psc 408

Thtm/e%ca/ Founolatong 7L

Lecture 8 Part1

Dynamic Sets

News
Midterm 01 next Thursday.
Covers up to and including today’s lecture.

See dsc40b.com/practice and this week’s
discussion for practice problems.

See Campuswire post for details.

dsc40b.com/practice

Bookkeeping

How do you store your books?

Bookkeeping

How do you store your books?

johnthelibrarian.com

johnthelibrarian.com

Bookkeeping

How do you store your books?

sy, gy, g
i
" "wium" -

LI P ~ ‘
it com y g ‘,'n‘ Ll

My
L] lelm ulm unllll i glinha

it NS M\H‘
T T TR (ot i
T R R Y I
il L LR ST T | 1
l..““ \IIﬁ e : “!wl ‘\‘rﬂ‘\:

https://bookriot.com/how-to-organize-bookshelves/

https://bookriot.com/how-to-organize-bookshelves/

Bookkeeping: Tradeoffs

Messy:
No upfront cost.
Cost to search is high.

Organized
Big upfront cost.
Cost to search is low.

“Right” choice depends on how often we search.

Data Structures and Algorithms

Data structures are ways of organizing data to
make certain operations faster.

Come with an upfront cost (preprocessing).

“Right” choice of data structure depends on what
operations we’ll be doing in the future.

Queries: Easy to Hard

We've been thinking about queries.
Given a collection of data, is x in the collection?

Querying is a fundamental operation.
Useful in a data science sense.
But also frequently performed in algorithms.

There are several situations to think about.

Situation #1: Static Set, One Query

Given: an unsorted collection of n numbers (or
strings, etc.).

In future, you will be asked single query.

Which is better: linear search or sort + binary
search?

Situation #1: Static Set, One Query

Given: an unsorted collection of n numbers (or
strings, etc.).

In future, you will be asked single query.

Which is better: linear search or sort + binary
search?
Linear search: ©(n) worst case.
Binary search would require sorting first in ©(n log n)
worst case

Situation #2: Static Set, Many Queries

Given: an unsorted collection of n numbers (or
strings, etc.).

In future, you will be asked many queries.

Which is better: linear search or sort + binary

search?
Depends on number of queries!

Suppose you have a static set of n items. How long
will it take? to perform k queries in total with:

linear search?
sort + binary search?

If R =n/10, which should you use?
What if k = logn?

90n average. Assume the best case is rare.

Situation #3: Dynamic Set, Many Queries
Given: a collection of n numbers (or strings, etc.).

In future, you will be asked many queries and to
insert new elements.

Best approach: ?

Binary Search?
Can we still use binary search?

Problem: To us binary search, we must maintain
array in sorted order as we insert new elements.

Inserting into array takes ©(n) time in worst case.
Must “make room” for new element.
Can we use linked list with binary search?

Today
Introduce (or review) binary search trees.
BSTs support fast queries and insertions.
Preserve sorted order of data after insertion.

Can be modified to solve many problems

efficiently.
Example: finding order statistics.

psc 408

Thtm/e%ca/ Founolatong 7L

Lecture 8 Part 2

Binary Search Trees

Trees

Binary Trees

Each node has at most two children (left and
right).

Binary Search Tree

A binary search tree (BST) is a binary tree that
satisfies the following for any node x:

if y is in x's left subtree:

y.key < x.key

if y is in x's right subtree:

y.key 2 x.key

Assumption (for simplicity)
We'll assume keys are unique (no duplicates).

if y is in x's left subtree:

y.key < x.key

if y is in x's right subtree:

y.key > x.key

Example

This is a BST.

Example

This is not a BST.

‘ Is this is a BST? \

Height

The height of a tree is the number of edges from
the root to any leaf.

Suppose a binary tree has n nodes.
The tallest it can be is= n

The shortest it can be is = log, n

In Python

class Node:
def __init__(self, key, parent=None):
self.key = key
self.parent = parent
self.left = None
self.right = None

class BinarySearchTree:
def __init__(self, root: Node):
self.root = root

In Python

root = Node(6)

n1 = Node(12, parent=root)
root.left = n1

n2 = Node(33, parent=root)
root.right = n2

tree = BinarySearchTree(root)

psc 4058

Thtm’é%ca/ Founolatong 7L

Lecture 8 Part 3

Queries and Insertions in BSTs

Why?
BSTs impose structure on data.

“Not quite sorted”.

Preprocessing for making insertions and queries
faster.

Operations on BSTs

We will want to:
query a key (is it in the tree?)
insert a new key

Queries
Given: a BST and a target, t.

Return: True or False, is the target in the
collection?

Queries

Is 36 in the tree? 65? 23?

Queries
Start walking from root.

