psc 408

Thtm/é%ca/ Founolatong 7L

Lecture 6 Part1

Selection Sort and Loop Invariants

Sorting
Sorting is a very common operation.

But why is it important?

Sorting
Sorting is a very common operation.
But why is it important?

Aesthetic reasons?

Sorting
Sorting is a very common operation.
But why is it important?
Aesthetic reasons?

Sorting makes some problems easier to solve.

Today
How do we sort?
How fast can we sort?

How do we use sorted structure to write faster
algorithms?

Today

Also: how to understand complex loops with
loop invariants.

Selection Sort

Repeatedly remove smallest element.

Put it at beginningof new list.
omd

Example: arr = [/5/, I 'l
(1.2,2,5,67)

In-place Selection Sort

We don’t need a separate list.
We can swap elements until sorted.

Store “new” list at the beginning of input list.

Separate the old and new with a barrier.

Example: arr = [5, 6, 3, 2, 1]

[\\é,%,z,‘;]
1

bw(N

9(,13 =\a,><
def selection_sort(arr):
"""In-place selection sort.
n = len(arr)
if n <= 1:
return
for barrier_ix in range(n-1):
find index of min in arr[start:]
min_ix = find_minimum(arr, start=barrier_ix)
#swap
arr[barrier_ix], arr[min_ix] = (
arr[min_ix], arr[barrier_ ix]
)

aiald

def find_minimum(arr, start):
"""Finds index of minimum. Assumes non-empty.”””
n = len(arr)
min_value = arr[start]
min_ix = start
for i in range(start + 1, n):
if arr[i] < min_value:
min_value = arr[i]
min_ix = 1
return min_ix

Loop Invariants
How do we understand an iterative algorithm?

A loop invariant is a statement that is true after
every iteration.
And before the loop begins!

Loop Invariant(s)

After the ath iteration of selection sort, each of the
first a elements is < each of the remaining elements.
Example: arr = [5, 6, 3, 2, 1]
x*0 (%, 6,2, 2,17
o= [1,6,%2,57]
<2 11.2,3,6,5)

Loop Invariant(s)

After the ath iteration, the first a elements are sorted.

Example: arr = [5, 6, 3, 2, 1]

Loop Invariants

Plug the total number of iterations into the loop
invariant to learn about the result.

selection_sort makes n - 1 iterations:

After the (n - 1)th iteration, the first (n - 1) elements
are sorted.

After the (n - 1)th iteration, each of the first (n - 1)
elements is < each of the remaining elements.

Time Complexity

def selection_sort(arr):
"""In-place selection sort.””” (V\-\) + (V‘ -2) "'(""3)“" ..

n = len(arr) F 2824
if n <= 1:
return =
-_— T
for barrier_ix in range(n-1): @(Y‘)

find index of min in arr[barrier ix:]
min_value = arr[barrier_ix]
min_ix = barrier_ix
for i in range(barrier_ix + 1, n):
if arr[i] < min_value:
min_value = arr[i]
min_ix = i
#swap
arr[barrier_ix], arr[min_ix] = (
arr[min_ix], arr[barrier_ix]
)

Time Complexity

Selection sort takes ©(n?) time.

- G(“ Modify selection_sort so that it computes a me-

dian of the input array. What is the time complex-

ity? @ (Y\ 7_)

def selection_sort(arr): 5‘ \) 2 , Y
"""In-place selection sort.”””
n = len(arr) =1\ 5'2‘,_"
if n <= 1:)
return n Z) . Q
for barrier_ix in range(xX=2 \)2\ 5)

find index of min in arr[start:] -

min_ix = find_minimum(arr, start=barrier_ix)

#swap

arr[barrier_ix], arr[min_ix] = (
arr[min_ix], arr[barrier_ix]

duwdn are[4)|2)

“'3 \)21'5'“)

psc 408

7'/1101@7400// Founolatong ZL

Lecture 6 Part 2

Mergesort

Can we sort faster?

The tight theoretical lower bound for
comparison sorting is ©(n logn).

Selection sort is quadratic.

