DSC 40B Theoretical Foundations II

Lecture 12 | Part 1

Review: Aggregate Analysis

Exercise

What is the time complexity of the following code in terms of |V| and |E|?

Answer

```
for u in graph.nodes:
    for v in graph.neighbors(u):
        print("Edge:", u, v)
```

- Time complexity: Θ(V + E)
- The print executes:
 - **once** for each edge, if the graph is **directed**.
 - **twice** for each edge, if the graph is **undirected**.

Another Look...

 Consider the graph's dict-of-sets representation.

for u in graph.nodes:
 for v in graph.neighbors(u):
 print("Edge:", u, v)

Time Complexity

```
def full bfs(graph):
                                                            (-)(v)
    status = {node: 'undiscovered' for node in graph.nodes}
    for node in graph.nodes:
       if status[node] == 'undiscovered'
           bfs(graph, node, status)
def bfs(graph, source, status=None):
    """Start a BFS at `source`."""
    if status is None:
       status = {node: 'undiscovered' for node in graph.nodes}
    status[source] = 'pending'
                                                   # execs:
    pending = deque([source])
                                                      |E| or 2|E| (ifundir)
in aggregate
    # while there are still pending nodes
   while pending:
       u = pending.popleft()
       for v in graph.neighbors(u):
            # explore edge (U.V)
          if status[v] == 'undiscovered
               status[v] = 'pending'
                # append to right
                                                                       (+ E)
                pending append(v)
       status[u] = 'visited'
```

Exercise

Suppose bfs is called on an undirected graph using source node u.

If u is part of a connected component with nodes V_1 and edges E_1 , what is the time complexity of the call to bfs?

Answer

- Time complexity: $\Theta(V_1 + E_1)$
- bfs explores all nodes and edges in the connected component.

Time Complexity of Full BFS

full_bfs calls bfs once for each connected component.

► Time complexity:

$$\Theta((V_1 + E_1) + (V_2 + E_2) + \dots + (V_k + E_k))$$

= $\Theta((V_1 + V_2 + \dots + V_k) + (E_1 + E_2 + \dots + E_k))$
= $\Theta(V + E)$

Time Complexity

► Full BFS takes $\Theta(V + E)$

Time Complexity

E

Full BFS takes O(V + E)

Why not just Θ(E)?

- $\Theta(V + E)$ works for all graphs.
 - If we know more about the number of edges, we might be able to simplify.
 - E.g., if the graph is complete, E = Θ(V²), so time complexity is Θ(V + V²) = Θ(V²).

DSC 40B Theoretical Foundations II

Lecture 12 | Part 2

Shortest Paths

Recall

► The **length** of a path is

(# of nodes) - 1

A shortest path between u and v is a path between *u* and *v* with smallest possible length. There may be several, or none at all.

- The shortest path distance is the length of a shortest path.

 - Convention: ∞ if no path exists.
 "the distance between u and v" means spd.

Today: Shortest Paths

- **Given**: directed/undirected graph *G*, source *u*
- **Goal**: find shortest path from *u* to every other node

Key Property of Shortest Paths

Suppose you have shortest path from *u* to *v*.

Suppose it goes through the edge (x, v).
 x is a neighbor of v.

Then the part of that path from u to x is a shortest path.

Key Property, Restated

A shortest path of length k is composed of: A shortest path of length k - 1.

Plus one edge.

Exercise

Node v has three neighbors: *a*, *b*, and *c*. The distance from:

- u to a is 5.
- ▶ *u* to *b* is 3.
- ▶ *u* to c is 7.

What is the distance from u to v? $\mathbf{4}$

Algorithm Idea

- Find all nodes distance 1 from source.
- Use these to find all nodes distance 2 from source.
- Use these to find all nodes distance 3 from source.

It turns out...

...this is exactly what BFS does.

DSC 40B Theoretical Foundations II

Lecture 12 | Part 3

BFS for Shortest Paths

Key Property of BFS For any $k \ge 1$ you choose:

- All nodes distance k 1 from source are added to the queue before any node of distance k.
- Therefore, nodes are "processed" (popped from queue) in order of distance from source.

Discovering Shortest Paths

- We "discover" shortest paths when we pop a node from queue and look at its neighbors.
- But the neighbor's status matters!

Consider This

- ▶ We pop a node s.
- It has a neighbor v whose status is undiscovered.
- We've discovered a shortest path to v through s!

Consider This

- ▶ We pop a node s.
- It has a neighbor v whose status is pending or visited.
- We already have a shortest path to v.

Modifying BFS

- Use BFS "framework".
- Return dictionary of search predecessors.
 - If v is discovered while visiting u, we say that u is the BFS predecessor of v.
 - This encodes the shortest paths.
- Also return dictionary of shortest path distances.

```
def bfs shortest paths(graph, source):
    """Start a BES at `source`, """
    status = {node: 'undiscovered' for node in graph.nodes}
  $ distance = {node: float('inf') for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}
    status[source] = 'pending'
 >>distance[source] = ○
    pending = deque([source])
    # while there are still pending nodes
    while pending:
        u = pending.popleft()
        for v in graph.neighbors(u):
             # explore edge (u.v)
             if status[v] == 'undiscovered':
                 status[v] = 'pending'
                [distance[v] = distance[u] + 1
                predecessor[v] = u
                 # append to right
                 pending.append(v)
         status[u] = 'visited'
```


return predecessor, distance

[y., d, b, c,d

Example

Lecture 12 | Part 4

BFS Trees

Result of BFS

- Each node reachable from source has a single BFS predecessor.
 - Except for the source itself.
- The result is a tree (or forest).

Trees

- A (free) tree is an undirected graph T = (V, E) such that T is connected and |E| = |V| - 1.
- A forest is graph in which each connected component is a tree.

BFS Trees (Forests)

- If the input is connected, BFS produces a tree.
- If the input is not connected, BFS produces a forest.

Example

BFS Trees

BFS trees and forests encode shortest path distances.