
Lecture 8 | Part 1

Dynamic Sets

News▶ Midterm 01 next Thursday.▶ Covers up to and including today’s lecture.▶ See dsc40b.com/practice and this week’s
discussion for practice problems.▶ See Campuswire post for details.

Bookkeeping▶ How do you store your books?

Bookkeeping▶ How do you store your books?

johnthelibrarian.com

Bookkeeping▶ How do you store your books?

https://bookriot.com/how-to-organize-bookshelves/

Bookkeeping: Tradeoffs▶ Messy:▶ No upfront cost.▶ Cost to search is high.▶ Organized▶ Big upfront cost.▶ Cost to search is low.▶ “Right” choice depends on how often we search.

Data Structures and Algorithms▶ Data structures are ways of organizing data to
make certain operations faster.▶ Come with an upfront cost (preprocessing).▶ “Right” choice of data structure depends on what
operations we’ll be doing in the future.

Queries: Easy to Hard▶ We’ve been thinking about queries.▶ Given a collection of data, is 𝑥 in the collection?▶ Querying is a fundamental operation.▶ Useful in a data science sense.▶ But also frequently performed in algorithms.▶ There are several situations to think about.

Situation #1: Static Set, One Query▶ Given: an unsorted collection of 𝑛 numbers (or
strings, etc.).▶ In future, you will be asked single query.▶ Which is better: linear search or sort + binary
search?

-Oflor
logn)

Situation #1: Static Set, One Query▶ Given: an unsorted collection of 𝑛 numbers (or
strings, etc.).▶ In future, you will be asked single query.▶ Which is better: linear search or sort + binary
search?▶ Linear search: Θ(𝑛) worst case.▶ Binary search would require sorting first in Θ(𝑛 log 𝑛)

worst case

Situation #2: Static Set, Many Queries▶ Given: an unsorted collection of 𝑛 numbers (or
strings, etc.).▶ In future, you will be asked many queries.▶ Which is better: linear search or sort + binary
search?▶ Depends on number of queries!

Exercise
Suppose you have a static set of 𝑛 items. How long
will it takea to perform 𝑘 queries in total with:
1. linear search?
2. sort + binary search?

If 𝑘 = 𝑛/10, which should you use?
What if 𝑘 = log 𝑛?

aOn average. Assume the best case is rare.

Tes(n) = kn Ths(n) = nlogn + kloga

k= /10 k=logn
Tes(u)= n = G (nz) Tes(a)= E(nlogn (
Tbs(n)-nlogn+ loge-logn) Tbs(n) =G (nlogn)

Situation #3: Dynamic Set, Many Queries▶ Given: a collection of 𝑛 numbers (or strings, etc.).▶ In future, you will be asked many queries and to
insert new elements.▶ Best approach: ?

Binary Search?▶ Can we still use binary search?▶ Problem: To us binary search, we must maintain
array in sorted order as we insert new elements.▶ Inserting into array takes Θ(𝑛) time in worst case.▶ Must “make room” for new element.▶ Can we use linked list with binary search?

20
,
1
,
2
,
5

,
6
,

7
,
9
, 12

Today▶ Introduce (or review) binary search trees.▶ BSTs support fast queries and insertions.▶ Preserve sorted order of data after insertion.▶ Can be modified to solve many problems
efficiently.▶ Example: finding order statistics.

Lecture 8 | Part 2

Binary Search Trees

Trees

55

12

5 43

20 17 82

90

99

42 34

Binary Trees▶ Each node has at most two children (left and
right).

55

12

5 43

20 82

90

99

Binary Search Tree▶ A binary search tree (BST) is a binary tree that
satisfies the following for any node x:▶ if y is in 𝑥’s left subtree:

y.key ≤ x.key▶ if y is in 𝑥’s right subtree:
y.key ≥ x.key

Assumption (for simplicity)▶ We’ll assume keys are unique (no duplicates).▶ if y is in 𝑥’s left subtree:
y.key < x.key▶ if y is in 𝑥’s right subtree:
y.key > x.key

Example▶ This is a BST.

