DSC 40B Theoretical Foundations II

Lecture 5 | Part 1

Searching a Database

Today in DSC 40B...

- How do we analyze the time complexity of recursive algorithms?
- How do we know that our recursive code is correct?

Databases

Large data sets are often stored in databases.

PID	FullName	Level	
A1843	Wan Xuegang	SR	
A8293	Deveron Greer	SR	
A9821	Vinod Seth	FR	
A8172	Aleix Bilbao	JR	
A2882	Kayden Sutton	SO	
A1829	Raghu Mahanta	FR	
A9772	Cui Zemin	SR	
:	:	:	

Query

▶ What is the name of the student with PID A8172?

•

Linear Search

- ▶ We could answer this with a linear search.
- ightharpoonup Recall worst-case time complexity: $\Theta(n)$.
- Is there a better way?

Theoretical Lower Bounds

- ► **Given**: an array arr and a target t, determine the index of t in the array.
- Lower bound: $\Omega(n)$
 - linear_search has the best possible worst-case complexity!

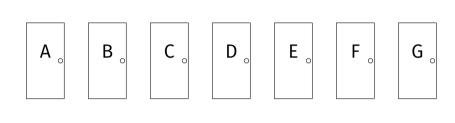
Theoretical Lower Bounds

- Given: an sorted array arr and a target t, determine the index of t in the array.
- This is an easier problem.
- Lower bound: Ω(?)

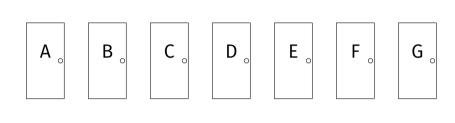
DSC 40B Theoretical Foundations II

Lecture 5 | Part 2

Binary Search



22	84	101	14	19	42	20



Game Show

- ► **Goal**: guess the door with number 42 behind it.
- ► **Caution**: with every wrong guess, your winnings are reduced.

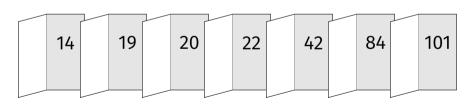
Strategy

- Can't do much better than linear search.
 - ► "Is it door A?"
 - "OK, is it door B?"
 - ► "Door C?"

▶ After an incorrect first guess, the right door could be any of the other n - 1 doors!

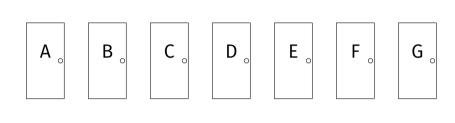
But now...

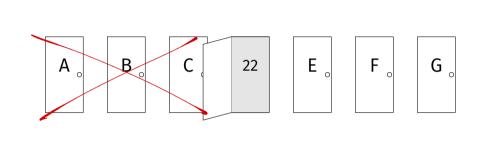
Suppose the host tells you that the numbers are sorted in increasing order.

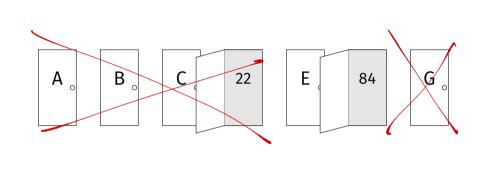


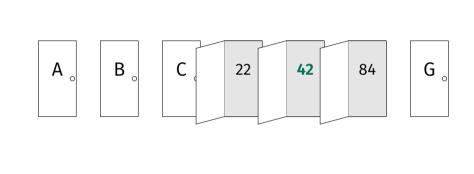
Exercise

Which door do you pick first?









Strategy

- First pick the middle door.
- Allows you to rule out half of the other doors.
- Pick door in the middle of what remains.
- Repeat, recursively.

Binary Search in Code

```
def binary search(arr, t, start, stop):
    Searches arr[start:stop] for t.
    Assumes arr is sorted.
    .. .. ..
    if stop - start <= 0:
       return None
   middle = ____ # index of the middle element
    if arr[middle] == t:
       return middle
    elif arr[middle] > t:
        return binary search(arr, t, ____, ___)
    else:
       return binary_search(arr, t, ____, ___)
```

Exercise

Fill in the blanks:

```
def binary search(arr, t, start, stop):
   Searches arr[start:stop] for t.
   Assumes arr is sorted.
    ,, ,, ,,
   if stop - start <= 0:
       return None
   middle = _____ # index of the middle element
   if arr[middle] == t:
       return middle
   elif arr[middle] > t:
       return binary_search(arr, t, ____, ___)
   else:
       return binary search(arr, t, , )
```

The Middle Element

What is the index of the middle element of arr[start:stop]?
Start: 8

Definition

The **floor** of a real number x, denoted $\lfloor x \rfloor$, is the *largest* integer that is $\leq x$.