How do we sort in ©(n log n) time?

Mergesort
Mergesort is a fast sorting algorithm.

Has best possible (worst-case) time complexity:
O(n logn).

Implements divide/conquer/recombine strategy.

The Idea

Divide: split the array into halves
[6,1,9,2,4,3] = [6,1,9],[2,4,3]

Conquer: sort each half, recursively
[6,1,9] » [1,6,9]and [2,4,3] = [2,3,4]

Combine: merge sorted halves together
[1,6,9],[2,3,4] = [1,2,3,4,6,9]

Aside: splitting arrays

Splitting an array in half by slicing:
»> arr = [9, 1, 4, 2, 5]

»> middle = math.floor(len(arr) / 2)
»> arr[:middle] &—

[9, 1] OM) +me
»> arr[middle:] 0—

[4, 2, 5]

Warning! Creates a copy!

Mergesort

(&)
?ﬂ“* ef mergesort(arr):

"""Sort array in-place.

if len(arr) > 1:
middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
mergesort(left)
mergesort(right)
merge(left, right, arr)

”nn

The Idea

713]1161215T8[4] '"S(Cz;';.ég;e.ﬂ)
S » 2\
73[1l6] [2]5]8[al A3
73] []e] [2[5] [8]4 ms (743

t tﬂ t E‘ :- Mniv;: @3))

112[3[4]5]6[7]8]

Understanding Mergesort
What is the base case?
Are the recursive problems smaller?

Assuming the recursive calls work, does the
whole algorithm work?

1. Base Case: n =1
Arrays of size one are trivially sorted.

Returns immediately. Correct!

2. Smaller Problems?

Are arr[:middle] and arr[middle:] always
smaller than arr?

Try it for len(arr) == 2.

3. Does it Work?

Assume mergesort works on arrays of size < n.

Does it work on arrays of size n?

Mergesort

def mergesort(arr):

"""Sort array in-place.

if len(arr) > 1:
middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
mergesort(left)
mergesort(right)
merge(left, right, arr)

”nn

psc 408

7'/1101@7400// Founolatong ZL

Lecture 6 Part 3
Merge

Merging
We have sorted each half.

Now we need to merge together.

Merging
We have sorted each half.
Now we need to merge together.

Note: this is an example of a problem that is
made easier by sorting.

merge

g

merge

2

merge

merge

merge

)

merge

)
1J[2)(3)(s) (6

merge

23 (5] (6] 7]

merge

23 (5] (6] (7)[8)

Sy

ﬁﬂ: (b\, i/, e lo,aa]

merge
3 4y 2 b =
\ bd] o0
def merge(left, right, out): Y‘Z"‘* () 2, Ee 'ﬂ\]

"""Werge sorted arrays, store in out.””” . %Px
left.append(float('inf')) Jh
right.append(float('inf"'))
left_ix = 0 .TL. 2 35 * 8 ,01
right_ix = o 01”\—' [:_'_)..'-’- ==

for ix in range(len(out)):
if left[left_ix] < right[right_ix]

out[ix] = left[left_ix]
left_ix += 1

else:
out[ix] = right[right_ix]

right_ix += 1

Loop Invariant
Assume left and right are sorted.

Loop invariant: After ath iteration, first a
elements of out are the smallest a elements of
those in left and right, in sorted order.

That is, after ath iteration,
out[:a] == sorted(left + right)[:a]

Key of mergesort
merge is where the actual sorting happens.

Example: merge([3], [1], ...) resultsin
[1,3]

Time Complexity of merge

def merge(left, right, J?t):
"""Merge sorted arrays, store in out.
left.append(float('inf'))
right.append(float('inf"')) @(V\)
left_ix = o
right_ix = o

nwnn

for ix in range(len(out)):
if left[left_ix] < right[right_ix]:
out[ix] = left[left_ix]
left_ix += 1
else:
out[ix] = right[right_ix]
right_ix += 1

DSC 408

Thtm/e%ca/ Founolatong 7L

Lecture 6 Part 4

Time Complexity of Mergesort

Time Complexity

def mergesort(arr):

"""Sort array in-place.

if len(arr) > 1:
middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
mergesort(left)
mergesort(right)
merge(left, right, arr)

nmnn

Aside: Copying
What is arr[:middle] doing “under the hood"?