55

12

5 43

20

90

99

↑

Example▶ This is not a BST.

55

39

5 43

20

90

99

↓

55

12

5

2

Exercise

Is this is a BST?

Y

Yes

Height▶ The height of a tree is the number of edges from
the root to any leaf.▶ Suppose a binary tree has 𝑛 nodes.▶ The tallest it can be is ≈ 𝑛▶ The shortest it can be is ≈ log2 𝑛]

In Python
class Node:

def __init__(self, key, parent=None):
self.key = key
self.parent = parent
self.left = None
self.right = None

class BinarySearchTree:
def __init__(self, root: Node):

self.root = root

·

In Python

6

12 33

root = Node(6)
n1 = Node(12, parent=root)
root.left = n1
n2 = Node(33, parent=root)
root.right = n2
tree = BinarySearchTree(root)

Es

Lecture 8 | Part 3

Queries and Insertions in BSTs

Why?▶ BSTs impose structure on data.▶ “Not quite sorted”.▶ Preprocessing for making insertions and queries
faster.

Operations on BSTs▶ We will want to:▶ query a key (is it in the tree?)▶ insert a new key

Queries▶ Given: a BST and a target, 𝑡.▶ Return: True or False, is the target in the
collection?

Queries▶ Is 36 in the tree? 65? 23?

42

25

20

1 24

40

36

70

65

60

72

i
&

Queries▶ Start walking from root.▶ If current node is:▶ equal to target, return True;▶ too large (> target), follow left edge;▶ too small (< target), follow right edge;▶ None, return False

Queries, in Python
def query(self, target):

”””As method of BinarySearchTree.”””
current_node = self.root
while current_node is not None:

if current_node.key == target:
return current_node

elif current_node.key < target:
current_node = current_node.right

else:
current_node = current_node.left

return None

Exercise
Complete the recursive version of query.

def query_recursive(node, target):
”””As a 'free function'.”””
if node is None:

return False

if node.key == target:
...

elif ...:
...

else:
...

returnTrue
nodekey c target :
query-recursive(node , right , tayet)
query-recursive (nodeleft , tayet)

Queries (Recursive)
def query_recursive(node, target):

”””As a 'free function'.”””
if node is None:

return False

if node.key == target:
return node

elif node.key < target:
return query_recursive(node.right, target)

else:
return query_recursive(node.left, target)

Queries, Analyzed▶ Best case: Θ(1).▶ Worst case: Θ(ℎ), where ℎ is height of tree.

Insertion▶ Given: a BST and a new key, 𝑘.▶ Modify: the BST, inserting 𝑘.▶ Must maintain the BST properties.

Insertion▶ Insert 23 into the BST.
42

25

20

1 24

40

36

70

65

60

72

⑮

Insertion (The Idea)▶ Traverse the tree as in query to find empty spot
where new key should go, keeping track of last
node seen.▶ Create new node; make last node seen the
parent, update parent’s children.▶ Be careful about inserting into empty tree!

def insert(self, new_key):
assume new_key is unique
current_node = self.root
parent = None

find place to insert the new node
while current_node is not None:

parent = current_node
if current_node.key < new_key:

current_node = current_node.right
else: # current_node.key > new_key

current_node = current_node.left

create the new node
new_node = Node(key=new_key, parent=parent)

if parent is None, this is the root. Otherwise, update the
parent's left or right child as appropriate
if parent is None:

self.root = new_node
elif parent.key < new_key:

parent.right = new_node
else:

parent.left = new_node

Insertion, Analyzed▶ Worst case: Θ(ℎ), where ℎ is height of tree.

Main Idea
Querying and insertion take Θ(ℎ) time in the worst
case, where ℎ is the height of the tree.

