
Lecture 4 | Part 1

The Movie Problem

The Movie Problem

The Movie Problem

▶ Given: an array movies of movie durations, and
the flight duration t

▶ Find: two movies whose durations add to t.
▶ If no two movies sum to t, return None.

Exercise

Design a brute force solution to the problem. What
is its time complexity?

def find_movies(movies, t):
n = len(movies)
for i in range(n):

for j in range(i + 1, n):
if movies[i] + movies[j] == t:

return (i, j)
return None

Time Complexity

▶ It looks like there is a best case and worst case.

▶ How do we formalize this?

For the future...

▶ Can you come up with a better algorithm?

▶ What is the best possible time complexity?

Lecture 4 | Part 2

Best and Worst Cases

Example 1: mean

def mean(arr):
total = 0
for x in arr:

total += x
return total / len(arr)

Time Complexity of mean

▶ Linear time, Θ(𝑛).

▶ Depends only on the array’s size, 𝑛, not on its
actual elements.

Example 2: Linear Search

▶ Given: an array arr of numbers and a target t.

▶ Find: the index of t in arr, or None if it is missing.

▶ Example: arr = [-3, -7, 2, 9, 1, 4]

def linear_search(arr, t):
for i, x in enumerate(arr):

if x == t:
return i

return None

Exercise

What is the time complexity of linear_search?

def linear_search(arr, t):
for i, x in enumerate(arr):

if x == t:
return i

return None

Observation

▶ It looks like there are two extreme cases...

The Best Case

▶ When the target, t, is the very first element.

▶ The loop exits after one iteration.

▶ Θ(1) time?

The Worst Case

▶ When the target, t, is not in the array at all.

▶ The loop exits after 𝑛 iterations.

▶ Θ(𝑛) time?

Time Complexity

▶ linear_search can take vastly different
amounts of time on two inputs of the same size.
▶ Depends on actual elements as well as size.

▶ It has no single, overall time complexity.

▶ Instead we’ll report best and worst case time
complexities.

Best Case Time Complexity

▶ How does the time taken in the best case grow
as the input gets larger?

Definition

Define 𝑇best(𝑛) to be the least time taken by the al-
gorithm on any input of size 𝑛.

The asymptotic growth of 𝑇best(𝑛) is the algorithm’s
best case asymptotic time complexity.

Best Case

▶ In linear_search’s best case, 𝑇best(𝑛) = 𝑐, no
matter how large the array is.

▶ The best case time complexity is Θ(1).

Worst Case Time Complexity

▶ How does the time taken in the worst case grow
as the input gets larger?

Definition

Define 𝑇worst(𝑛) to be the most time taken by the
algorithm on any input of size 𝑛.

The asymptotic growth of 𝑇worst(𝑛) is the algo-
rithm’s worst case asymptotic time complexity.

Worst Case

▶ In the worst case, linear_search iterates
through the entire array.

▶ The worst case time complexity is Θ(𝑛).

Exercise

What are the best case and worst case time com-
plexities of the following code?

def foo(arr):
n = len(arr)
for x in arr:

for y in arr:
if x + y == 10:

return sum(arr)

Best Case

▶ When the first element is 5, so x + y == 10.

▶ sum(arr) takes Θ(𝑛) time.

▶ Exits, taking Θ(𝑛) time in total.

Worst Case

▶ No two elements sum to 10.

▶ Has to loop over all Θ(𝑛2) pairs.

▶ Worst case time complexity: Θ(𝑛2).

▶ Note: it’s not Θ(𝑛3), since the sum(arr) only
runs once!

Caution!

▶ The best case is never: “the input is of size one”.

▶ The best case is about the structure of the input,
not its size.

▶ Not always constant time! Example: sorting.

Note

▶ An algorithm like linear_search doesn’t have
one single time complexity.

▶ An algorithm like mean does, since the best and
worst case time complexities coincide.

Main Idea

Reporting best and worst case time complexities
gives us a richer of the performance of the algo-
rithm.

Lecture 4 | Part 3

Average Case

Time Taken, Typically

▶ Best case and worst case can be misleading.
▶ Depend on a single good/bad input.

▶ How much time is taken, typically?

▶ Idea: compute the average time taken over all
possible inputs.

