psc 408

Thovetieaf Fouwndlationg ZL

Lecture 9 Part1

Warmup

How fast can we query/insert with
these data structures?

| Query | Insert |

Unsorted linked list
Unsorted array
Sorted array

BST

DSC 408

Tm%m/ Founolatonqg TL

Lecture 9 Part 2

Direct Address Tables

Counting Frequencies

How many times does each age appear?

PID Name Age

A1843 Wan 24
A8293 Deveron 22
A9821 Vinod 41
A8172 Aleix 17
A2882 Kayden 4

A1829 Raghu 51
A9772 Cui 48

What data structure would you use to store the age
counts?

Direct Address Tables

Idea: keep an array arr of length, say, 125.
Initialize to zero.

If we see age X, increment arr[x] by one.

Building the Table

loading the table
table = np.zeros(125)

for age in ages:
table[age] += 1

Time complexity if there are n people?

Query

query: how many people are 557
print(table[55])

Time complexity if there are n people?

Counting Names

How many times does each name appear?

PID Name Age

A1843 Wan 24
A8293 Deveron 22
A9821 Vinod 41
A8172 Aleix 17
A2882 Kayden 4

A1829 Raghu 51
A9772 Cui 48

Downsides
DATs are fast.
What are the downsides of DATS?

Could we use a DAT to store:
zip codes?
phone numbers?
credit card numbers?
names?

Downsides

Things being stored must be integers, or
convertible to integers
why? valid array indices

Must come from a small range of possibilities
why? memory usage. example: phone numbers

Hash Tables

Insight: anything can be “converted” to an
integer through hashing.

But not uniquely!

Hash tables have many of the same advantages
as DATs, but work more generally.

psc 408

Tm%ca/ Founolathong 7L

Lecture 9 Part 3

Hashing

Hashing

One of the most important ideas in CS.

Tons of uses:
Verifying message integrity.
Fast queries on a large data set.
Identify if file has changed in version control.

Hash Function

A hash function takes a (large) object and
returns a (smaller) “fingerprint” of that object.

Usually the fingerprint is a number, guaranteed
to be in some range.

How?

Looking at certain bits, combining them in ways
that look random (but aren’t!)

Hash Function Properties
Hashing same thing twice returns the same hash.

Unlikely that different things have same
fingerprint.
But not impossible!

Collisions

Hash functions map objects to numbers in a

defined range.
Example: given image, return number in
[0,1,2,...,1024]

There will be two images with the same hash.

Pigeonhole principle: if there are n pigeons, < n
holes, there will a hole with = 2 pigeons.

Collision: two objects have the same hash

“Good” Hash Functions

A good hash function tries to minimize collisions.

Hashing in Python

The hash function computes a hash.

>>> hash(”This is a test”)
-670458579957477203
>>> hash(”This is a test”)
-670458579957477203
>>> hash(”This is a test!”)
1860306055874153109

MD5

MD5 is a cryptographic hash function.
Hard to “reverse engineer” input from hash.

Returns a really large number in hex.

a741d8524a853cf83ca21eabf8cea190

Used to “fingerprint” whole files.

Example

> echo "My name is Justin” | mds5
a741d8524a853cf83ca21eabf8cea196
> echo "My name is Justin” | mds
a741d8524a853cf83ca21eabf8cea196
> echo "My name is Justin!” | mds
fi11eed2391bbdeasa2355397ce89fafd

Example

> md5 slides.pdf
e3fd4370fda3eceb978390004e07bodf

Why?
| release a piece of software.

| host it on Google Drive.

Someone (Google, US Gov., etc.) decides to insert
extra code into software to spy on users.

You have no way of knowing.

Why?
| release a piece of software & publish the hash.
| host it on Google Drive.
Someone inserts extra code.

You download the software and hash it. If hash is
different, you know the file has been changed!

Another Use: De-duplication
Building a massive training set of images.
Given a new image, is it already in my collection?
Don’t need to compare images pixel-by-pixel!

Instead, compare hashes.

Hashing for Data Scientists

Don’t need to know much about how the hash
function works.

But should know how they are used.

psc 4058

TW?QM/ Founolathong ZL

Lecture 9 Part 4
Hash Tables

Membership Queries
Given: a collection of n numbers and a target t.

Find: determine if t is in the collection.

Goal

DATs are fast, but won’t work for things that
aren't numbers in a small range.

Idea: hash objects to numbers in a small range,
use a DAT.

But must deal with collisions.

Hash Tables

Pick a table size m.
Usually m =~ number of things you'll be storing.

Create hash function to turn input into a number
in{0,1,...,m-1}

Create DAT with m bins.

Example

hash('hello"')
hash('data') =

::3
hash('science')

0]

Collisions
The universe is the set of all possible inputs.
This is usually much larger than m (even infinite).
Not possible to assign each input to a unique bin.

If hash(a) == hash(b), there is a collision.

hash('hello"')
hash('data') =
hash('san diego

Example

=3

0}
') == 3

Chaining

Collisions stored in same bin, in linked list.
Query: Hash to find bin, then linear search.

The Idea

A good hash function will utilize all bins evenly.
Looks like uniform random distribution.

If m = n, then only a few elements in each bin.

