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Review: Aggregate Analysis



Exercise
What is the time complexity of the following code
in terms of |𝑉| and |𝐸|?
for u in graph.nodes:

for v in graph.neighbors(u):
print(”Edge:”, u, v)

G(E+V)
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Answer
for u in graph.nodes:

for v in graph.neighbors(u):
print(”Edge:”, u, v)▶ Time complexity: Θ(𝑉 + 𝐸)▶ The print executes:▶ once for each edge, if the graph is directed.▶ twice for each edge, if the graph is undirected.



Another Look...

▶ Consider the graph’s
dict-of-sets representation.

for u in graph.nodes:
for v in graph.neighbors(u):

print(”Edge:”, u, v)

{
”a”: {”b”},
”b”: {”a”, ”c”},
”c”: {”b”, ”d”},
”d”: {”c”}

}

O(V+E)



Time Complexity
def full_bfs(graph):

status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:

if status[node] == 'undiscovered'
bfs(graph, node, status)

def bfs(graph, source, status=None):
”””Start a BFS at `source`.”””
if status is None:

status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

# while there are still pending nodes
while pending:

u = pending.popleft()
for v in graph.neighbors(u):

# explore edge (u,v)
if status[v] == 'undiscovered':

status[v] = 'pending'
# append to right
pending.append(v)

status[u] = 'visited'

G(v)
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Exercise
Suppose bfs is called on an undirected graph us-
ing source node u.

If u is part of a connected component with nodes𝑉1 and edges 𝐸1, what is the time complexity of the
call to bfs?



Answer▶ Time complexity: Θ(𝑉1 + 𝐸1)▶ bfs explores all nodes and edges in the
connected component.



Time Complexity of Full BFS▶ full_bfs calls bfs once for each connected
component.▶ Time complexity:Θ((𝑉1 + 𝐸1) + (𝑉2 + 𝐸2) + … + (𝑉𝑘 + 𝐸𝑘))= Θ((𝑉1 + 𝑉2 + … + 𝑉𝑘) + (𝐸1 + 𝐸2 + … + 𝐸𝑘))= Θ(𝑉 + 𝐸)



Time Complexity▶ Full BFS takes Θ(𝑉 + 𝐸)

▶ Why not just Θ(𝐸)?▶ Θ(𝑉 + 𝐸) works for all graphs.▶ If we know more about the number of edges, we
might be able to simplify.▶ E.g., if the graph is complete, 𝐸 = Θ(𝑉2), so time
complexity is Θ(𝑉 + 𝑉2) = Θ(𝑉2).



Time Complexity▶ Full BFS takes Θ(𝑉 + 𝐸)▶ Why not just Θ(𝐸)?▶ Θ(𝑉 + 𝐸) works for all graphs.▶ If we know more about the number of edges, we
might be able to simplify.▶ E.g., if the graph is complete, 𝐸 = Θ(𝑉2), so time
complexity is Θ(𝑉 + 𝑉2) = Θ(𝑉2).
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Shortest Paths





Recall▶ The length of a path is(# of nodes) − 1



Definitions▶ A shortest path between 𝑢 and 𝑣 is a path
between 𝑢 and 𝑣 with smallest possible length.▶ There may be several, or none at all.▶ The shortest path distance is the length of a
shortest path.▶ Convention: ∞ if no path exists.▶ “the distance between 𝑢 and 𝑣” means spd.

U
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Today: Shortest Paths▶ Given: directed/undirected graph 𝐺, source 𝑢▶ Goal: find shortest path from 𝑢 to every other node



Example
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Key Property of Shortest Paths▶ Suppose you have shortest path from 𝑢 to 𝑣.▶ Suppose it goes through the edge (𝑥, 𝑣).▶ 𝑥 is a neighbor of 𝑣.▶ Then the part of that path from 𝑢 to 𝑥 is a
shortest path.
--I



Key Property, Restated▶ A shortest path of length 𝑘 is composed of:▶ A shortest path of length 𝑘 − 1.▶ Plus one edge.



Exercise
Node 𝑣 has three neighbors: 𝑎, 𝑏, and 𝑐. The dis-
tance from:▶ 𝑢 to 𝑎 is 5.▶ 𝑢 to 𝑏 is 3.▶ 𝑢 to 𝑐 is 7.
What is the distance from 𝑢 to 𝑣? 4
...-
Q ...-
-..-
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Algorithm Idea▶ Find all nodes distance 1 from source.▶ Use these to find all nodes distance 2 from source.▶ Use these to find all nodes distance 3 from source.▶ …



It turns out...
...this is exactly what BFS does.
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BFS for Shortest Paths



Key Property of BFS▶ For any 𝑘 ≥ 1 you choose:▶ All nodes distance 𝑘 − 1 from source are added to
the queue before any node of distance 𝑘.▶ Therefore, nodes are “processed” (popped from
queue) in order of distance from source.
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Discovering Shortest Paths▶ We “discover” shortest paths when we pop a
node from queue and look at its neighbors.▶ But the neighbor’s status matters!



Consider This▶ We pop a node 𝑠.▶ It has a neighbor 𝑣 whose status is undiscovered.▶ We’ve discovered a shortest path to 𝑣 through 𝑠!



Consider This▶ We pop a node 𝑠.▶ It has a neighbor 𝑣 whose status is pending or
visited.▶ We already have a shortest path to 𝑣.



Modifying BFS▶ Use BFS “framework”.▶ Return dictionary of search predecessors.▶ If 𝑣 is discovered while visiting 𝑢, we say that 𝑢 is the
BFS predecessor of 𝑣.▶ This encodes the shortest paths.▶ Also return dictionary of shortest path distances.



def bfs_shortest_paths(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}
distance = {node: float('inf') for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}

status[source] = 'pending'
distance[source] = 0
pending = deque([source])

# while there are still pending nodes
while pending:

u = pending.popleft()
for v in graph.neighbors(u):

# explore edge (u,v)
if status[v] == 'undiscovered':

status[v] = 'pending'
distance[v] = distance[u] + 1
predecessor[v] = u
# append to right
pending.append(v)

status[u] = 'visited'

return predecessor, distance
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BFS Trees



Result of BFS▶ Each node reachable from source has a single
BFS predecessor.▶ Except for the source itself.▶ The result is a tree (or forest).



Trees▶ A (free) tree is an undirected graph 𝑇 = (𝑉, 𝐸)
such that 𝑇 is connected and |𝐸| = |𝑉| − 1.▶ A forest is graph in which each connected
component is a tree.



BFS Trees (Forests)▶ If the input is connected, BFS produces a tree.▶ If the input is not connected, BFS produces a
forest.



Example
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BFS Trees▶ BFS trees and forests encode shortest path
distances.