Lecture 8 | Part 4

Balanced and Unbalanced BSTs

Binary Tree Height▶ In case of very balanced tree, ℎ = Θ(log 𝑛).▶ Query, insertion take worst case Θ(log 𝑛) time in a
balanced tree.

42

25

20

1 24

40

36

70

65

61 67

72

70

Binary Tree Height▶ In the case of very unbalanced tree, ℎ = Θ(𝑛).▶ Query, insertion take worst case Θ(𝑛) time in
unbalanced trees.

1

20

24

25

Unbalanced Trees▶ Occurs if we insert items in (close to) sorted or
reverse sorted order.▶ This is a common situation.

↑witne

60
,
02.0

is
6

6262-
04 so

Example▶ Insert 1, 2, 3, 4, 5, 6, 7, 8 (in that order).

Time Complexities

query Θ(ℎ)
insertion Θ(ℎ)

Where ℎ is height, and ℎ = Ω(log 𝑛) and ℎ = 𝑂(𝑛).

Time Complexities (Balanced)

query 𝑂(log 𝑛)
insertion 𝑂(log 𝑛)

Where ℎ is height, and ℎ = Ω(log 𝑛) and ℎ = 𝑂(𝑛).

Worst Case Time Complexities
(Unbalanced)

query Θ(𝑛)
insertion Θ(𝑛)▶ The worst case is bad.▶ Worse than using a sorted array!▶ The worst case is not rare.

Main Idea
The operations take linear time in the worst case
unlesswe can somehow ensure that the tree is bal-
anced.

Self-Balancing Trees▶ There are variants of BSTs that are
self-balancing.▶ Red-Black Trees, AVL Trees, etc.▶ Quite complicated to implement correctly.▶ But their height is guaranteed to be ∼ log 𝑛.▶ So insertion, query take Θ(log 𝑛) in worst case.

Warning!

If asked for the time complexity of a BST operation,
be careful! A common mistake is to say that inser-
tion/query are Θ(log 𝑛) without being told that the
tree is balanced.

Main Idea
In general, insertion/query take Θ(ℎ) time in worst
case. If tree is balanced, ℎ = Θ(log 𝑛), so they takeΘ(log 𝑛) time. If tree is badly unbalanced, ℎ = 𝑂(𝑛),
and they can take 𝑂(𝑛) time.

Lecture 8 | Part 5

Augmenting BSTs

Modifying BSTs▶ Perhaps more than most other data structures,
BSTs must be modified (augmented) to solve
unique problems.

Order Statistics▶ Given 𝑛 numbers, the 𝑘th order statistic is the𝑘th smallest number in the collection.

Example

[99, 42, -77, -12, 101]▶ 1st order statistic:▶ 2nd order statistic:▶ 4th order statistic:

-77

- 12

Dynamic Set, Many Order Statistics▶ Quickselect finds any order statistic in linear
expected time.▶ This is efficient for a static set.▶ Inefficient if set is dynamic.

Goal▶ Create a dynamic set data structure that
supports fast computation of any order statistic.

BST Solution▶ For each node, keep attribute .size, containing
of nodes in subtree rooted at current node▶ Property:1
x.size = x.left.size + x.right.size + 1

1If a left or right child doesn’t exist, consider its size zero.

0
d

Computing Sizes
def add_sizes_to_tree(node):

if node is None:
return 0

left_size = add_sizes_to_tree(node.left)
right_size = add_sizes_to_tree(node.right)
node.size = left_size + right_size + 1
return node.size

Note▶ Also need to maintain size upon inserting a node.

Computing Order Statistics▶ 8th? 2nd? 12th
key: 20
size: 12

key: 15
size: 7

key: 12
size: 3

key: 9
size: 1

key: 13
size: 1

key: 18
size: 3

key: 17
size: 1

key: 19
size: 1

key: 55
size: 4

key: 33
size: 2

key: 29
size: 1

key: 60
size: 1

Augmenting Data Structures▶ This is just one example, but many more.▶ Understanding how BSTs work is key to
augmenting them.