Recall: The Expectation

▶ The expected value of a random variable 𝑋 is:

∑
𝑥

𝑥 ⋅ 𝑃(𝑋 = 𝑥)

winnings probability
$ 0 50%
$ 1 30%
$ 10 18%
$ 50 2%

Expected winnings:

Average Case

▶ We’ll compute the expected time over all cases:

𝑇avg(𝑛) = ∑
case∈all cases

𝑃(case) ⋅ 𝑇(case)

▶ Called the average case time complexity.

Strategy for Finding Average Case

▶ Step 0: Make assumption about distribution of inputs.

▶ Step 1: Determine the possible cases.

▶ Step 2: Determine the probability of each case.

▶ Step 3: Determine the time taken for each case.

▶ Step 4: Compute the expected time (average).

Example: Linear Search

▶ Recall linear search:

def linear_search(arr, t):
for i, x in enumerate(arr):

if x == t:
return i

return None

▶ Best case? Worst case?

Example: Linear Search

▶ What is the average case time complexity of
linear search?

Step 0: Assume input distribution

▶ We must assume something about the input.

▶ Example: Target must be in array, equally-likely
to be any element, no duplicates.

▶ This is usually given to you.

Step 1: Determine the Cases

▶ Example: linear search.

Case 1: target is first element
Case 2: target is second element

⋮
Case 𝑛: target is 𝑛th element

Case 𝑛 + 1: target is not in array

Step 2: Case Probabilities

▶ What is the probability that we see each case?
▶ Example: what is the probability that the target is the
𝑘th element?

▶ This is where we use assumptions from Step 0.

Example

▶ Assume: target is in the array exactly once,
equally-likely to be any element.

▶ Each case has probability 1/𝑛.

Step 3: Case Times

▶ Determine time taken in each case.

▶ Example: linear search.
▶ Let’s say it takes time 𝑐 per iteration.

Case 1: time 𝑐
Case 2: time 2𝑐

⋮
Case i: time 𝑐 ⋅ 𝑖

⋮
Case 𝑛: time 𝑐 ⋅ 𝑛

Step 4: Compute Expectation

𝑇avg(𝑛) =
𝑛

∑
𝑖=1

𝑃(case 𝑖) ⋅ 𝑇(case 𝑖)

Average Case Time Complexity

▶ The average case time complexity1 of linear
search is Θ(𝑛).

1Under these assumptions on the input!

Note

▶ Worst case time complexity is still useful.

▶ Easier to calculate.

▶ Often same as average case (but not always!)

▶ Sometimes worst case is very important.
▶ Real time applications, time complexity attacks

Note

▶ Hard to make realistic assumptions on input
distribution.

▶ Example: linear search.
▶ Is it realistic to assume 𝑡 is in array?
▶ If not, what is the probability that it is in the array?

Exercise

Suppose we change our assumptions:
▶ The target has a 50% chance of being in the array.
▶ If it is in the array, it is equally-likely to be any element.

What is the average case complexity now?

Lecture 4 | Part 4

Average Case in Movie Problem

Recall: The Movie Problem

▶ Given: an array movies of movie durations, and
the flight duration t

▶ Find: two movies whose durations add to t.
▶ If no two movies sum to t, return None.

def find_movies(movies, t):
n = len(movies)
for i in range(n):

for j in range(i + 1, n):
if movies[i] + movies[j] == t:

return (i, j)
return None

Time Complexity

▶ Best case: Θ(1)
▶ When the first pair of movies checked equals target.

▶ Worst case: Θ(𝑛2)
▶ When no pair of movies equals target.

“Average” Case?

▶ The best and worst cases are extremes.

▶ How much time is taken, typically?
▶ That is, when the target pair is not the first checked
nor the last, but somewhere in the middle.

Exercise

How much time do you expect find_movies to
take on a typical input?

▶ Θ(1)

▶ Θ(𝑛2)

▶ Something in between, like Θ(𝑛)

The Movie Problem

def find_movies(movies, t):
n = len(movies)
for i in range(n):

for j in range(i + 1, n):
if movies[i] + movies[j] == t:

return (i, j)
return None

Time Complexity

▶ Best case: Θ(1)

▶ Worst case: Θ(𝑛2)

▶ Average case: Θ(?)

Step 0: Assume input distribution

▶ Suppose we are told that:
▶ There is a unique pair of movies that add to 𝑡.
▶ All pairs are equally likely.

Step 1: Determine the Cases

▶ Case 𝛼: the 𝛼th pair checked sums to 𝑡.

▶ Each pair of movies is a case.

▶ There are (𝑛2) cases.

