DSC 408

vafvca/ FounolaPong 7L

Lecture 7 Part1

The Median and Order Statistics

The Median

How fast can we find a median of n numbers?

Algorithms

We have seen several ways of computing a median:
Alg. 1: Minimize absolute error, brute force.
Alg. 2: Use definition (half <, half 2).

Using what we know so far, what approach for find-
ing the median has the best worst-case time com-

plexity? Ma 4 .l» + Return ‘0/&

Best so far...

Sort the list with mergesort, return middle
element.

Time complexity: ©(nlogn).

Is sorting necessary?
Need to sort the whole list just to find middle?

Seems like more work than necessary.

Today

We'll design an algorithm which runs in ©(n)
expected time.

Much more useful than just finding median...

Order Statistics

The median is an example of an order statistic.

Given n numbers, the kth order statistic is the kth
smallest number in the collection.

Example

q ; ! A
[99, 42, -77, -12, 101]

1st order statistic: - FF
2nd order statistic: -2

4th order statistic: 6]q

Some special cases of order statistics go by differ-
ent names. Can you think of some?

Special Cases
Minimum: 1st order statistic.
Maximum: nth order statistic.
Median: [n/2]th order statistic’.

pth Percentile: [~ - n]th order statistic.

"What if n is even?

Goal

Fast algorithm for computing any order statistic.
Interestingly, some seem easier than others.

Our algorithm will find any order statistic in ©(n)
expected time.

Approach #1

We can modify selection_sort to find the kth
order statistic.

Loop invariant: after kth iteration, first k
elements are in final sorted order.

def selection_sort(arr):
"""In-place selection sort.
n = len(arr)
if n <= 1:
return
for barrier_ix in range(n-1):
find index of min in arr[start:]
min_ix = find_minimum(arr, start=barrier ix)
#swap
arr[barrier_ix], arr[min_ix] = (
arr[min_ix], arr[barrier_ix]

nnn

def select_k(arr, k):

"""Find kth order statistic.

n = len(arr)

if n <= 1:
return

for barrier_ix in range(k):
find index of min in arr[start:]
min_ix = find_minimum(arr, start=barrier_ix)
#swap
arr[barrier_ix], arr[min_ix] = (

arr[min_ix], arr[barrier_ix]

Vaiald

)

return arr[k-1]

What are the best case and worst case time com-
plexities of select_k?

Approach #1
1st order statistic: O(n).
nth order statistic: ©(n?).
Median: ©(n?).

kth order statistic: ©(kn).

Describe how to find any order statistic in
O(n logn) time.

Approach #2

Sort with mergesort, return arr[k-1]

O(n logn) time. Could be better...

psc 4058

771101/27[700// Founolatong 7L

Lecture 7 Part?2

Quickselect

The Goal

Given a collection of n numbers and an order, k.

Find the kth smallest number in the collection.

22

101

42

19

84

20

Game Show
Goal: tell the host the largest number.

Caution: with every door opened, your money is
reduced.

Twist: After opening a door, the host tells you:
which doors are smaller.
which doors are larger.
they partition the doors into higher and lower by
moving them.

20

20 A

after partitioning

20

84

20 A C

84

after partitioning

20

84

101

After partitioning, the just-opened door is in the
correct place in the sorted order (but the other
doors may not be).

But, every door to the left is smaller (<), every door
to the right is larger (2).

In general...
Let's generalize strategy for kth order statistic.

Example: k = 2.

20

20 A

after partitioning

19

20

20 A

after partitioning

Strategy

Open arbitrary door (that hasn’t been ruled out).

Partition the doors around this number:
Move doors smaller than this to the left,
Larger than this to the right.

Let p be our door’s new position, kR be the order

we want.
If p = R, return this door.
If p < R, rule out doors to left.
If p > R, rule out doors to right.

Repeat.

