.edges returns edges in following

order:
|1] (Vo V), (V30 Vo), (Vs V3), (Vi V), (Vi Vo),

(V7r V5)r (Vlu V5), (V51 Ve)r (V‘] ’ V7)
1 2O—>®
| 3

®1/ . Z,I \® 5
7 N
@0) _4_%@7) S ,_/

Time Complexity

def bellman_ford(graph, weights, source):
Assume graph is directed.”””

est = {node: float('inf') for node in graph.nodes}
est[source] = o G(\l)

predecessor = {node: None for node in graph.nodes}

mnn

for i in range(len(graph.nodes) - 1):
for (u, v) in graph.edges:
update(u, v, weights, est, predecessor)

return est, predecessor V+ \/E —_ E

Setup: M time

Each update takes ﬂi time

There are exactly LMQL)L‘* updates
Total time complexity:@(i’ifi)

DSC 408

Thtm/é%ca/ Founolatong 7L

Lecture 14 Part 3

Early Stopping and Negative Cycles

Early Stopping

B-F may not need to run for |V | - 1 iterations.

If no predecessors change, we can break:

def bellman_ford(graph, weights, source):

nun

"""Farly stopping version.
est = {node: float('inf') for node in graph.nodes}
est[source] = o

predecessor = {node: None for node in graph.nodes}

for i in range(len(graph.nodes) - 1):
any_changes = False
for (u, v) in graph.edges:
changed = update(u, v, weights, est, predecessor)
any_changes = changed or any_changes
if not any_changes:
break
return est, predecessor

Negative Cycles

A negative cycle is a cycle whose total edge
weight is negative:

N

® ®
N\ A
@5'@L/>@

If a graph has a negative cycle, (some) shortest
paths are not well defined.

Detecting Negative Cycles

If graph does not have negative cycles,
estimated distances eventually stop changing
(after at most |V| - 1 iterations).

If graph has negative cycles, estimated distances
always decrease.

To detect them: run a |V [th iteration; if distances
change, a negative cycle exists.

Detecting Negative Cycles

def bellman_ford(graph, weights, source):
"""Early stopping version, detects negative cycles.
est = {node: float('inf') for node in graph.nodes}
est[source] = o
predecessor = {node: None for node in graph.nodes}

mnn

for i in range(len(graph.nodes)):
any_changes = False
for (u, v) in graph.edges:
changed = update(u, v, weights, est, predecessor)
any_changes = changed or any_changes
if not any_changes:
break
this will be True if negative cycles exist
contains_negative_cycles = any_changes
return est, predecessor, contains_negative_cycles