If current node is:
equal to target, return True;
too large (> target), follow left edge;
too small (< target), follow right edge;
None, return False

Queries, in Python

def query(self, target):
"""As method of BinarySearchTree.
current_node = self.root
while current_node is not None:
if current_node.key == target:
return current_node
elif current_node.key < target:
current_node = current_node.right
else:
current_node = current_node.left
return None

nrnn

Complete the recursive version of query.

def query_recursive(node, target):
"""As a 'free function'.”””
if node is None:
return False
if node.key == target:
elif ...:

else:

Queries (Recursive)

def query_recursive(node, target):
""rPAs a 'free function'.”””
if node is None:

return False

if node.key == target:

return node
elif node.key < target:

return query_recursive(node.right, target)
else:

return query_recursive(node.left, target)

Queries, Analyzed
Best case: 9(1).

Worst case: ©(h), where h is height of tree.

Insertion
Given: a BST and a new key, k.
Modify: the BST, inserting k.

Must maintain the BST properties.

Insertion

Insert 23 into the BST.

Insertion (The Idea)

Traverse the tree as in query to find empty spot
where new key should go, keeping track of last
node seen.

Create new node; make last node seen the
parent, update parent’s children.

Be careful about inserting into empty tree!

def insert(self, new_key):
assume new_key 1is unique
current_node = self.root
parent = None

find place to insert the new node
while current_node is not None:
parent = current_node
if current_node.key < new_key:
current_node = current_node.right
else: # current_node.key > new_key
current_node = current_node.left

create the new node
new_node = Node(key=new_key, parent=parent)

if parent is None, this is the root. Otherwise, update the
parent's left or right child as appropriate
if parent is None:
self.root = new_node
elif parent.key < new_key:
parent.right = new_node
else:
parent.left = new_node

Insertion, Analyzed

Worst case: O(h), where h is height of tree.

Main Idea

Querying and insertion take ©(h) time in the worst
case, where h is the height of the tree.

psc 408

Tmﬁm/ Founolatong 7L

Lecture 8 Part 4
Balanced and Unbalanced BSTs

Binary Tree Height

In case of very balanced tree, h = ©(log n).
Query, insertion take worst case ©(logn) time in a
balanced tree.

Binary Tree Height

In the case of very unbalanced tree, h = ©(n).
Query, insertion take worst case ©(n) time in
unbalanced trees.

Unbalanced Trees

Occurs if we insert items in (close to) sorted or
reverse sorted order.

This is a common situation.

Example

Insert 1, 2, 3, 4, 5, 6, 7, 8 (in that order).

Time Complexities

query O(h)
insertion ©(h)

Where h is height, and h = Q(logn) and h = O(n).

Time Complexities (Balanced)

query O(logn)
insertion O(logn)

Where h is height, and h = Q(logn) and h = O(n).

Worst Case Time Complexities
(Unbalanced)

query O(n)
insertion 0O(n)

The worst case is bad.
Worse than using a sorted array!

The worst case is not rare.

Main Idea

The operations take linear time in the worst case
unless we can somehow ensure that the tree is bal-
anced.

Self-Balancing Trees

There are variants of BSTs that are
self-balancing.
Red-Black Trees, AVL Trees, etc.

Quite complicated to implement correctly.
But their height is guaranteed to be ~ logn.

So insertion, query take ©(logn) in worst case.

If asked for the time complexity of a BST operation,
be careful! A common mistake is to say that inser-
tion/query are O(log n) without being told that the

tree is balanced.

In general, insertion/query take ©(h) time in worst
case. If tree is balanced, h = ©(logn), so they take
O(logn) time. If tree is badly unbalanced, h = O(n),
and they can take O(n) time.

psc 408

Thtm/e%ca/ Founolatong 7L

Lecture 8 Part5

Augmenting BSTs

Modifying BSTs

Perhaps more than most other data structures,
BSTs must be modified (augmented) to solve
unique problems.

Order Statistics

Given n numbers, the kth order statistic is the
kth smallest number in the collection.

Example

[99, 42, -77, -12, 101]
1st order statistic:
2nd order statistic:

4th order statistic:

Dynamic Set, Many Order Statistics

Quickselect finds any order statistic in linear
expected time.

This is efficient for a static set.

Inefficient if set is dynamic.

Goal

Create a dynamic set data structure that
supports fast computation of any order statistic.

BST Solution

For each node, keep attribute .size, containing
of nodes in subtree rooted at current node

Property:’
X.s1lze = x.left.size + x.right.size + 1

"If a left or right child doesn't exist, consider its size zero.

Computing Sizes

def add_sizes to_tree(node):
if node is None:
return o
left_size = add_sizes to_tree(node.left)
right_size = add_sizes_to_tree(node.right)
node.size = left_size + right_size + 1
return node.size

Note

Also need to maintain size upon inserting a node.

Computing Order Statistics

8th? 2nd? 12th

key: 20
size: 12
key: 15 key: 55
size: 7 size: 4
key: 12| key: 18 key: 33| |key: 60
size: 3 size: 3 size: 2 size: 1
/ N\ / N\ /

key: 9| |key: 13| |key: 17| |key: 19| |key: 29
size: 1| |size: 1 size: 1 size: 1 size: 1

Augmenting Data Structures
This is just one example, but many more.

Understanding how BSTs work is key to
augmenting them.