Examples:
$$[3.14] = 3$$
 $[-4.5] = -5$ $[10] = 10$

In $\Delta T_{E}X$, [x] is written: "\lfloor x \rfloor".

Definition

The **ceiling** of a real number x, denoted $\lceil x \rceil$, is the smallest integer that is $\geq x$.

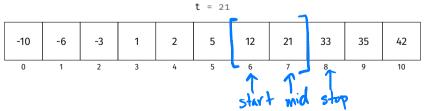
Examples:
$$[3.14] = 4$$
 $[-4.5] = -4$ $[10] = 10$

In ET_EX, [x] is written: "\lceil x \rceil".

Binary Search

```
import math
def binary_search(arr, t, start, stop):
    Searches arr[start:stop] for t.
    Assumes arr is sorted.
    if stop - start <= 0:
        return None
   middle = math.floor((start + stop)/2)
    if arr[middle] == t:
        return middle
   elif arr[middle] > t:
        return binary search(arr, t, start, middle)
   else:
        return binary search(arr, t, middle+1, stop)
```

```
import math
def binary search(arr, t, start, stop):
    Searches arr[start:stop] for t.
                                                                      bs(6,8)
    Assumes arr is sorted.
    if stop - start <= 0:
        return None
   middle = math.floor((start + stop)/2)
    if arr[middle] == t:
        return middle
    elif arr[middle] > t:
        return binary search(arr, t, start, middle)
    else:
        return binary search(arr, t, middle+1, stop)
```



Aside: Default Arguments

```
import math
def binary_search(arr, t, start=0, stop=None):
    if stop is None:
        stop = len(arr)
    if stop - start <= ⊙:
        return None
    middle = math.floor((start + stop)/2)
    if arr[middle] == t:
        return middle
    elif arr[middle] > t:
        return binary_search(arr, t, start, middle)
    else:
        return binary search(arr. t. middle+1. stop)
```

Other Uses of Binary Search

- Binary search is a useful strategy in "real life".
- Example: finding a bug in your code.
 - You have made 100 git commits (i.e., 100 changes).
 - You know the bug is introduced in one of them.
 - "Rewind" to commit #50.
 - If it bug is there, check in #25;
 - Otherwise, check in #75.
 - ► The git bisect command does this for you.

DSC 40B Theoretical Foundation II

Lecture 5 | Part 3

Thinking Inductively

Recursion

- Recursive algorithms can almost look like magic.
- How can we be sure that binary_search works?

Tips

- 1. Make sure algorithm works in the **base case**.
- Check that all recursive calls are on smaller problems.
- 3. **Assuming** that the recursive calls work, does the whole algorithm work?

Base Case

- Smallest input for which you can easily see that the algorithm works.
- Recursion works by making problem smaller until base case is reached.

Usually n = 0 or n = 1 (or even both!)

Base Case: n = 0

- Suppose arr[start:stop] is empty.
- ► In this case, the function returns None.
 - Correct!

Base Case: *n* = 1

- Suppose arr[start:stop] has one element.
- ► If that element is the target, the algorithm will find it.
 - Correct!

- If it isn't, the algorithm will recurse on a problem of size 0 and return None.
 - Correct!

Recursive Calls

- Recursive calls must be on smaller problems.
 - Otherwise, base case never reached. Infinite recursion!

```
import math
def binary_search(arr, t, start, stop):
     Searches arr[start:stop] for t.
     Assumes arr is sorted.
     ,, ,, ,,
    if stop - start <= 0:
         return None
    middle = math.floor((start + stop)/2)
    if arr[middle] == t:
         return middle
    elif arr[middle] > t:
         return binary search(arr. t. start. middle)
    else:
         return binary_search(arr, t, middle+1, stop)
```

```
import math
def binary search(arr, t, start, stop):
   Searches arr[start:stop] for t.
   Assumes arr is sorted.
   if stop - start <= 0:
       return None
   middle = math.floor((start + stop)/2)
   if arr[middle] == t:
       return middle
   elif arr[middle] > t:
       return binary_search(arr, t, start, middle)
   else:
       return binary_search(arr, t, middle+1, stop)
   Is arr[start:middle] smaller than arr[start:stop]?
   ► Is arr[middle+1:stop] smaller than arr[start:stop]?
```

Leap of Faith

► **Assume** the recursive calls work.