Step 2: Case Probabilities

▶ Assume: there is a unique pair that adds to t.

▶ Assume: all pairs are equally likely.

▶ Probability of any case: 1
(𝑛2)

= 2
𝑛(𝑛−1)

Step 3: Case Time

▶ How much time is taken for a particular case?

▶ Example, suppose the movies 𝑎 and 𝑏 sum to the
target.

▶ How long does it take to find this pair?

1 def find_movies(movies, t):
2 n = len(movies)
3 for i in range(n):
4 for j in range(i + 1, n):
5 if movies[i] + movies[j] == t:
6 return (i, j)
7 return None

Exercise

Roughly much time is taken (how many times does
line 5 run) if the 𝛼th pair checked sums to the tar-
get?

Step 4: Compute Expectation

Average Case

▶ The average case time complexity of
find_movies is Θ(𝑛2).

▶ Same as the worst case!

Note

▶ We’ve seen two algorithms where the average
case = the worst case.

▶ Not always the case!

▶ Interpretation: the worst case is not too extreme.

Lecture 4 | Part 5

Expected Time Complexity

Example: Contrived Algorithm

def wibble(n):
generate random number between 0 and n
x = np.random.randint(0, n)

if x == 0:
for i in range(n):

print('Unlucky!')
else:

print('Lucky!')

Exercise

How much time does wibble take on average?

Random Algorithms

▶ This algorithm is randomized.

▶ The time it takes is also random.

▶ What is the expected time?

Average Case vs. Expected Time

▶ With average case complexity, a probability
distribution on inputs is specified.

▶ Now, the randomness is in the algorithm itself.

▶ Otherwise, the analysis is very similar.

Step 1: Determine the cases

def wibble(n):
x = np.random.randint(0, n)

if x == 0:
for i in range(n):

print('Unlucky!')
else:

print('Lucky!')

▶ Case 1: x == 0

▶ Case 2: x != 0

Step 2: Determine case probabilities

def wibble(n):
x = np.random.randint(0, n)

if x == 0:
for i in range(n):

print('Unlucky!')
else:

print('Lucky!')

▶ P(Case 1) = 1/𝑛

▶ P(Case 2) = (𝑛 − 1)/𝑛

Step 3: Determine case times

def wibble(n):
x = np.random.randint(0, n)

if x == 0:
for i in range(n):

print('Unlucky!')
else:

print('Lucky!')

▶ Case 1: Θ(𝑛)

▶ Case 2: Θ(1)

Step 4: Compute expectation

▶ Compute expected time:

Expected Time

▶ This was a contrived example.

▶ Some important algorithms involve randomness!
▶ Quicksort
▶ We’ll see alg. for median with Θ(𝑛) expected time.

Lecture 4 | Part 6

Lower Bound Theory

Imagine...

▶ You write a simple algorithm to solve a problem.

▶ You analyze time complexity and find it is Θ(𝑛2).

▶ You ask yourself: can I do better than Θ(𝑛2)?

▶ Or: What is the best time complexity possible?

Doing Better

▶ How can you know what you don’t know?

▶ You can argue that any algorithm for solving the
problem must take at least a certain amount of
time in the worst case.

Example: Minimum

▶ Problem: Find minimum in array of length 𝑛.

▶ Any algorithm has to check all 𝑛 numbers in the
worst case.
▶ Or else the number not checked could have been the
smallest!

▶ Takes at least linear (Ω(𝑛)) time.
▶ No algorithm for the min can have worst case of <
linear time.

Definition

A theoretical lower bound is a lower bound on the
worst-case time complexity of any algorithm solv-
ing a particular problem.

Main Idea

No algorithm’s worst case can possibly be better
than theoretical lower bound.

Loose Lower Bounds

▶ Ω(log 𝑛), Θ(√𝑛) and Θ(1) are also theoretical
lower bounds for finding the minimum.

▶ But no algorithm can exist which has a worst
case of Θ(log 𝑛), Θ(√𝑛), or Θ(1).

▶ This bound is loose. Not super useful.

Tight Lower Bounds

▶ A lower bound is tight if there exists an
algorithm with that worst case time complexity.

▶ That algorithm is (in a sense) optimal.

Definition

A tight theoretical lower bound for a problem is
the fastest possible worst-case time complexity of
any algorithm solving that problem.

How to find a TLB

▶ Argument from completeness:
▶ The algorithm might not be correct if it doesn’t check
𝑘 things, so the time is Ω(𝑘).

