
Lecture 12 | Part 1

Review: Aggregate Analysis

Exercise
What is the time complexity of the following code
in terms of |𝑉| and |𝐸|?
for u in graph.nodes:

for v in graph.neighbors(u):
print(”Edge:”, u, v)

G(E+V)

#execs :

IE) artEl

Answer
for u in graph.nodes:

for v in graph.neighbors(u):
print(”Edge:”, u, v)▶ Time complexity: Θ(𝑉 + 𝐸)▶ The print executes:▶ once for each edge, if the graph is directed.▶ twice for each edge, if the graph is undirected.

Another Look...

▶ Consider the graph’s
dict-of-sets representation.

for u in graph.nodes:
for v in graph.neighbors(u):

print(”Edge:”, u, v)

{
”a”: {”b”},
”b”: {”a”, ”c”},
”c”: {”b”, ”d”},
”d”: {”c”}

}

O(V+E)

Time Complexity
def full_bfs(graph):

status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:

if status[node] == 'undiscovered'
bfs(graph, node, status)

def bfs(graph, source, status=None):
”””Start a BFS at `source`.”””
if status is None:

status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

while there are still pending nodes
while pending:

u = pending.popleft()
for v in graph.neighbors(u):

explore edge (u,v)
if status[v] == 'undiscovered':

status[v] = 'pending'
append to right
pending.append(v)

status[u] = 'visited'

G(v)

#execs :

IE) or ZIE) (ifundir)
in aggregate
->

Exercise
Suppose bfs is called on an undirected graph us-
ing source node u.

If u is part of a connected component with nodes𝑉1 and edges 𝐸1, what is the time complexity of the
call to bfs?

Answer▶ Time complexity: Θ(𝑉1 + 𝐸1)▶ bfs explores all nodes and edges in the
connected component.

Time Complexity of Full BFS▶ full_bfs calls bfs once for each connected
component.▶ Time complexity:Θ((𝑉1 + 𝐸1) + (𝑉2 + 𝐸2) + … + (𝑉𝑘 + 𝐸𝑘))= Θ((𝑉1 + 𝑉2 + … + 𝑉𝑘) + (𝐸1 + 𝐸2 + … + 𝐸𝑘))= Θ(𝑉 + 𝐸)

Time Complexity▶ Full BFS takes Θ(𝑉 + 𝐸)

▶ Why not just Θ(𝐸)?▶ Θ(𝑉 + 𝐸) works for all graphs.▶ If we know more about the number of edges, we
might be able to simplify.▶ E.g., if the graph is complete, 𝐸 = Θ(𝑉2), so time
complexity is Θ(𝑉 + 𝑉2) = Θ(𝑉2).

Time Complexity▶ Full BFS takes Θ(𝑉 + 𝐸)▶ Why not just Θ(𝐸)?▶ Θ(𝑉 + 𝐸) works for all graphs.▶ If we know more about the number of edges, we
might be able to simplify.▶ E.g., if the graph is complete, 𝐸 = Θ(𝑉2), so time
complexity is Θ(𝑉 + 𝑉2) = Θ(𝑉2).

I

·%
G(Vz)

Lecture 12 | Part 2

Shortest Paths

Recall▶ The length of a path is(# of nodes) − 1

Definitions▶ A shortest path between 𝑢 and 𝑣 is a path
between 𝑢 and 𝑣 with smallest possible length.▶ There may be several, or none at all.▶ The shortest path distance is the length of a
shortest path.▶ Convention: ∞ if no path exists.▶ “the distance between 𝑢 and 𝑣” means spd.

U

Do
↑

Today: Shortest Paths▶ Given: directed/undirected graph 𝐺, source 𝑢▶ Goal: find shortest path from 𝑢 to every other node

Example
↑

faa -> c 2

-Xs
- b

O I 2

Key Property of Shortest Paths▶ Suppose you have shortest path from 𝑢 to 𝑣.▶ Suppose it goes through the edge (𝑥, 𝑣).▶ 𝑥 is a neighbor of 𝑣.▶ Then the part of that path from 𝑢 to 𝑥 is a
shortest path.
--I

Key Property, Restated▶ A shortest path of length 𝑘 is composed of:▶ A shortest path of length 𝑘 − 1.▶ Plus one edge.

Exercise
Node 𝑣 has three neighbors: 𝑎, 𝑏, and 𝑐. The dis-
tance from:▶ 𝑢 to 𝑎 is 5.▶ 𝑢 to 𝑏 is 3.▶ 𝑢 to 𝑐 is 7.
What is the distance from 𝑢 to 𝑣? 4
...-
Q ...-
-..-

"

Algorithm Idea▶ Find all nodes distance 1 from source.▶ Use these to find all nodes distance 2 from source.▶ Use these to find all nodes distance 3 from source.▶ …

It turns out...
...this is exactly what BFS does.

Lecture 12 | Part 3

BFS for Shortest Paths

Key Property of BFS▶ For any 𝑘 ≥ 1 you choose:▶ All nodes distance 𝑘 − 1 from source are added to
the queue before any node of distance 𝑘.▶ Therefore, nodes are “processed” (popped from
queue) in order of distance from source.

7

6

7

Example
[AAX]

S I 2

a C

e
3

↳ d

O I 2

Discovering Shortest Paths▶ We “discover” shortest paths when we pop a
node from queue and look at its neighbors.▶ But the neighbor’s status matters!

Consider This▶ We pop a node 𝑠.▶ It has a neighbor 𝑣 whose status is undiscovered.▶ We’ve discovered a shortest path to 𝑣 through 𝑠!

Consider This▶ We pop a node 𝑠.▶ It has a neighbor 𝑣 whose status is pending or
visited.▶ We already have a shortest path to 𝑣.

Modifying BFS▶ Use BFS “framework”.▶ Return dictionary of search predecessors.▶ If 𝑣 is discovered while visiting 𝑢, we say that 𝑢 is the
BFS predecessor of 𝑣.▶ This encodes the shortest paths.▶ Also return dictionary of shortest path distances.

def bfs_shortest_paths(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}
distance = {node: float('inf') for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}

status[source] = 'pending'
distance[source] = 0
pending = deque([source])

while there are still pending nodes
while pending:

u = pending.popleft()
for v in graph.neighbors(u):

explore edge (u,v)
if status[v] == 'undiscovered':

status[v] = 'pending'
distance[v] = distance[u] + 1
predecessor[v] = u
append to right
pending.append(v)

status[u] = 'visited'

return predecessor, distance

E

- :
④

E

Example

distance : E pred= E
I & I

'a' : I, a :
u

I

'D' : 1 'D' : n

"C' :
"

'c' : 2 A

'd' : 'a

'd' : Z
f a-> C

1 'd'

'e' : 3 2 It' : None
'f' : c, ·

+

↓ C 'U' : None

3'n' : 0

of b - 33
2

I

[y, / ,
b, c ,

d

Example

W

Lecture 12 | Part 4

BFS Trees

Result of BFS▶ Each node reachable from source has a single
BFS predecessor.▶ Except for the source itself.▶ The result is a tree (or forest).

Trees▶ A (free) tree is an undirected graph 𝑇 = (𝑉, 𝐸)
such that 𝑇 is connected and |𝐸| = |𝑉| − 1.▶ A forest is graph in which each connected
component is a tree.

BFS Trees (Forests)▶ If the input is connected, BFS produces a tree.▶ If the input is not connected, BFS produces a
forest.

Example

15 S
->

Example

-d

+
at

BFS Trees▶ BFS trees and forests encode shortest path
distances.

