
Lecture 12 | Part 1

Warmup: Aggregate Analysis

Time Complexity
def full_bfs(graph):

status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:

if status[node] == 'undiscovered'
bfs(graph, node, status)

def bfs(graph, source, status=None):
”””Start a BFS at `source`.”””
if status is None:

status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

while there are still pending nodes
while pending:

u = pending.popleft()
for v in graph.neighbors(u):

explore edge (u,v)
if status[v] == 'undiscovered':

status[v] = 'pending'
append to right
pending.append(v)

status[u] = 'visited'

Exercise
What is printed if we run a BFS starting at a?

...
while pending:

u = pending.popleft()
print(f'Popped {u}')
for v in graph.neighbors(u):

print(f'Exploring edge ({u}, {v})')
explore edge (u,v)
...

Answer

Popping a
Exploring edge (a, b)
Exploring edge (a, c)
Popping b
Exploring edge (b, a)
Exploring edge (b, c)
Exploring edge (b, d)
Popping c
Exploring edge (c, a)
Exploring edge (c, b)
Exploring edge (c, d)
Exploring edge (c, e)

Popping d
Exploring edge (d, b)
Exploring edge (d, c)
Exploring edge (d, e)
Popping e
Exploring edge (e, c)
Exploring edge (e, d)
Exploring edge (e, f)
Popping f
Exploring edge (f, e)

Aggregate Analysis
▶ During any one call to bfs:

▶ Number of printed nodes: ?
▶ Number of printed edges: ?

▶ In aggregate (over all calls):
▶ Number of printed nodes: exactly |𝑉|
▶ Number of printed edges: exactly 2|𝐸|

Time Complexity
▶ Full BFS takes Θ(𝑉 + 𝐸)

▶ Why not just Θ(𝐸)?

▶ Θ(𝑉 + 𝐸) works for all graphs.
▶ If we know more about the number of edges, we
might be able to simplify.

▶ E.g., if the graph is complete, 𝐸 = Θ(𝑉2), so time
complexity is Θ(𝑉 + 𝑉2) = Θ(𝑉2).

Time Complexity
▶ Full BFS takes Θ(𝑉 + 𝐸)

▶ Why not just Θ(𝐸)?

▶ Θ(𝑉 + 𝐸) works for all graphs.
▶ If we know more about the number of edges, we
might be able to simplify.

▶ E.g., if the graph is complete, 𝐸 = Θ(𝑉2), so time
complexity is Θ(𝑉 + 𝑉2) = Θ(𝑉2).

Lecture 12 | Part 2

Shortest Paths

Recall
▶ The length of a path is

(# of nodes) − 1

Definitions
▶ A shortest path between 𝑢 and 𝑣 is a path
between 𝑢 and 𝑣 with smallest possible length.
▶ There may be several, or none at all.

▶ The shortest path distance is the length of a
shortest path.
▶ Convention: ∞ if no path exists.
▶ “the distance between 𝑢 and 𝑣” means spd.

Today: Shortest Paths
▶ Given: directed/undirected graph 𝐺, source 𝑢

▶ Goal: find shortest path from 𝑢 to every other node

Example

Key Property
▶ A shortest path of length 𝑘 is composed of:

▶ A shortest path of length 𝑘 − 1.
▶ Plus one edge.

Algorithm Idea
▶ Find all nodes distance 1 from source.

▶ Use these to find all nodes distance 2 from source.

▶ Use these to find all nodes distance 3 from source.

▶ …

It turns out...
...this is exactly what BFS does.

Lecture 12 | Part 3

BFS for Shortest Paths

Key Property of BFS
▶ For any 𝑘 ≥ 1 you choose:

▶ All nodes distance 𝑘 − 1 from source are added to
the queue before any node of distance 𝑘.

▶ Therefore, nodes are “processed” (popped from
queue) in order of distance from source.

Example

Discovering Shortest Paths
▶ We “discover” shortest paths when we pop a
node from queue and look at its neighbors.

▶ But the neighbor’s status matters!

Consider This
▶ We pop a node 𝑠.

▶ It has a neighbor 𝑣 whose status is undiscovered.

▶ We’ve discovered a shortest path to 𝑣 through 𝑠!

Consider This
▶ We pop a node 𝑠.

▶ It has a neighbor 𝑣 whose status is pending or
visited.

▶ We already have a shortest path to 𝑣.

Modifying BFS
▶ Use BFS “framework”.

▶ Return dictionary of search predecessors.
▶ If 𝑣 is discovered while visiting 𝑢, we say that 𝑢 is the
BFS predecessor of 𝑣.

▶ This encodes the shortest paths.

▶ Also return dictionary of shortest path distances.

def bfs_shortest_paths(graph, source):
”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}
distance = {node: float('inf') for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}

status[source] = 'pending'
distance[source] = 0
pending = deque([source])

while there are still pending nodes
while pending:

u = pending.popleft()
for v in graph.neighbors(u):

explore edge (u,v)
if status[v] == 'undiscovered':

status[v] = 'pending'
distance[v] = distance[u] + 1
predecessor[v] = u
append to right
pending.append(v)

status[u] = 'visited'

return predecessor, distance

Example

Lecture 12 | Part 4

BFS Trees

Result of BFS
▶ Each node reachable from source has a single
BFS predecessor.
▶ Except for the source itself.

▶ The result is a tree (or forest).

Trees
▶ A (free) tree is an undirected graph 𝑇 = (𝑉, 𝐸)
such that 𝑇 is connected and |𝐸| = |𝑉| − 1.

▶ A forest is graph in which each connected
component is a tree.

BFS Trees (Forests)
▶ If the input is connected, BFS produces a tree.

▶ If the input is not connected, BFS produces a
forest.

Example

Example

BFS Trees
▶ BFS trees and forests encode shortest path
distances.

