
Lecture 9 | Part 1

Warmup

Exercise

▶ How fast can we query/insert with
these data structures?

Query Insert

Unsorted linked list
Unsorted array
Sorted array

BST

Lecture 9 | Part 2

Direct Address Tables

Counting Frequencies
▶ How many times does each age appear?

PID Name Age

A1843 Wan 24
A8293 Deveron 22
A9821 Vinod 41
A8172 Aleix 17
A2882 Kayden 4
A1829 Raghu 51
A9772 Cui 48
⋮ ⋮ ⋮

Exercise
What data structure would you use to store the age
counts?

Direct Address Tables
▶ Idea: keep an array arr of length, say, 125.

▶ Initialize to zero.

▶ If we see age 𝑥, increment arr[x] by one.

Building the Table
loading the table
table = np.zeros(125)

for age in ages:
table[age] += 1

▶ Time complexity if there are 𝑛 people?

Query
query: how many people are 55?
print(table[55])

▶ Time complexity if there are 𝑛 people?

Counting Names
▶ How many times does each name appear?

PID Name Age

A1843 Wan 24
A8293 Deveron 22
A9821 Vinod 41
A8172 Aleix 17
A2882 Kayden 4
A1829 Raghu 51
A9772 Cui 48
⋮ ⋮ ⋮

Downsides
▶ DATs are fast.

▶ What are the downsides of DATs?

▶ Could we use a DAT to store:
▶ zip codes?
▶ phone numbers?
▶ credit card numbers?
▶ names?

Downsides
▶ Things being stored must be integers, or
convertible to integers
▶ why? valid array indices

▶ Must come from a small range of possibilities
▶ why? memory usage. example: phone numbers

Hash Tables
▶ Insight: anything can be “converted” to an
integer through hashing.

▶ But not uniquely!

▶ Hash tables have many of the same advantages
as DATs, but work more generally.

Lecture 9 | Part 3

Hashing

Hashing
▶ One of the most important ideas in CS.

▶ Tons of uses:
▶ Verifying message integrity.
▶ Fast queries on a large data set.
▶ Identify if file has changed in version control.

Hash Function
▶ A hash function takes a (large) object and
returns a (smaller) “fingerprint” of that object.

▶ Usually the fingerprint is a number, guaranteed
to be in some range.

How?
▶ Looking at certain bits, combining them in ways
that look random (but aren’t!)

Hash Function Properties
▶ Hashing same thing twice returns the same hash.

▶ Unlikely that different things have same
fingerprint.
▶ But not impossible!

Collisions
▶ Hash functions map objects to numbers in a
defined range.
▶ Example: given image, return number in
[0, 1, 2, … , 1024]

▶ There will be two images with the same hash.
▶ Pigeonhole principle: if there are 𝑛 pigeons, < 𝑛
holes, there will a hole with ≥ 2 pigeons.

▶ Collision: two objects have the same hash

“Good” Hash Functions
▶ A good hash function tries to minimize collisions.

Hashing in Python
▶ The hash function computes a hash.

>>> hash(”This is a test”)
-670458579957477203
>>> hash(”This is a test”)
-670458579957477203
>>> hash(”This is a test!”)
1860306055874153109

MD5
▶ MD5 is a cryptographic hash function.

▶ Hard to “reverse engineer” input from hash.

▶ Returns a really large number in hex.

a741d8524a853cf83ca21eabf8cea190

▶ Used to “fingerprint” whole files.

Example
> echo ”My name is Justin” | md5
a741d8524a853cf83ca21eabf8cea190
> echo ”My name is Justin” | md5
a741d8524a853cf83ca21eabf8cea190
> echo ”My name is Justin!” | md5
f11eed2391bbd0a5a2355397c089fafd

Example
> md5 slides.pdf
e3fd4370fda30ceb978390004e07b9df

Why?
▶ I release a piece of software.

▶ I host it on Google Drive.

▶ Someone (Google, US Gov., etc.) decides to insert
extra code into software to spy on users.

▶ You have no way of knowing.

Why?
▶ I release a piece of software & publish the hash.

▶ I host it on Google Drive.

▶ Someone inserts extra code.

▶ You download the software and hash it. If hash is
different, you know the file has been changed!

Another Use: De-duplication
▶ Building a massive training set of images.

▶ Given a new image, is it already in my collection?

▶ Don’t need to compare images pixel-by-pixel!

▶ Instead, compare hashes.

