DSC 40B Theoretical Foundations II

Lecture 14 | Part 1

Shortest Paths in Weighted Graphs

Google Maps

Google Maps 107 112 Sacramento 95 290 SF Bakersfield 09 409 207 Riverside JA BI

50

Weighted Graphs

An edge weighted graph $G = (V, E, \omega)$ is a triple where (V, E) is a graph and $\omega : E \rightarrow \mathbb{R}$ maps each edge to a weight.

Can be directed or undirected.

- In general, weights can be positive, negative, zero.
- Many uses, such as representing metric spaces.

Path Lengths

The **length** of a path in a **weighted graph** (usually) refers to the total weight of all edges in the path.

Example: (SD, Riverside, Bakersfield, SF)

Shortest Paths

A shortest path between u and v is a path between u and v with minimum length.
 In other words, minimum total weight.

Example

What is the shortest path from v_1 to v_6 ?

Path: V_1 , V_2 , V_3 , V_4 , V_5 , V_4 , V_6 Length: 4

Today (and next time)

How do we find shortest paths in weighted graphs?

Does BFS work?

No, not really. Only if all weights are the same.

Can we "convert" a weighted graph to an unweighted one?

ldea #0

- Step 1: "Convert" weighted graph to unweighted one with dummy nodes.
- Step 2: Call BFS on this new graph.

Very inefficient for large weights.

What if edge weights are floats, or negative?

Ideas #1 and #2

We'll look at two algorithms: Bellman-Ford and Dijkstra's.

> INPUT: weighted graph, source vertex s. OUTPUT: shortest paths from s to every other node.

- Both work by:
 - keeping track of shortest known path (estimates).
 - iteratively updating these until they're correct.

Shortest Path Estimates

- B-F and Dijkstra's keep track of the shortest paths found so far; we call these the estimated shortest paths.
- For each node u, remember u's:
 predecessor in estimated shortest path;
 distance from source s in estimated shortest path.
- Key: estimated distance will always be ≥ actual distance.

Updates

- Both algorithms work by iteratively updating their estimates.
- On each iteration, consider a new edge (u, v). Ask: is the best known shortest path from

source
$$\rightarrow \dots \rightarrow u \rightarrow v$$

shorter than the best known shortest path from

source $\rightarrow \dots \rightarrow$ predecessor[v] $\rightarrow V$?

If it is, we have discovered a shorter path to v.

Example: Updating (u_2, v) **:**

Example: Updating (*u*₂, *v*):

estimated length of $s \rightarrow u_2 \rightarrow v$ = (estimated length of $s \rightarrow u_2$) + $\omega(u_2, v)$ = 4 + 2 = 6 < 10

Example: After Updating (u_2, v) **:**

A shorter path has been found.

Updating, in Code

- Let:
 - est be a dictionary of estimated shortest path distances.
 - predecessor be a dictionary of estimated shortest path predecessors.
 - weights be a function which returns edge weights.

Updating, in Code

pred [v]

► Time complexity: <u>()</u>

When does an update discover a shortest path?

Suppose updating (u₂, v) finds a shorter path to v.
 True or False: the actual shortest path must go through u₂.

When does an update discover a shortest path?

- Suppose updating (u_2, v) finds a shorter path to v.
- True or False: the actual shortest path must go through u_2 .
- False: we might later discover a better path to u_1 .

When does an update discover the shortest path?

• Let (u, v) be an edge.

Suppose:

- the actual shortest path to *u* has been found;
- the actual shortest path to v goes through (u, v).
- Then after updating (u, v), the estimated shortest path to v is correct.

DSC 40B Theoretical Foundations II

Lecture 14 | Part 2

Bellman-Ford

Intuition

- Shortest paths that have many edges are "harder" to discover.
 - May require many updates.
- Shortest paths that have few edges are "easier" to discover.
- Once we've discovered all of the shortest paths with few edges, it makes it easier to discover the shortest paths with more edges.

Updating All Edges

Suppose we update all of the edges, one by one.

Then all nodes whose shortest path from s has only one edge are guaranteed to be estimated correctly.

