DSC 40B Theoretical Foundations II

Lecture 3 | Part 1

Big Theta, Formalized

Today in DSC 40B...

- Formally define Θ , O, Ω notation.
- Some useful properties.
- The drawbacks of asymptotic time complexity.
- Best, worst case time complexities.

News

- There's a set of course notes on dsc40b.com.
- My office hours are Tuesdays, right after lecture.
 HDSI 346

So Far

- Time Complexity Analysis: a picture of how an algorithm scales.
- Can use Θ-notation to express time complexity.
- Allows us to ignore details in a rigorous way.
 - Saves us work!
 - But what exactly can we ignore?

Theta Notation, Informally

 \triangleright $\Theta(\cdot)$ forgets constant factors, lower-order terms.

$$5n^3 + 3n^2 + 42 = \Theta(n^3)$$

Theta Notation, Informally

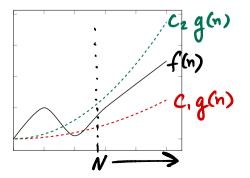
• $f(n) = \Theta(g(n))$ if f(n) "grows like" g(n).

$$5n^3 + 3n^2 + 42 = \Theta(n^3)$$

Definition

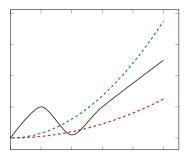
We write $f(n) = \Theta(g(n))$ if there are positive constants N, c_1 and c_2 such that for all $n \ge N$:

 $\boldsymbol{c}_1 \cdot \boldsymbol{g}(n) \leq \boldsymbol{f}(n) \leq \boldsymbol{c}_2 \cdot \boldsymbol{g}(n)$



Main Idea

If $f(n) = \Theta(g(n))$, then when n is large f is "sandwiched" between copies of g.



Proving Big-Theta

We can prove that f(n) = Θ(g(n)) by finding these constants.

$$c_1g(n) \le f(n) \le c_2g(n) \qquad (n \ge N)$$

Requires an upper bound and a lower bound.

Strategy: Chains of Inequalities

► To show $f(n) \le c_2 g(n)$, we show: $f(n) \le (\text{something}) \le (\text{another thing}) \le ... \le c_2 g(n)$

At each step:

We can do anything to make value larger.

But the goal is to simplify it to look like g(n).

Example

- Show that $4n^3 5n^2 + 50 = \Theta(n^3)$.
- Find constants c_1, c_2, N such that for all n > N:

$$c_1 n^3 \leq 4n^3 - 5n^2 + 50 \leq c_2 n^3$$

They don't have to be the "best" constants! Many solutions!

Example $c_1 n^3 \le 4n^3 - 5n^2 + 50 \le c_2 n^3$ $n \ge 5$

We want to make $4n^2 - 5n^2 + 50$ "look like" cn^3 .

- For the upper bound, can do anything that makes the function larger.
- For the lower bound, can do anything that makes the function smaller.

Example

$$c_1 n^3 \leq 4n^3 - 5n^2 + 50 \leq c_2 n^3$$

▶ Upper bound: $4n^3 - 5n^2 + 50 \leq 4n^3 + 50$ $\leq 4n^3 + 50n^3$ $= 54n^3$ c_2

Upper-Bounding Tips

"Promote" lower-order **positive** terms:

 $3n^3+5n\leq 3n^3+5n^3$

"Drop" negative terms

 $3n^3-5n\leq 3n^3$

Example When is
$$n^3 - 5n^2 \ge 0$$
?
 $n^3 \ge 5n^2$
 $n^3 \ge 5n^2$
 $c_1n^3 \le 4n^3 - 5n^2 + 50 \le c_2n^3$

► Lower bound:

$$4n^{3} - 5n^{2} + 50 \ge 4n^{3} - 5n^{2}$$

= $(3n^{3} + n^{3}) - 5n^{2}$
= $3n^{3} + (n^{3} - 5n^{2})$
 $\ge 3n^{3}$ (n = 5)

Lower-Bounding Tips

"Drop" lower-order **positive** terms:

 $3n^3+5n\geq 3n^3$

"Promote and cancel" negative lower-order terms if possible:

$$4n^3 - 2n \ge 4n^3 - 2n^3 = 2n^3$$

Lower-Bounding Tips

"Cancel" negative lower-order terms with big constants by "breaking off" a piece of high term.