In Code

import random
def quickselect(arr, k, start, stop):
"""Finds kth order statistic in numbers[start:stop])”””
pivot_ix = random.randrange(start, stop)
pivot_ix = partition(arr, start, stop, pivot_ix)
pivot_order = pivot_ix + 1
if pivot_order == k:
return arr[pivot_ix]
elif pivot_order < k:
return quickselect(arr, k, pivot_ix + 1, stop)
else:
return quickselect(arr, k, start, pivot_ix)

15(0.¢)

Example = ..
450,4)
arr = [77, 42, 11, 99, 0, 101] r:-‘:m:e, N
0 (n HZ 35179, o pvebier L
z z y 5
T]

Sterk T;NAJK S'+UP

psc 408

Tmﬁm/ FounolaPong 7L

Lecture 7 Part 3

Partition

Partitioning

Given an array of n numbers and the i@ex of a
pivot p.
(e.2,%2,8,1,10]

Rearrange elements so that: i
Everything < p is first. M‘ sz ! 1

Everything = p is next. e - \
Everything > p is last. ng“ (6‘8) Ol

Return index of first element = p.

def partition(arr, start, stop, pivot_ix):

mnn mnn

Partition arr[start:stop] around pivot.
left = [1]
pivot_count = o
right = []
pivot = arr[pivot_ix]
for ix in range(start, stop):
if arr[ix] < pivot:
left.append(arr[ix])
elif arr[ix] == pivot:
pivot_count += 1
else:
right.append(arr[ix])
ix = start
for x in left:
arr[ix] = x
ix += 1
for i in range(pivot_count):
arr[ix] = pivot
ix += 1
for x in right:
arr[ix] = x
ix += 1
return start + len(left)

Partition

partition takes O(n) time.
This is optimal.

But we can use memory more efficiently.

Motivation

Similar to selection sort, we’ll use two barriers:

“Middle” barrier:
Separates things < pivot from things 2
Index of first thing in “right”

“End” barrier:
Separates processed from processed.
Index of first “unprocessed” thing.

[|]

middle end

Example

Simplification: start by moving pivot to end.

arr = [77, 42, 11, 99, 0, 101] pivot_ix = 1
o / z Z
ond i g
[:/1,0 Az, 19,101 32 |
o (2 2 L4 5

*P\'vo‘l:,ix =)

Loop Invariants

After each iteration:
everything in arr[start:middle_barrier] is < pivot.
everything in arr[middle_barrier:end_barrier] is 2 pivot.
everything in arr[end_barrier:stop] is “unprocessed”

def in_place_partition(arr, start, stop, pivot_ix):
def swap(ix_1, ix_2):
arr[ix_a], arr[ix_2] = arr[ix_2], arr[ix_1]

pivot = arr[pivot_ix]
swap(pivot_ix, stop-1)
middle_barrier = start
for end_barrier in range(start, stop - 1):
if arr[end_barrier] < pivot:
swap(middle_barrier, end_barrier)
middle_barrier += 1
else:
do nothing
swap(middle_barrier, stop-1)
return middle_barrier

Efficiency
Also takes ©(n) time.

No auxiliary memory required.

DSC 408

Thtm/é%ca/ Founolatong 7L

Lecture 7 Part 4

Time Complexity Analysis

Time Complexity

What is time complexity of quickselect?

' zl >-' I <)
TN N~
import random

def quickselect(arr, k, start, stop):
"""Finds kth order statistic in numbers[start:stop])”””
pivot_ix = random.randrange(start, stop)
pivot_ix = partition(arr, start, stop, pivot_ix)
pivot_order = pivot_ix + 1
if pivot_order ==
return arr[pivot_ix]
elif pivot_order < k:
return quickselect(arr, k, pivot_ix + 1, stop)
else:
return quickselect(arr, k, start, pivot_ix)

Problem

We don’t know the size of the subproblem.
Is random, can be anywhere from 1ton - 1.

Difficult to write recurrence relation.

Good and Bad Pivots

Some pivots are better than others.
Good: splits array into roughly balanced halves.
Bad: splits array into wildly unbalanced pieces.