Does the overall algorithm work, then?

```
import math
def binary search(arr, t, start, stop):
    Searches arr[start:stop] for t.
    Assumes arr is sorted.
    .. .. ..
    if stop - start <= 0:
        return None
    middle = math.floor((start + stop)/2)
    if arr[middle] == t:
        return middle
    elif arr[middle] > t:
        return binary search(arr, t, start, middle)
    else:
        return binary search(arr, t, middle+1, stop)
```

Exercise

```
Does this code work? Why or why not?
import math
def summation(numbers):
                          Summation ([42])
    n = len(numbers)
    if n == 0:
        return o
   middle = math.floor(n / 2)
    return (
        summation(numbers[:middle]) → Zummarica ([])
        summation(numbers[middle:]) → Summation([42])
```

Induction

These steps can be turned into a formal proof by induction.

- For us, less necessary to prove to other people.
- Instead, prove to yourself that your code works.
- We won't be doing formal inductive proofs.

Why does this work?

- Show that it works for size 1 (base case).
- ▶ ⇒ will work for size 2 (inductive step).
- \rightarrow will work for sizes 3, 4 (inductive step).
- ▶ ⇒ will work for sizes 5, 6, 7, 8 (inductive step).

DSC 40B Theoretical Foundations II

Lecture 5 | Part 4

Recurrence Relations

Time Complexity of Binary Search

What is the time complexity of binary_search?

No loops!

Best Case

```
\Theta(i)
import math
def binary search(arr, t, start, stop):
    .. .. ..
    Searches arr[start:stop] for t.
    Assumes arr is sorted.
    .. .. ..
    if stop - start <= 0:
        return None
    middle = math.floor((start + stop)/2)
    if arr[middle] == t:
        return middle
    elif arr[middle] > t:
        return binary search(arr. t. start. middle)
    else:
        return binary search(arr, t, middle+1, stop)
```

Worst Case

Let T(n) be worst case time on input of size n.

```
import math
        def binary search(arr, t, start, stop):
             Searches arr[start:stop] for t.
             Assumes arr is sorted.
                                            T(n) = G(i) + T(i)
if stop - start <= 0:
    return None
middle = math.floor((start + stop)/2)
if arr[middle] == t:
    return middle
             elif arr[middle] > t:
                  return binary_search(arr, t, start, middle)<
             else:
                  return binarv search(arr, t, middle+1, stop)
```

Recurrence Relations

We found

$$T(n) = \begin{cases} T(n/2) + \Theta(1), & n \ge 2 \\ \Theta(1), & n = 1 \end{cases}$$

► This is a recurrence relation.

Solving Recurrences

- We want simple, non-recursive formula for T(n) so we can see how fast T(n) grows.
 - ▶ Is it $\Theta(n)$? $\Theta(n^2)$? Something else?
- Obtaining a simple formula is called solving the recurrence.

Example: Getting Rich

- Suppose on day 1 of job, you are paid \$3.
- Each day thereafter, your pay is doubled.
- Let S(n) be your pay on day n:

$$S(n) = \begin{cases} 2 \cdot S(n-1), & n \ge 2 \\ 3, & n = 1 \end{cases}$$

Example: Unrolling

$$S(n) = \begin{cases} 2 \cdot S(n-1), & n \ge 2 \\ 3, & n = 1 \end{cases}$$

$$S(3) = 2 \cdot S(2)$$
Take $n = 4$.
$$S(4) = 2 \cdot S(3)$$

$$S(n) = 2^{n-1} \times 3$$

$$= 2[2s(z)]$$

$$= 2 \times 2 \times 2 \times s(i)$$

$$= 2 \times 2 \times 2 \times 3 = $24$$

Solving Recurrences

We'll use a four-step process to solve recurrences:

- 1. "Unroll" several times to find a pattern.
- 2. Write general formula for kth unroll.
- 3. Solve for # of unrolls needed to reach base case.
- 4. Plug this number into general formula.

Step 1: Unroll several times

$$S(n) = \begin{cases} 2 \cdot S(n-1), & n \ge 2 \\ 3, & n = 1 \end{cases}$$

$$S(n) = 2 \cdot S(n-1) \qquad S(n-1) = 2 \cdot S(n-2)$$

$$= 2 \cdot 2 \cdot 2 \cdot 2 \cdot S(n-3)$$

$$= 2 \times 2 \times 2 \times 2 \times 2 \cdot S(n-4)$$

$$\vdots$$

Step 2: Find general formula

$$S(n) = 2 \cdot S(n-1)$$
 $k=1$
= $2 \cdot 2 \cdot S(n-2)$ $k=2$
= $2 \cdot 2 \cdot 2 \cdot S(n-3)$ $k=3$

On step k:

$$S(n) = 2^k \times S(n-k)$$

Step 3: Find step # of base case

$$ightharpoonup$$
 On step k , $S(n) = 2^k \cdot S(n - k)$.