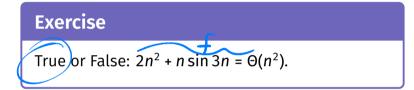
$$4n^3 - 10n^2 = (3n^3 + n^3) - 10n^2$$
$$= 3n^3 + (n^3 - 10n^2)$$

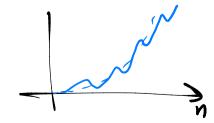
$$n^3 - 10n^2 \ge 0$$
 when $n^3 \ge 10n^2 \implies n \ge 10$:
 $\ge 3n^3 + 0 \qquad (n \ge 10)$

Caution

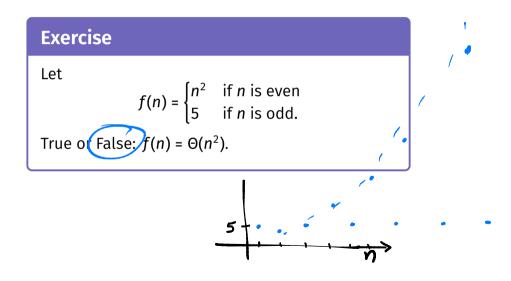
- ► To upper bound a fraction A/B, you must:
 - Upper bound the numerator, A.
 - Lower bound the denominator, B.
- And to lower bound a fraction A/B, you must:
 - Lower bound the numerator, A.
 - Upper bound the denominator, B.

 $2n^2 - n \leq f \leq 2n^2 + n$





nn²



DSC 40B Theoretical Foundations II

Lecture 3 | Part 2

Big-Oh and Big-Omega

Other Bounds

- f = Θ(g) means that f is both upper and lower bounded by factors of g.
- Sometimes we only have (or care about) upper bound or lower bound.
- We have notation for that, too.

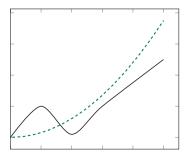
Big-O Notation, Informally

- Sometimes we only care about **upper bound**.
- f(n) = O(g(n)) if f "grows at most as fast" as g.
- Examples:
 - $4n^2 = O(n^{100})$ • $4n^2 = O(n^3)$ • $4n^2 = O(n^2)$ and $4n^2 = \Theta(n^2)$

Definition

We write f(n) = O(g(n)) if there are positive constants N and c such that for all $n \ge N$:

 $f(n) \leq {\color{black}{c}} \cdot g(n)$



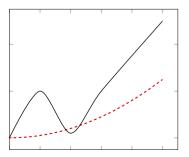
Big-Omega Notation

- Sometimes we only care about **lower bound**.
- Intuitively: f(n) = Ω(g(n)) if f "grows at least as fast" as g.
- Examples: • $4n^{100} = \Omega(n^5)$ • $4n^2 = \Omega(n)$ • $4n^2 = \Omega(n^2)$ and $4n^2 = \Theta(n^2)$

Definition

We write $f(n) = \Omega(g(n))$ if there are positive constants N and c such that for all $n \ge N$:

 ${\color{black}{c_1}} \cdot g(n) \leq f(n)$



FUN FACT

"Omega" in Greek literally means: big O. So translated, "Big-Omega" means "big big O".

Theta, Big-O, and Big-Omega

• If $f = \Theta(g)$ then f = O(g) and $f = \Omega(g)$.

• If f = O(g) and $f = \Omega(g)$ then $f = \Theta(g)$.

Pictorially:
 Θ ⇒ (O and Ω)
 (O and Ω) ⇒ Θ

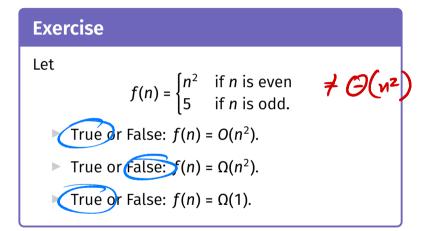
Analogies

O is kind of like =

 $2n^{3} - 5n^{2} = \Theta(n^{3})$

► O is kind of like ≤

Ω is kind of like ≥



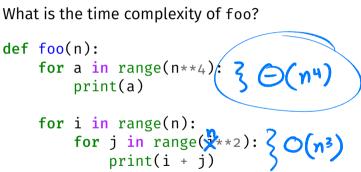
Why?

Laziness.

Sometimes finding an upper or lower bound would take too much work, and/or we don't really care about it anyways.

Big-Oh

Often used when another part of the code would dominate time complexity anyways.



Example: Big-Oh

```
def foo(n):
    for a in range(n**4):
        print(a)
```

 $\Theta(n^4)$

```
for i in range(n):
    for j in range(i**2):
        print(i + j)
```

Big-Omega

Often used when the time complexity will be so large that we don't care what it is, exactly.

