DSC 40B Theoretical Foundations II

Lecture 8 | Part 1

Dynamic Sets

News

- Midterm 01 next Thursday.
- Covers up to and including today's lecture.
- See dsc40b.com/practice and this week's discussion for practice problems.
- See Campuswire post for details.

Bookkeeping

How do you store your books?

Bookkeeping

How do you store your books?

johnthelibrarian.com

Bookkeeping

How do you store your books?

https://bookriot.com/how-to-organize-bookshelves/

Bookkeeping: Tradeoffs

Messy:

- No upfront cost.
- Cost to search is high.
- Organized
 - Big upfront cost.
 - Cost to search is low.

"Right" choice depends on how often we search.

Data Structures and Algorithms

- Data structures are ways of organizing data to make certain operations faster.
- Come with an upfront cost (preprocessing).
- "Right" choice of data structure depends on what operations we'll be doing in the future.

Queries: Easy to Hard

- We've been thinking about queries.
 Given a collection of data, is x in the collection?
- Querying is a fundamental operation.
 - Useful in a data science sense.
 - But also frequently performed in algorithms.
- There are several situations to think about.

Situation #1: Static Set, One Query

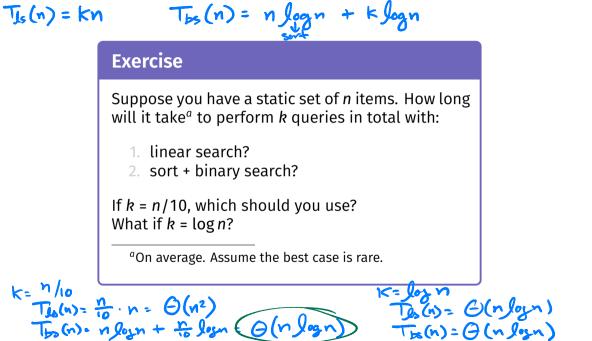
- Given: an unsorted collection of n numbers (or strings, etc.).
- In future, you will be asked single query.
- Which is better: linear search or sort + binary search?

Situation #1: Static Set, One Query

- Given: an unsorted collection of n numbers (or strings, etc.).
- In future, you will be asked single query.
- Which is better: linear search or sort + binary search?
 - Linear search: $\Theta(n)$ worst case.
 - Binary search would require sorting first in Θ(n log n) worst case

Situation #2: Static Set, Many Queries

- Given: an unsorted collection of n numbers (or strings, etc.).
- In future, you will be asked many queries.
- Which is better: linear search or sort + binary search?
 - Depends on number of queries!



Situation #3: Dynamic Set, Many Queries

- **Given**: a collection of *n* numbers (or strings, etc.).
- In future, you will be asked many queries and to insert new elements.
- Best approach: ?

[0, \, 2, 5, 6, 7, 9, 7] Binary Search?

- Can we still use binary search?
- Problem: To us binary search, we must maintain array in sorted order as we insert new elements.
- Inserting into array takes O(n) time in worst case.
 Must "make room" for new element.
 - Can we use linked list with binary search?

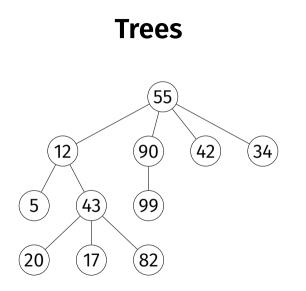
Today

- Introduce (or review) binary search trees.
- BSTs support fast queries *and* insertions.
- Preserve sorted order of data after insertion.
- Can be modified to solve many problems efficiently.
 - Example: finding order statistics.

DSC 40B Theoretical Foundations II

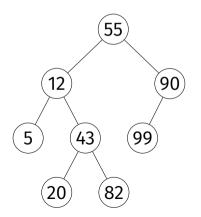
Lecture 8 | Part 2

Binary Search Trees



Binary Trees

Each node has at most two children (left and right).