What is the time complexity?

The Recurrence
def mergesort(arr): T(V\) = é(ﬂ> + ZT(”/L)

"""Sort array in-place.”””

if len(arr) > 1:
middle = math.floor(len(arr) / 2)
left = arr[:middle]

gright = arr[middle:]
/ mergesort(left) &"‘—r("‘)?—)
mergesort(right) &L—m—————-= _l"(*'lz)
Q(“)__.i merge(left, right, arr)

Solving the Recurrence

T(n) = 27(n/2) - g, E=" (- 27 %
2212y 4 2 |+

[('-\) + =] n _r(%).- ZT(%>4i

T HT(R)rn4n =27 Y

=4 TE)r 20 k=2

Rl PAr eI A] +2n
= 8T(% Y+ Zn k=32

Solving the Recurrence

T(n)=2T(n/2)+0O(n) k-1 K
- 2K =\
“4T(R)*F 20 k=2
= gT(jé')-\— 2n k=32

Optimality

Theorem: Any (comparison) sorting algorithm’s
worst-case time complexity must be Q(n logn).

Mergesort is optimal!

Be Careful!

It is possible for a sorting algorithm to have a
best case time complexity smaller than nlogn.
Insertion sort, for example.

Mergesort has best case time complexity of
O(n logn).

Mergesort is sub-optimal in this sense!

Be Careful!

The ©(nlogn) lower-bound is for comparison
sorting.

It is possible to sort in worst-case ©(n) time
without comparing.’

'Bucket sort, radix sort, etc.

What if?
Divide: split the array into halves
Conquer: sort each half using selection sort

Combine: merge sorted halves together

mergeselectionsort

def mergeselectionsort(arr):
"""Sort array in-place.”””
if len(arr) > 1:

middle = math.floor(len(arr) / 2) 2
left = arr[:middle] @ Nn)

right = arr[middle:]
selection_sort(left)
selection_sort(right)
merge(left, right, arr)

What is the time complexity of this algorithm?

psc 408

Thtm/e%ca/ Founolatong 7L

Lecture 6 Part5

Using Sorted Structure

Sorted structure is useful

Some problems become much easier if input is
sorted.
For example, median, minimum, maximum.

Sorting is useful as a preprocessing step.

Recall: The Movie Problem
You're on a flight that will last D minutes.
You want to pick two movies to watch.

You want the total time of the two movies to be
as close as possible to D.

The Movie Problem
Brute force algorithm: ©(n?)

We can do better, if movie times are sorted.

Flight duration D = 155

Example

Movie times: 6880, 90,126, 136
60 | 80 | 90 | 120 | 130

60 | X'| —|-9 |42% 435

80 | x| x |

0 | x| x [x| |

120 »» | x| X | X

130 | | 2<% | ¢ | X

Best pair: (60, ao)
-5

The Algorithm

Keep index of shortest and longest remaining.
On every iteration, pair the shortest and longest.

If this pair is too long, remove longest movie;

otherwise remove shortest.
If times are sorted, finding new longest/shortest
movie takes ©(1) time!

60, 80, 90, 120, 130

The Algorithm

def optimize_entertainment(times, target):
"""assume times is sorted.”””
shortest = o
longest = len(times) - 1

best_pair = (shortest, longest)
best_objective = None

for i in range(len(times) - 1):
total_time = times[shortest] + times[longest]

if abs(total_time - target) < best_objective:
best_objective = abs(total_time - target)
best_pair = (shortest, longest)

if total_time == target:
return (shortest, longest)

elif total_time < target:
shortest += 1

else: # total_time > target
longest -= 1

return best_pair

Sorted structure allows you to rule out possibilities
without explicitly checking them. But, it requires
you to spend the time sorting first.

Tip: when designing an algorithm, think about
sorting the input first.