Example: Big-Omega

```
best_separation = float('inf')
best_clustering = None
for clustering in all_clusterings(data):
    sep = calculate_separation(clustering)
    if sep < best_separation:
        best_separation = sep
        best_clustering = clustering</pre>
```

print(best_clustering)

Other Notations

- f(n) = o(g(n)) if f grows "much slower" than g.
 Whatever c you choose, eventually f < cg(n).
 Example: n² = o(n³)
- f(n) = ω(g(n)) if f grows "much faster" than g
 Whatever c you choose, eventually f > cg(n).
 Example: n³ = ω(n²)
- We won't really use these.

DSC 40B Theoretical Foundations II

Lecture 3 | Part 3

Properties

Properties

- We don't usually go back to the definition when using Θ.
- Instead, we use a few basic properties.

Properties of Θ

- 1. **Symmetry**: If $f = \Theta(g)$, then $g = \Theta(f)$.
- 2. **Transitivity**: If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.
- 3. **Reflexivity**: $f = \Theta(f)$

Exercise

Which of the following properties are true?

Tor F: If
$$f = O(g)$$
 and $g = O(h)$, then $f = O(h)$.
To F: If $f = \Omega(h)$ and $g = \Omega(h)$, then $f = \Omega(g)$.
To F: If $f_1 = \Theta(g_1)$ and $f_2 = O(g_2)$, then $f_1 + f_2 = \Theta(g_1 + g_2)$.
Tor F: If $f_1 = \Theta(g_1)$ and $f_2 = \Theta(g_2)$, then $f_1 \times f_2 = \Theta(g_1 \times g_2)$.

Proving/Disproving Properties

Start by trying to disprove.

Easiest way: find a counterexample.

• Example: If $f = \Omega(h)$ and $g = \Omega(h)$, then $f = \Omega(g)$. • False! Let $f = n^3$, $g = n^5$, and $h = n^2$.

Proving the Property

If you can't disprove, maybe it is true.

Example:

- Suppose $f_1 = O(g_1)$ and $f_2 = O(g_2)$.
- Prove that $f_1 \times f_2 = O(g_1 \times g_2)$.

Step 1: State the assumption

• We know that $f_1 = O(g_1)$ and $f_2 = O(g_2)$.

So there are constants c_1, c_2, N_1, N_2 so that for all $n \ge N$:

$$\begin{aligned} f_1(n) &\leq c_1 g_1(n) & (n \geq N_1) \\ f_2(n) &\leq c_2 g_2(n) & (n \geq N_2) \end{aligned}$$

Step 2: Use the assumption

Chain of inequalities, starting with f₁ × f₂, ending with ≤ cg₁ × g₂.
 Using the following piece of information:

$$f_{1}(n) \in c_{1}g_{1}(n) \quad (n \ge N_{1}) \quad f_{1}f_{2} = O(g_{1} \times g_{2})$$

$$f_{2}(n) \leq c_{2}g_{2}(n) \quad (n \ge N_{2})$$

$$f_{1}(n) = (C, g_{1}(n)) f_{2}(n) \quad (n \ge N_{1})$$

$$\leq (C, g_{1}(n)) (f_{2}(n) \quad (n \ge N_{1}))$$

$$\equiv (C, g_{1}(n)) (C_{2}g_{2}(n)) \quad (n \ge \max \{N_{1}, N_{2}\})$$

$$= C \quad g_{1}(n) \quad g_{2}(n)$$

$$\text{where} \quad C = C_{1}^{*}C_{2}$$

Analyzing Code

- The properties of Θ (and O and Ω) are useful when analyzing code.
- We can analyze pieces, put together the results.

Sums of Theta

• **Property**: If
$$f_1 = \Theta(g_1)$$
 and $f_2 = \Theta(g_2)$, then $f_1 + f_2 = \Theta(g_1 + g_2)$

Used when analyzing sequential code.

Example

Say bar takes $\Theta(n^3)$, baz takes $\Theta(n^4)$.

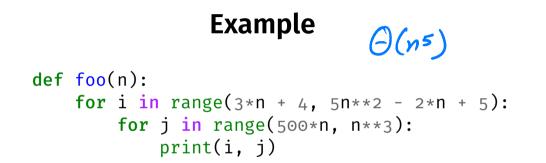
def foo(n):
 bar(n)
 baz(n)

baz is the bottleneck.

Products of Theta

• **Property**: If
$$f_1 = \Theta(g_1)$$
 and $f_2 = \Theta(g_2)$, then
 $f_1 \cdot f_2 = \Theta(g_1 \cdot g_2)$

Useful when analyzing nested loops.



