DSC 408

Thtm/é%ca/ Founolatong 7L

Lecture 12 Part1

Review: Aggregate Analysis

What is the time complexity of the following code
interms of |V| and |E|?

| O+v)
for u in graph.nodes:

for v in graph.neighbors(u):

print(”Edge:", u, V)&#Q‘(ch"
\E| ~2ie|

Answer

for u in graph.nodes:
for v in graph.neighbors(u):
print(”Edge:"”, u, Vv)

Time complexity: ©(V + E)

The print executes:
once for each edge, if the graph is directed.
twice for each edge, if the graph is undirected.

Another Look...

O+

®© ®
Consider the graph’s . ’ ’
dict-of-sets representation. ®—0
for u in graph.nodes: {
for v in graph.neighbors(u): "a”: {"b"},
prlnt(Edge:"' u, V) "H. {nan' nen

"C": {"b", "d"}'

"d": {"C"}

def

def

Time Complexity

full_bfs(graph):
status = {node: 'undiscovered' for node in graph.nodes} @ V
for node in graph.nodes:
if status[node] == 'undiscovered'
bfs(graph, node, status)

bfs(graph, source, status=None):
"""Start a BFS at ‘source’.””"”
if status is None:
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending’
pending = deque([source]) ,ﬁ{,\(ecs.
while there are still pending nodes Z\E\ (fF‘W\A\f)
while pending: ‘E o
u = pending.popleft()
for v in graph nelghbors(u) w\ [05”3

append to rl%h;: @ €>;\§ —
d d .
st § T wgf | O(v+E)

Suppose bfs is called on an undirected graph us-
ing source node u.

If u is part of a connected component with nodes
V, and edges E,, what is the time complexity of the
call to bfs?

Answer
Time complexity: O(V, + E;)

bfs explores all nodes and edges in the
connected component.

Time Complexity of Full BFS

full_bfs calls bfs once for each connected
component.

Time complexity:

O((Vy + Eq) + (Vo + Ey) + o + (Vp + Eg))
=O((Vy +Vy+..+ V) +(E; + E5 +... + Ep))
= O(V +E)

Time Complexity

Full BFS takes O(V + E)

Time Complexity

|£)
Full BFS takes O(V + E) m \ (
V| |V|—\>
Why not just ©(E)? — z
O(V + E) works for all graphs. 6(\/7’)

If we know more about the number of edges, we
might be able to simplify.

E.g., if the graph is complete, E = O(V?), so time
complexity is O(V + V2) = O(V?).

psc 4058

77’(101/27400// Founolatong 7L

Lecture 12 | Part 2
Shortest Paths

Recall

The length of a path is

(# of nodes) - 1

bo 0\7 Definitions

A shortest path between u and v is a path

between u and v with smallest possible length.
There may be several, or none at all.

The shortest path distance is the length of a

shortest path.
Convention: oo if no path exists.
“the distance between u and v’ means spd.

Today: Shortest Paths

Given: directed/undirected graph G, source u

Goal: find shortest path from u to every other node

Key Property of Shortest Paths

Suppose you have shortest path from u to v.

Suppose it goes through the edge (x, v).
x is a neighbor of v.

Then the part of that path fromuto x is a

shortest path.) , \%

Key Property, Restated

A shortest path of length k is composed of:
A shortest path of length k- 1.
Plus one edge.

Node v has three neighbors: a, b, and c. The dis-
tance from:

utoaisb.

utobis3.

utocis7?
What is the distance fromutov? Y

Algorithm Idea

Find all nodes distance 1 from source.
Use these to find all nodes distance 2 from source.

Use these to find all nodes distance 3 from source.

It turns out...

...this is exactly what BFS does.

DSC 408

Tmﬁm/ Founolatong 7L

Lecture 12 Part 3
BFS for Shortest Paths

Key Property of BFS

For any kR 2 1 you choose:

All nodes distance k-1 from source are added to
the queue before any node of distance k.

3

Therefore, nodes are “processed” (popped from
queue) in order of distance from source.

Discovering Shortest Paths

We “discover” shortest paths when we pop a
node from queue and look at its neighbors.

But the neighbor’s status matters!

Consider This
We pop a node s.
It has a neighbor v whose status is

We've discovered a shortest path to v through s!

Consider This
We pop a node s.

It has a neighbor v whose status is
visited.

We already have a shortest path to v.

or

Modifying BFS
Use BFS “framework”.

Return dictionary of search predecessors.
If v is discovered while visiting u, we say that u is the
BFS predecessor of v.
This encodes the shortest paths.

Also return dictionary of shortest path distances.

def bfs_shortest_paths(graph, source):
"""Start a BFS at ‘source .”””
status = {node: 'undiscovered' for node in graph.nodes}
distance = {node: float('inf') for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}

status[source] = 'pending'

—>distance[source] = o

pending = deque([sourcel)

while there are still pending nodes
while pending:
u = pending.popleft()
for v in graph.neighbors(u):
explore edge (u,v)
if status[v] == 'undiscovered':
status[v] = 'pending’
distance[v] = distancel[u] + 1
gpredecessor[v] =u
append to right
pending.append(v)
status[u] = 'visited'

return predecessor, distance

Example

psc 4058

771101/27[700// Founolatong 7L

Lecture 12 Part 4
BFS Trees

Result of BFS

Each node reachable from source has a single

BFS predecessor.
Except for the source itself.

The result is a tree (or forest).

Trees

A (free) tree is an undirected graph T = (V, E)
such that T is connected and |E| = |[V] - 1.

A forest is graph in which each connected
component is a tree.

BFS Trees (Forests)

If the input is connected, BFS produces a tree.

If the input is not connected, BFS produces a
forest.

Example

Example

O O__)JO
Ly

BFS Trees

BFS trees and forests encode shortest path
distances.