Hashing for Data Scientists
▶ Don’t need to know much about how the hash
function works.

▶ But should know how they are used.

Lecture 9 | Part 4

Hash Tables

Membership Queries
▶ Given: a collection of 𝑛 numbers and a target 𝑡.

▶ Find: determine if 𝑡 is in the collection.

Goal
▶ DATs are fast, but won’t work for things that
aren’t numbers in a small range.

▶ Idea: hash objects to numbers in a small range,
use a DAT.

▶ But must deal with collisions.

Hash Tables
▶ Pick a table size 𝑚.

▶ Usually 𝑚 ≈ number of things you’ll be storing.

▶ Create hash function to turn input into a number
in {0, 1, … ,𝑚 − 1}.

▶ Create DAT with 𝑚 bins.

Example
hash('hello') == 3
hash('data') == 0
hash('science') == 4

0 1 2 3 4 𝑚 − 1
…

Collisions
▶ The universe is the set of all possible inputs.

▶ This is usually much larger than 𝑚 (even infinite).

▶ Not possible to assign each input to a unique bin.

▶ If hash(a) == hash(b), there is a collision.

Example
hash('hello') == 3
hash('data') == 0
hash('san diego') == 3

0 1 2 3 4 𝑚 − 1
…

Chaining
▶ Collisions stored in same bin, in linked list.
▶ Query: Hash to find bin, then linear search.

0 1 2 3 𝑚 − 1
…

The Idea
▶ A good hash function will utilize all bins evenly.

▶ Looks like uniform random distribution.

▶ If 𝑚 ≈ 𝑛, then only a few elements in each bin.

▶ As we add more elements, we need to add bins.

Average Case
▶ 𝑛 elements in table.

▶ 𝑚 bins.

▶ Assume elements placed randomly in bins1.

▶ Expected bin size:

1Of course, they are placed deterministically.

Average Case
▶ 𝑛 elements in table.

▶ 𝑚 bins.

▶ Assume elements placed randomly in bins1.

▶ Expected bin size: 𝑛/𝑚

1Of course, they are placed deterministically.

Analysis
▶ Query:

▶ Time to find correct bin:
▶ Expected number of elements in the bin:
▶ Time to perform linear search:
▶ Total:

▶ We usually guarantee 𝑚 = 𝑂(𝑛)
▶ Expected time: Θ(1).

Analysis
▶ Query:

▶ Time to find correct bin: Θ(1)
▶ Expected number of elements in the bin:
▶ Time to perform linear search:
▶ Total:

▶ We usually guarantee 𝑚 = 𝑂(𝑛)
▶ Expected time: Θ(1).

Analysis
▶ Query:

▶ Time to find correct bin: Θ(1)
▶ Expected number of elements in the bin: 𝑛/𝑚
▶ Time to perform linear search:
▶ Total:

▶ We usually guarantee 𝑚 = 𝑂(𝑛)
▶ Expected time: Θ(1).

Analysis
▶ Query:

▶ Time to find correct bin: Θ(1)
▶ Expected number of elements in the bin: 𝑛/𝑚
▶ Time to perform linear search: Θ(𝑛/𝑚)
▶ Total:

▶ We usually guarantee 𝑚 = 𝑂(𝑛)
▶ Expected time: Θ(1).

Analysis
▶ Query:

▶ Time to find correct bin: Θ(1)
▶ Expected number of elements in the bin: 𝑛/𝑚
▶ Time to perform linear search: Θ(𝑛/𝑚)
▶ Total: Θ(1 + 𝑛/𝑚)

▶ We usually guarantee 𝑚 = 𝑂(𝑛)
▶ Expected time: Θ(1).

Analysis
▶ Query:

▶ Time to find correct bin: Θ(1)
▶ Expected number of elements in the bin: 𝑛/𝑚
▶ Time to perform linear search: Θ(𝑛/𝑚)
▶ Total: Θ(1 + 𝑛/𝑚)
▶ We usually guarantee 𝑚 = 𝑂(𝑛)

▶ Expected time: Θ(1).

Analysis
▶ Query:

▶ Time to find correct bin: Θ(1)
▶ Expected number of elements in the bin: 𝑛/𝑚
▶ Time to perform linear search: Θ(𝑛/𝑚)
▶ Total: Θ(1 + 𝑛/𝑚)
▶ We usually guarantee 𝑚 = 𝑂(𝑛)
▶ Expected time: Θ(1).