Careful!

If inner loop index depends on outer loop, you have to be more careful.

```
def foo(n):
    for i in range(n):
        for j in range(i):
            print(i, j)
```

DSC 40B Theoretical Foundations II

Lecture 3 | Part 4

Asymptotic Notation Practicalities

In this part...

- Other ways asymptotic notation is used.
- Asymptotic notation *faux pas*.
- Downsides of asymptotic notation.

Not Just for Time Complexity!

- We most often see asymptotic notation used to express time complexity.
- But it can be used to express any type of growth!

Example: Combinatorics

- Recall: $\binom{n}{k}$ is number of ways of choosing k things from a set of n.
- How fast does this grow with n? For fixed k:

$$\binom{n}{k} = \Theta(n^k)$$

Example: the number of ways of choosing 3 things out of n is Θ(n³).

Example: Central Limit Theorem

- Recall: the CLT says that the sample mean has a normal distribution with standard deviation σ_{pop}/\sqrt{n}
- The **error** in the sample mean is: $O(1/\sqrt{n})$

Asymptotic notation can be used improperly.
 Might be technically correct, but defeats the purpose.

Don't do these in, e.g., interviews!

Don't include constants, lower-order terms in the notation.

Bad:
$$3n^2 + 2n + 5 = \Theta(3n^2)$$
.

- **Good:** $3n^2 + 2n + 5 = \Theta(n^2)$.
- It isn't wrong to do so, just defeats the purpose.

- Don't include base in logarithm.
- ► **Bad:** Θ(log₂ n)
- Good: Θ(log n)

Why?
$$\log_2 n = c \cdot \log_3 n = c' \log_4 n = \dots$$

- **Don't misinterpret meaning of \Theta(\cdot).**
- ► $f(n) = \Theta(n^3)$ does **not** mean that there are constants so that $f(n) = c_3n^3 + c_2n^2 + c_1n + c_0$.

- Time complexity is not a complete measure of efficiency.
- $\Theta(n)$ is not always "better" than $\Theta(n^2)$.
- ► Why?

Why? Asymptotic notation "hides the constants".

$$T_1(n) = 1,000,000n = \Theta(n)$$

T₂(n) =
$$0.00001n^2 = \Theta(n^2)$$

But $T_1(n)$ is worse for all but really large *n*.

Main Idea

Time complexity is not the **only** way to measure efficiency, and it can be misleading.

Sometimes even a $\Theta(2^n)$ algorithm is better than a $\Theta(n)$ algorithm, if the data size is small.

DSC 40B Theoretical Foundations II

Lecture 3 | Part 5

The Movie Problem

The Movie Problem

The Movie Problem

- Given: an array movies of movie durations, and the flight duration t
- Find: two movies whose durations add to t.
 If no two movies sum to t, return None.

Exercise

Design a brute force solution to the problem. What is its time complexity?

```
def find_movies(movies, t):
    n = len(movies)
    for i in range(n):
        for j in range(i + 1, n):
            if movies[i] + movies[j] == t:
                return (i, j)
    return None
```

Time Complexity

- It looks like there is a **best** case and **worst** case.
- How do we formalize this?

For the future...

- Can you come up with a better algorithm?
- What is the best possible time complexity?

DSC 40B Theoretical Foundations II

Lecture 3 | Part 6

Best and Worst Cases

Example 1: mean

```
def mean(arr):
   total = 0
   for x in arr:
      total += x
   return total / len(arr)
```

Time Complexity of mean

Linear time, $\Theta(n)$.

Depends only on the array's size, n, not on its actual elements.

Example 2: Linear Search

Given: an array arr of numbers and a target t.

Find: the index of t in arr, or None if it is missing.

```
def linear_search(arr, t):
    for i, x in enumerate(arr):
        if x == t:
            return i
    return None
```

Exercise

```
What is the time complexity of linear_search?
```

```
def linear_search(arr, t):
    for i, x in enumerate(arr):
        if x == t:
            return i
    return None
```

Observation

It looks like there are two extreme cases...

The **Best** Case

- When the target, t, is the very first element.
- ► The loop exits after one iteration.
- Θ(1) time?

The Worst Case

- When the target, t, is not in the array at all.
- ► The loop exits after *n* iterations.
- Θ(n) time?

Time Complexity

- linear_search can take vastly different amounts of time on two inputs of the same size.
 Depends on actual elements as well as size.
- It has no single, overall time complexity.
- Instead we'll report best and worst case time complexities.

Best Case Time Complexity

How does the time taken in the **best case** grow as the input gets larger?