▶ Argument from I/O:
▶ If the output is an array of size 𝑘, time taken is Ω(𝑘)

▶ More sophisticated arguments...

Tight Bounds can be difficult to find

▶ Often require sophisticated combinatorial
arguments outside of the scope of DSC 40B.

Assumptions make problems easier

▶ The TLB for finding a minimum changes if we
assume that the array is sorted.

Exercise

Consider these two problems:
1. Find the min of a sorted array.
2. Given a target 𝑡 and a sorted array, determine
whether 𝑡 is in the array.

Find tight theoretical lower bounds for each prob-
lem.

Main Idea

When coming up with an algorithm, first try to find
a tight TLB. Then try to make an algorithm which
has that worst-case complexity. If you can, it’s op-
timal!

Practice makes perfect

▶ dsc40b.com/practice has a dozen more
examples of finding theoretical lower bounds.

dsc40b.com/practice

Lecture 4 | Part 7

Case Study: Matrix Multiplication

It’s Important

▶ Matrix multiplication is a very common operation
in machine learning algorithms.

▶ Estimate: 75% - 95% of time training a neural
network is spent in matrix multiplication.

Recall

▶ If 𝐴 is 𝑚 × 𝑝 and 𝐵 is 𝑝 × 𝑛, then 𝐴𝐵 is 𝑚 × 𝑛.

▶ The 𝑖𝑗 entry of 𝐴𝐵 is

(𝐴𝐵)𝑖𝑗 =
𝑝

∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗

Recall

(𝐴𝐵)𝑖𝑗 =
𝑝

∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗

(
1 2 3
4 5 6
7 8 9

) (
5 −1
1 7
−2 −3

) = ()

Naïve Algorithm

▶ This algorithm is relatively straightforward to
code up.

def mmul(A, B):
”””
A is (m x p) and B is (p x n)
”””
m, p = A.shape
n = B.shape[1]

C = np.zeros((m, n))

for i in range(m):
for j in range(n):

for k in range(p):
C[i,j] += A[i,k] * B[k, j]

return C

Time Complexity

▶ The naïve algorithm takes time Θ(𝑚𝑛𝑝).

▶ If both matrices are 𝑛 × 𝑛, then Θ(𝑛3) time.

▶ Cubic!

Cubic Time Complexity

▶ The largest problem size that can be solved, if a
basic operation takes 1 nanosecond.

1 s 10 m 1 hr

1,000 6,694 15,326

The Question

▶ Can we do better?

▶ How fast can we possibly multiply matrices?

Theoretical Lower Bound

▶ If 𝐴 and 𝐵 are 𝑛 × 𝑛, 𝐶 will have 𝑛2 entries.

▶ Each entry must be filled: Ω(𝑛2) time.

▶ That is, matrix multiplication must take at least
quadratic time.

▶ Is this bound tight? Can it be increased?

Strassen’s Algorithm

▶ Cubic was as good as it got...

▶ ...until Strassen, 1969.

▶ Time complexity: Θ(𝑛log2 7) = Θ(𝑛2.8073)

Currently

▶ The fastest2 known matrix multiplication
algorithm is due to Le Gall.

▶ Θ(𝑛2.3728639) time.

2In terms of asymptotic time complexity.

Interestingly...

▶ No one knows what the lowest possible time
complexity is.

▶ It could be Θ(𝑛2)!

▶ The “best” matrix multiplication algorithm is
probably still undiscovered.

Irony

▶ There are many matrix multiplication algorithms.

▶ How fast is numpy’s matrix multiply?

▶ Θ(𝑛3).

Irony

▶ There are many matrix multiplication algorithms.

▶ How fast is numpy’s matrix multiply?

▶ Θ(𝑛3).

Why?

▶ Strassen et al. have better asymptotic
complexity.

▶ But much (much!) larger “hidden constants”.

▶ Remember, which is better for small 𝑛:
999,999𝑛2 or 𝑛3?

Optimization

▶ Numpy, most others use highly optimized cubic
time algorithms3

3The constant 𝑐 in 𝑇(𝑛) = 𝑐𝑛3 + … is actually much less than 1, as can be
verified by timing.

Main Idea

No one knows what the lowest possible time com-
plexity of matrix multiplication is, and some algo-
rithms are approaching Θ(𝑛2).

But most useful implementations take Θ(𝑛3) time.