As we add more elements, we need to add bins.

Average Case
n elements in table.
m bins.
Assume elements placed randomly in bins’.

Expected bin size:

0f course, they are placed deterministically.

Average Case
n elements in table.
m bins.
Assume elements placed randomly in bins’.

Expected bin size: n/m

0f course, they are placed deterministically.

Analysis

Query:
Time to find correct bin:
Expected number of elements in the bin:
Time to perform linear search:
Total:

Analysis

Query:
Time to find correct bin: ©(1)
Expected number of elements in the bin:
Time to perform linear search:
Total:

Analysis

Query:
Time to find correct bin: ©(1)
Expected number of elements in the bin: n/m
Time to perform linear search:
Total:

Analysis

Query:
Time to find correct bin: ©(1)
Expected number of elements in the bin: n/m
Time to perform linear search: ©(n/m)
Total:

Analysis

Query:
Time to find correct bin: ©(1)
Expected number of elements in the bin: n/m
Time to perform linear search: ©(n/m)
Total: ©(1+n/m)

Analysis

Query:
Time to find correct bin: ©(1)
Expected number of elements in the bin: n/m
Time to perform linear search: ©(n/m)
Total: ©(1+n/m)
We usually guarantee m = O(n)

Analysis

Query:
Time to find correct bin: ©(1)
Expected number of elements in the bin: n/m
Time to perform linear search: ©(n/m)
Total: ©(1+n/m)
We usually guarantee m = O(n)
Expected time: ©(1).

Worst Case

Everything hashed to same bin.
Really unlikely!
Adversarial attack?

Query:
0(1) to find bin
O(n) for linear search.
Total: ©(n).

What is the worst case time complexity of inserting
an element into a hash table that uses chaining
with linked lists?

Growing the Hash Table

Insertions take ©(1) unless the hash table needs
to grow.

We need to ensurethat m<c-n.
Otherwise, too many collisions.

If we add a bunch of elements, we'll need to
increase m.

Increasing m means allocating a new array,
O(m) = O(n) time.

Main Idea

Hash tables support constant (expected) time in-
sertion and membership queries.

Dictionaries

Hash tables can also be used to store (key, value)
pairs.

Often called dictionaries or associative arrays.

Hashing in Python

dict and set implement hash tables.
Querying is done using in:

>>> f#f make a set

>> L = {3, 6, -2, 1, 7, 12}
>>> 4 in L # Theta(1)

False

>>> 7 in L # Theta(1)

True

psc 408

Tm%ca/ Founolathong 7L

Lecture 9 | Part 5
Fast Algorithms with Hash Tables

Faster Algorithms

Hashing is a super common trick.

The “best” solution to interview problems often
involves hashing.

Example 1: The Movie Problem
You're on a flight that will last D minutes.
You want to pick two movies to watch.

Find two whose durations sum to exactly D.

Recall: Previous Solutions
Brute force: O(n?).
Sort, use sorted structure: ©(n logn) + ©(n).
Theoretical lower bound: Q(n)?

Can we speed this up with hash tables?

Idea

To use hash tables, we want to frame problem as
a membership query.

Example
Suppose flight is 360 minutes long.
Suppose first movie is fixed: 120 minutes.

Is there a movie lasting (360 - 120) = 140 minutes?

def optimize_entertainment_hash(times, D):
hash_table = dict()
for i, time in enumerate(times):
hash_table[time] = i

for i, time in enumerate(times):
target = D - time
if target in hash_table:
return i, hash_table[target]

Example 2: Anagrams

Two stringsw_1 and w_2 are anagrams if the letters
of w_1 one can be permuted to make w_2.

Examples
abcd / dbca
listen / silent

sandiego / doginsea

Problem

Given a collection of n strings, determine if any
two of them are anagrams.

Design an efficient algorithm for solving this prob-
lem. What is its time complexity?

Solution
We need to turn this into a membership query.

Trick: two strings are anagrams iff

sorted(w_1) == sorted(w_2)

def any_anagrams(words):
seen = set()
for word in words:
w = sorted(word)
if w 1n seen
return True
else:
seen.add(w)

Hashing Downsides

Problem must involve membership query.

Example: The Movie Problem
You're on a flight that will last D minutes.
You want to pick two movies to watch.

Find two whose added durations is closest to D.

Hashing Downsides
No locality: similar items map to different bins.

There is no way to quickly query entry closest to
given input.

Example: Number of Elements

Given a collection of n numbers and two

endpoints, a and b, determine how many of the
numbers are contained in [a, b].

Not a membership query.

Idea: sort and use modified binary search.

psc 4058

TW?QCG/ Founolathong ZL

Lecture 9 ' Part 6

Hash Table Drawbacks

Hashing Downsides
No locality: similar items map to different bins.
But we often want similar items at the same time.

Results in many cache misses, slow.

Hashing Downsides

Memory overhead.

Hash Tables vs. BSTs

Hash Table: ©(1) insertion, query (expected
time).

BST: O(log n) insertion, query (if balanced).

Why ever use a BST?

Hash Tables vs. BSTs

Hash tables keep items in arbitrary order.

Example: how many elements are in the interval
[3,23]?

Example: what is the min/max/median?

BSTs win when order is important.