Updating All Edges

Suppose we update all of the edges again.

Then all nodes whose shortest path from s has at most two edges are guaranteed to be estimated correctly.

Loop Invariant

- One iteration: update all edges in arbitrary order.
- Loop invariant: After α iterations, all nodes whose shortest path from s has ≤ α edges are guaranteed to be estimated correctly.

The Bellman-Ford Algorithm

```
def bellman_ford(graph, weights, source):
    """Assume graph is directed."""
    est = {node: float('inf') for node in graph.nodes}
    est[source] = 0
    predecessor = {node: None for node in graph.nodes}
```

```
for i in range(?):
    for (u, v) in graph.edges:
        update(u, v, weights, est, predecessor)
```

```
return est, predecessor
```

Bellman-Ford

- Claim: each node must have a shortest path which is simple¹.
- The most edges a simple path can have is |V| 1
- Idea of Bellman-Ford: iteratively update all edges, repeat |V| – 1 times.

¹Edge case: cycles of weight zero.

The Bellman-Ford Algorithm

```
def bellman_ford(graph, weights, source):
    """Assume graph is directed."""
    est = {node: float('inf') for node in graph.nodes}
    est[source] = 0
    predecessor = {node: None for node in graph.nodes}
```

```
for i in range(len(graph.nodes) - 1):
    for (u, v) in graph.edges:
        update(u, v, weights, est, predecessor)
```

```
return est, predecessor
```

Example

Suppose graph.edges returns edges in following order:

 $\left(\left| \right| \right)$

 $(V_3, V_4), (V_1, V_2), (V_2, V_3), (V_7, V_6), (V_5, V_7),$ $(V_7, V_5), (V_4, V_5), (V_5, V_6), (V_1, V_7)$

Time Complexity

```
def bellman ford(graph, weights, source):
   """Assume graph is directea.
est = {node: float('inf') for node in graph.nodes}
   predecessor = {node: None for node in graph.nodes}.
   for i in range(len(graph.nodes) - 1):
       for (u, v) in graph.edges:
           update(u, v, weights, est, predecessor)
                                                     V+ VE -F
   return est. predecessor
  Setup: \Theta(\mathbf{V}) time
   Each update takes ______ time
  ► There are exactly (|V|-1) \times |E|
                                                      updates
   Total time complexity:
```

DSC 40B Theoretical Foundations II

Lecture 14 | Part 3

Early Stopping and Negative Cycles

Early Stopping

- B-F may not need to run for |V| 1 iterations.
- If no predecessors change, we can break:

```
def bellman ford(graph, weights, source):
    """Early stopping version."""
    est = {node: float('inf') for node in graph.nodes}
    est[source] = \odot
    predecessor = {node: None for node in graph.nodes}
    for i in range(len(graph.nodes) - 1):
        anv changes = False
        for (u, v) in graph.edges:
            changed = update(u, v, weights, est, predecessor)
            any_changes = changed or any_changes
        if not any changes:
            break
    return est, predecessor
```

Negative Cycles

A negative cycle is a cycle whose total edge weight is negative:

If a graph has a negative cycle, (some) shortest paths are not well defined.

Detecting Negative Cycles

- If graph does not have negative cycles, estimated distances eventually stop changing (after at most |V| – 1 iterations).
- If graph has negative cycles, estimated distances always decrease.
- To detect them: run a |V|th iteration; if distances change, a negative cycle exists.

Detecting Negative Cycles

```
def bellman ford(graph, weights, source):
    """Early stopping version, detects negative cycles."""
    est = {node: float('inf') for node in graph.nodes}
    est[source] = \odot
    predecessor = {node: None for node in graph.nodes}
    for i in range(len(graph.nodes)):
        any changes = False
        for (u. v) in graph.edges:
            changed = update(u, v, weights, est, predecessor)
            any changes = changed or any changes
        if not any changes:
            hreak
    # this will be True if negative cycles exist
    contains_negative_cycles = any_changes
    return est, predecessor, contains_negative_cycles
```