Suppose we're searching for the minimum. What
would be the worst possible pivot?

Worst Case
Suppose we're searching for kR = 1 (minimum).
Worst pivot: the maximum.
Worst case: use max as pivot every time.

Subproblem size: n - 1.

Worst Case
Every recursive call is on problem of size n - 1.

T(n)=T(n-1)+0(n).
Solution: ©(n?).

Intuitively, randomly choosing largest number as
pivot every time is very unlikely!

1 1 1 17 1 1
— X X X oo X — X — = —
n n-1 n-2 3 2 n!

Equally Unlikely
Pivot falls exactly in the middle, every time.
Subproblems are of size n/2.

T(n) =T(n/2)+ ©(n).
Solution: ©(n).

Typically
Pivot falls somewhere in the middle.
Sometimes good, sometimes bad.

But good pivots reduce problem size by so much
that they make up for bad pivots.

Analogy

You're 100 miles away from home.

You have a button that, if you press it, teleports
you 1 mile closer to home.

How many times must you press it before you're
1 mile away from home?

Analogy

You're 100 miles away from home.

You have a button that, if you press it, teleports
you 1 mile closer to home.

How many times must you press it before you're

1 mile away from home?
Answer: 99 times.

Analogy
You're 100 miles away from home.

You have a button that, if you press it, teleports
you half the distance to home.

How many times must you press it before you're
<1 mile away from home?

Analogy
You're 100 miles away from home.

You have a button that, if you press it, teleports
you half the distance to home.

How many times must you press it before you're

<1 mile away from home?
Answer: about log, 100 = 6.64 times.

Analogy

You're 100 miles away from home.

You have a button that, if you press it, teleports
you half the distance to home with probability
1/2, does nothing with probability 1/2.

How many times do you expect to press it before

you're <1 mile away from home?
Answer: about twice as many times as before. So,
2log, 100 ~ 13.28.

Quickselect
The same reasoning applies to quickselect.
If we always get a good pivot, time taken is ©(n).

If half the time we get a bad pivot, we expect:
To make twice as many recursive calls.
Take twice as much time as before.

But 20(n) = ©(n).

Quickselect
Expected time complexity: O(n).

Worst case: ©(n?), but very unlikely.

Median

We can find the median in expected linear time
with quickselect.

psc 4058

771101/27[700// Founolatong 7L

Lecture7 Parth

Quicksort

Last Time
We saw mergesort.
Divide: split list directly down the middle
Conquer: sort each half

Combine: merge sorted halves together

merge does all the work
In mergesort, we are lazy when we divide.

So we have to work to combine.

[4,1,3,2] = [4,2],[3,2] » [4,3],[2,3] = [1,2,3,4]

What if?

Suppose we divide so that everything in left is
smaller than everything in right:

After sorting, no need for merge.

[5,1,3,8,6,2] - [1,3,2],[5,8,6]

What if?

Suppose we divide so that everything in left is
smaller than everything in right:

After sorting, no need for merge.
[5,1,3,8,6,2] = [1,3,2],[5,8,6]

This is what partition does!

Quicksort

def quicksort(arr, start, stop):
"""Sort arr[start:stop] in-place.
if stop - start > 1:
pivot_ix = random.randrange(start, stop)
pivot_ix = partition(arr, start, stop, pivot_ix)
quicksort(arr, start, pivot_ix)
quicksort(arr, pivot_ix+1, stop)

nnn

Time Complexity

Average case: O(nlogn)
Worst case: ©(n?).

Like with quickselect, worst case is very rare.

Mergesort vs Quicksort
Mergesort has better worst case complexity.
But in practice, Quicksort is often faster.

Takes less memory, too.

Memory Requirements

merges requires output array, ©(n) additional
space.

partition works in-place, requires no
additional space?

Example: sorting 3 GB of data with 4 GB of RAM.

2Call stack for quicksort requires O(log n) additional space.