Binary Search Tree

A binary search tree (BST) is a binary tree that satisfies the following for any node x:

▶ if y is in *x*'s **left** subtree:

y.key≤x.key

▶ if y is in x's **right** subtree:

 $y.key \ge x.key$

Assumption (for simplicity)

- We'll assume keys are unique (no duplicates).
- ▶ if y is in x's **left** subtree:

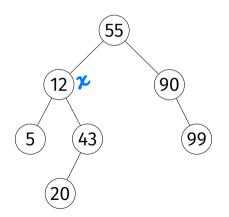
y.key < x.key

▶ if y is in x's **right** subtree:

y.key > x.key

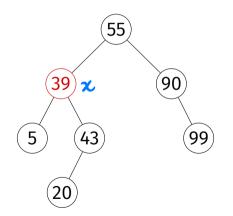
Example

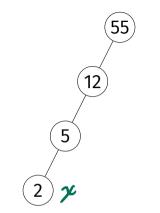
▶ This **is** a BST.



Example

▶ This is **not** a BST.





Height

The height of a tree is the number of edges from the root to any leaf.

Suppose a binary tree has n nodes.

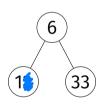
The tallest it can be is ≈ n

► The **shortest** it can be is $\approx \log_2^{O} n$

In Python class Node: def __init__(self, key, parent=None): self.key = key self.parent = parent self.left = None self.right = None

class BinarySearchTree: def __init__(self, root: Node): self.root = root

In Python



root = Node(6)
n1 = Node(12, parent=root)
root.left = n1
n2 = Node(33, parent=root)
root.right = n2
tree = BinarySearchTree(root)

DSC 40B Theoretical Foundations II

Lecture 8 | Part 3

Queries and Insertions in BSTs

Why?

- BSTs impose structure on data.
- "Not quite sorted".
- Preprocessing for making insertions and queries faster.

Operations on BSTs

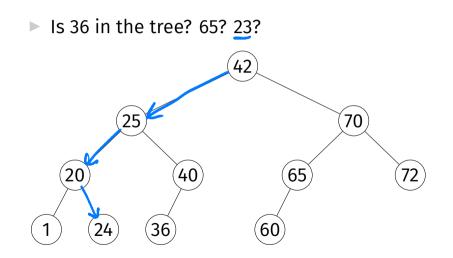
We will want to:
 query a key (is it in the tree?)
 insert a new key

Queries

Given: a BST and a target, *t*.

Return: True or False, is the target in the collection?

Queries



Queries

Start walking from root.

If current node is:

- equal to target, return True;
- too large (> target), follow left edge;
- too small (< target), follow right edge;</p>
- None, return False

Queries, in Python

```
def guery(self. target):
    """As method of BinarySearchTree."""
    current node = self.root
    while current node is not None:
        if current node.kev == target:
            return current node
        elif current node.key < target:</pre>
            current node = current node.right
        else:
            current node = current node.left
    return None
```



```
def query_recursive(node, target):
    """As a 'free function'."""
    if node is None:
        return False
    if node.key == target:
        ... return True
    elif ...: node.key < target:
        ... query_recursive(node.night, target)
        ... query_recursive(node.left, target)</pre>
```

Queries (Recursive)

```
def query_recursive(node, target):
    """As a 'free function'."""
    if node is None:
         return False
    if node.key == target:
         return node
    elif node.kev < target:</pre>
         return query recursive(node.right, target)
    else:
         return query recursive(node.left, target)
```

Queries, Analyzed

Best case: Θ(1).

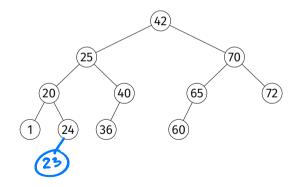
• Worst case: $\Theta(h)$, where h is **height** of tree.

Insertion

- **Given**: a BST and a new key, *k*.
- **Modify**: the BST, inserting *k*.
- Must maintain the BST properties.

Insertion

Insert 23 into the BST.



Insertion (The Idea)

- Traverse the tree as in query to find empty spot where new key should go, keeping track of last node seen.
- Create new node; make last node seen the parent, update parent's children.
- Be careful about inserting into empty tree!

```
def insert(self, new key):
    # assume new key is unique
   current_node = self.root
    parent = None
    # find place to insert the new node
   while current node is not None:
        parent = current node
        if current node.key < new key:
            current node = current node.right
        else: # current node.kev > new kev
            current node = current node.left
    # create the new node
    new node = Node(key=new key, parent=parent)
    # if parent is None. this is the root. Otherwise. update the
    # parent's left or right child as appropriate
   if parent is None:
        self.root = new_node
    elif parent.key < new key:</pre>
        parent.right = new node
   else:
        parent.left = new node
```

Insertion, Analyzed

• Worst case: $\Theta(h)$, where h is **height** of tree.