▶ When do we see S(1)?

Step 4: Plug into general formula

- From step 2: $S(n) = 2^k \cdot S(n k)$.
- From step 3: Base case of S(1) reached when k = n 1.

So:
$$S(n) = 2^{n-1} \cdot S(n - (n-1))$$

= $2^{n-1} \cdot S(1)$
= $2^{n-1} \times 43$

Solving the Recurrence

► We have **solved** the recurrence¹:

$$S(n) = 3 \cdot 2^{n-1}$$

- This is the **exact** solution. The **asymptotic** solution is $S(n) = \Theta(2^n)$.
- ▶ We'll call this method "solving by unrolling".

¹On day 20, you'll be paid ≈1.5 million dollars.

DSC 40B Theoretical Foundations II

Lecture 5 | Part 5

Binary Search Recurrence

Binary Search

- What is the time complexity of binary_search?
- \triangleright Best case: Θ(1).
- Worst case:

$$T(n) = \begin{cases} T(n/2) + \Theta(1), & n \ge 2 \\ \Theta(1), & n = 1 \end{cases}$$

Simplification

▶ When solving, we can replace $\Theta(f(n))$ with f(n):

$$T(n) = \begin{cases} T(n/2) + 1, & n \ge 2 \\ 1, & n = 1 \end{cases}$$

As long as we state final answer using Θ notation!

Another Simplification

 \blacktriangleright When solving, we can assume n is a power of 2.

Step 1: Unroll several times

$$T(n) = \begin{cases} T(n/2) + 1, & n \ge 2 \\ 1, & n = 1 \end{cases}$$

$$T(\frac{n}{2}) + 1$$

$$T(\frac{n}{4}) + 1$$

$$T(\frac{n}{4}) + 2$$

$$T(\frac{n}{4}) + 3$$

$$T(\frac{n}{4}) + 3$$

Step 2: Find general formula

$$T(n) = T(n/2) + 1$$
 $k=1$
= $T(n/4) + 2$ $k=2$
= $T(n/8) + 3$ $k=3$

$$T(n) = T\left(\frac{n}{2^k}\right) + k$$

Step 3: Find step # of base case

► On step k,
$$T(n) = T(n/2^k) + k$$

▶ When do we see T(1)?

$$\frac{n}{2^k} = 1 \Rightarrow 2^k = n \Rightarrow k = \log n$$

Step 4: Plug into general formula

$$T(n) = T(n/2^k) + k$$

▶ Base case of T(1) reached when $k = \log_2 n$.

So:

$$T(n) = T\left(\frac{n}{2\log n}\right) + \log n$$

$$= T(1) + \log n = 1 + \log_2 n = O(\log n)$$

Note

- So we don't write $\Theta(\log_2 n)$
- ▶ Instead, just: $\Theta(\log n)$

Time Complexity of Binary Search

Best case: Θ(1)

 \triangleright Worst case: Θ(log n)

Is binary search fast?

- Suppose all 10¹⁹ grains of sand are assigned a unique number, sorted from least to greatest.
- Goal: find a particular grain.
- Assume one basic operation takes 1 nanosecond.

Is binary search fast?

- Suppose all 10¹⁹ grains of sand are assigned a unique number, sorted from least to greatest.
- Goal: find a particular grain.
- Assume one basic operation takes 1 nanosecond.
- Linear search: 317 years.

Is binary search fast?

- Suppose all 10¹⁹ grains of sand are assigned a unique number, sorted from least to greatest.
- ► Goal: find a particular grain.
- Assume one basic operation takes 1 nanosecond.
- ► Linear search: 317 years.
- Binary search: ≈ 60 nanoseconds.

Exercise

Binary search seems so much faster than linear search. What's the caveat?

Caveat

- ► The array must be **sorted**.
- ► This takes Ω(n) time.

Why use binary search?

- ► If data is **not sorted**, sorting + binary search takes longer than linear search.
- ▶ But if doing **multiple queries**, looking for nearby elements, sort once and use binary search after.

Theoretical Lower Bounds

- A tight lower bound for searching a sorted list is $\Omega(\log n)$.
- This means that binary search has optimal worst case time complexity.

Databases

- Some database servers will sort by key, use binary search for queries.
- Often instead of sorting, B-Tree indexes are used.
- But sorting + binary search still used when space is limited.