Definition

Define $T_{\text{best}}(n)$ to be the **least** time taken by the algorithm on any input of size *n*.

The asymptotic growth of $T_{\text{best}}(n)$ is the algorithm's **best case time complexity**.

Best Case

- In linear_search's best case, T_{best}(n) = c, no matter how large the array is.
- The **best case time complexity** is $\Theta(1)$.

Worst Case Time Complexity

How does the time taken in the worst case grow as the input gets larger?

Definition

Define $T_{worst}(n)$ to be the **most** time taken by the algorithm on any input of size n.

The asymptotic growth of $T_{worst}(n)$ is the algorithm's worst case time complexity.

Worst Case

- In the worst case, linear_search iterates through the entire array.
- The worst case time complexity is $\Theta(n)$.

Exercise

```
What are the best case and worst case time com-
plexities of find_movies?
```

```
def find_movies(movies, t):
    n = len(movies)
    for i in range(n):
        for j in range(i + 1, n):
            if movies[i] + movies[j] == t:
                return (i, j)
    return None
```

Best Case

- Best case occurs when movie 1 and movie 2 add to the target.
- Takes constant time, independent of number of movies.
- Best case time complexity: $\Theta(1)$.

Worst Case

- Worst case occurs when no two movies add to target.
- Has to loop over all $\Theta(n^2)$ pairs.
- Worst case time complexity: $\Theta(n^2)$.

Caution!

- The best case is never: "the input is of size one".
- The best case is about the structure of the input, not its size.
- Not always constant time! Example: sorting.

Note

- An algorithm like linear_search doesn't have one single time complexity.
- An algorithm like mean does, since the best and worst case time complexities coincide.

Main Idea

Reporting **best** and **worst** case time complexities gives us a richer of the performance of the algorithm.

DSC 40B Theoretical Foundations II

Lecture 3 | Part 7

Appendix: About Notation

A Common Mistake

You'll sometimes see people equate O(·) with worst case and Ω(·) with best case.

This isn't right!

Why?

O(·) expresses ignorance about a lower bound. O(·) is like ≤

- Ω(·) expresses ignorance about an upper bound.
 Ω(·) is like ≥
- Having both bounds is actually important here.

Example

- Suppose we said: "the worst case time complexity of find_movies is O(n²)."
- Technically true, but not precise.
- This is like saying: "I don't know how bad it actually is, but it can't be worse than quadratic."
 It could still be linear!"
- **Better**: the worst case time complexity is $\Theta(n^2)$.

Example

- Suppose we said: "the best case time complexity of find_movies is Ω(1)."
- This is like saying: "I don't know how good it actually is, but it can't be better than constant."
 It could be linear!
- **Correct**: the best case time complexity is Θ(1).

Put Another Way...

It isn't technically wrong to say worst case for find_movies is O(n²)...

...but it isn't technically wrong to say it is O(n¹⁰⁰), either!

DSC 40B Theoretical Foundations II

Lecture 3 | Part 8

Appendix: Asymptotic Notation and Limits

Limits and Θ , O, Ω

- You might prefer to use limits when reasoning about asymptotic notation.
- Warning! There are some tricky subtleties.
- Be able to "fall back" to the formal definitions.

Theta and Limits

Claim: If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$, then $f(n) = \Theta(g(n))$.

Warning!

- Converse **isn't true**: if $f(n) = \Theta(g(n))$, it need not be that $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$.
- ► The limit can be **undefined**.
- Example: $5 + \sin(n) = \Theta(1)$, but the limit d.n.e.

Big-O and Limits

► If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} < \infty$$
, then $f(n) = O(g(n))$.

Namely, the limit can be zero. e.g., $n = O(n^2)$.

Big-O and Limits

• If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} < \infty$$
, then $f(n) = O(g(n))$.

- Namely, the limit can be zero. e.g., $n = O(n^2)$.
- Warning! Converse not true. Limit may not exist.

Big-Omega and Limits

• If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} > 0$$
, then $f(n) = \Omega(g(n))$.

Namely, the limit can be ∞ . e.g., $n^2 = \Omega(n)$.

Big-Omega and Limits

• If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} > 0$$
, then $f(n) = \Omega(g(n))$.

- Namely, the limit can be ∞ . e.g., $n^2 = \Omega(n)$.
- Warning! Converse not true. Limit may not exist.

Good to Know

▶ $\log_{h} n$ grows slower than n^{p} , as long as p > 0.

Example:

$$\lim_{n \to \infty} \frac{\log_2 n}{n^{0.000001}} = 0$$