Main Idea

Querying and insertion take $\Theta(h)$ time in the worst case, where h is the height of the tree.

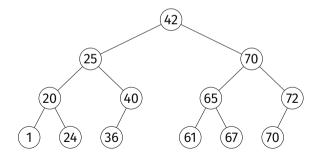
DSC 40B Theoretical Foundations II

Lecture 8 | Part 4

Balanced and Unbalanced BSTs

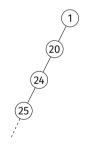
Binary Tree Height

In case of very balanced tree, h = ⊖(log n).
 Query, insertion take worst case ⊖(log n) time in a balanced tree.



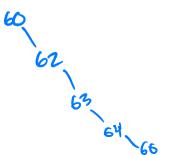
Binary Tree Height

In the case of very unbalanced tree, h = Θ(n).
 Query, insertion take worst case Θ(n) time in unbalanced trees.



60, 62, 63, 64, 64 Gam Matine Unbalanced Trees

- Occurs if we insert items in (close to) sorted or reverse sorted order.
- This is a common situation.



Example

Insert 1, 2, 3, 4, 5, 6, 7, 8 (in that order).

Time Complexities

query $\Theta(h)$ insertion $\Theta(h)$

Where h is height, and $h = \Omega(\log n)$ and h = O(n).

Time Complexities (Balanced)

query O(log n) insertion O(log n)

Where h is height, and $h = \Omega(\log n)$ and h = O(n).

Worst Case Time Complexities (Unbalanced)

query $\Theta(n)$ insertion $\Theta(n)$

- The worst case is bad.
 - Worse than using a sorted array!
- The worst case is not rare.

Main Idea

The operations take linear time in the worst case **unless** we can somehow ensure that the tree is **balanced**.

Self-Balancing Trees

- There are variants of BSTs that are self-balancing.
 Red-Black Trees, AVL Trees, etc.
- Quite complicated to implement correctly.
- But their height is **guaranteed** to be ~ log *n*.
- So insertion, query take Θ(log *n*) in worst case.

Warning!

If asked for the time complexity of a BST operation, be careful! A common mistake is to say that insertion/query are $\Theta(\log n)$ without being told that the tree is balanced.

Main Idea

In general, insertion/query take $\Theta(h)$ time in worst case. If tree is balanced, $h = \Theta(\log n)$, so they take $\Theta(\log n)$ time. If tree is badly unbalanced, h = O(n), and they can take O(n) time.

DSC 40B Theoretical Foundations II

Lecture 8 | Part 5

Augmenting BSTs

Modifying BSTs

Perhaps more than most other data structures, BSTs must be modified (augmented) to solve unique problems.

Order Statistics

Given n numbers, the kth order statistic is the kth smallest number in the collection.

Example

- 1st order statistic: -77
- 2nd order statistic: 12
- 4th order statistic:

Dynamic Set, Many Order Statistics

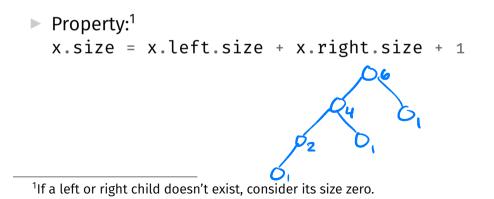
- Quickselect finds any order statistic in linear expected time.
- This is efficient for a static set.
- Inefficient if set is dynamic.

Goal

Create a dynamic set data structure that supports fast computation of any order statistic.

BST Solution

For each node, keep attribute .size, containing # of nodes in subtree rooted at current node



Computing Sizes

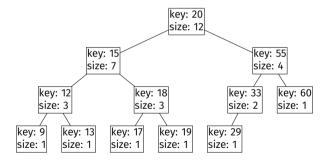
```
def add_sizes_to_tree(node):
    if node is None:
        return 0
    left_size = add_sizes_to_tree(node.left)
    right_size = add_sizes_to_tree(node.right)
    node.size = left_size + right_size + 1
    return node.size
```

Note

Also need to maintain size upon inserting a node.

Computing Order Statistics

8th? 2nd? 12th



Augmenting Data Structures

- This is just one example, but many more.
- Understanding how BSTs work is key to augmenting them.