Worst Case
▶ Everything hashed to same bin.

▶ Really unlikely!
▶ Adversarial attack?

▶ Query:
▶ Θ(1) to find bin
▶ Θ(𝑛) for linear search.
▶ Total: Θ(𝑛).

Exercise
What is the worst case time complexity of inserting
an element into a hash table that uses chaining
with linked lists?

Growing the Hash Table
▶ Insertions take Θ(1) unless the hash table needs
to grow.

▶ We need to ensure that 𝑚 ≤ 𝑐 ⋅ 𝑛.
▶ Otherwise, too many collisions.

▶ If we add a bunch of elements, we’ll need to
increase 𝑚.

▶ Increasing 𝑚 means allocating a new array,
Θ(𝑚) = Θ(𝑛) time.

Main Idea

Hash tables support constant (expected) time in-
sertion and membership queries.

Dictionaries
▶ Hash tables can also be used to store (key, value)
pairs.

▶ Often called dictionaries or associative arrays.

Hashing in Python
▶ dict and set implement hash tables.

▶ Querying is done using in:

>>> # make a set
>>> L = {3, 6, -2, 1, 7, 12}
>>> 4 in L # Theta(1)
False
>>> 7 in L # Theta(1)
True

Lecture 9 | Part 5

Fast Algorithms with Hash Tables

Faster Algorithms
▶ Hashing is a super common trick.

▶ The “best” solution to interview problems often
involves hashing.

Example 1: The Movie Problem
▶ You’re on a flight that will last 𝐷 minutes.

▶ You want to pick two movies to watch.

▶ Find two whose durations sum to exactly 𝐷.

Recall: Previous Solutions
▶ Brute force: Θ(𝑛2).

▶ Sort, use sorted structure: Θ(𝑛 log 𝑛) + Θ(𝑛).

▶ Theoretical lower bound: Ω(𝑛)?

▶ Can we speed this up with hash tables?

Idea
▶ To use hash tables, we want to frame problem as
a membership query.

Example
▶ Suppose flight is 360 minutes long.

▶ Suppose first movie is fixed: 120 minutes.

▶ Is there a movie lasting (360 - 120) = 140 minutes?

def optimize_entertainment_hash(times, D):
hash_table = dict()
for i, time in enumerate(times):

hash_table[time] = i

for i, time in enumerate(times):
target = D - time
if target in hash_table:

return i, hash_table[target]

Example 2: Anagrams

Definition
Two strings w_1 and w_2 are anagrams if the letters
of w_1 one can be permuted to make w_2.

Examples
▶ abcd / dbca

▶ listen / silent

▶ sandiego / doginsea

Problem
▶ Given a collection of 𝑛 strings, determine if any
two of them are anagrams.

Exercise
Design an efficient algorithm for solving this prob-
lem. What is its time complexity?

Solution
▶ We need to turn this into a membership query.

▶ Trick: two strings are anagrams iff

sorted(w_1) == sorted(w_2)

def any_anagrams(words):
seen = set()
for word in words:

w = sorted(word)
if w in seen

return True
else:

seen.add(w)

Hashing Downsides
▶ Problem must involve membership query.

Example: The Movie Problem
▶ You’re on a flight that will last 𝐷 minutes.

▶ You want to pick two movies to watch.

▶ Find two whose added durations is closest to 𝐷.

Hashing Downsides
▶ No locality: similar items map to different bins.

▶ There is no way to quickly query entry closest to
given input.

Example: Number of Elements
▶ Given a collection of 𝑛 numbers and two
endpoints, 𝑎 and 𝑏, determine how many of the
numbers are contained in [𝑎, 𝑏].

▶ Not a membership query.

▶ Idea: sort and use modified binary search.

Lecture 9 | Part 6

Hash Table Drawbacks

Hashing Downsides
▶ No locality: similar items map to different bins.

▶ But we often want similar items at the same time.

▶ Results in many cache misses, slow.

Hashing Downsides
▶ Memory overhead.

Hash Tables vs. BSTs
▶ Hash Table: Θ(1) insertion, query (expected
time).

▶ BST: Θ(log 𝑛) insertion, query (if balanced).

▶ Why ever use a BST?

Hash Tables vs. BSTs
▶ Hash tables keep items in arbitrary order.

▶ Example: how many elements are in the interval
[3, 23]?

▶ Example: what is the min/max/median?

▶ BSTs win when order is important.

