
DSC 40B - Homework 04
Due: Wednesday, April 30

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Unless otherwise noted by the problem’s instructions, show your work or provide some
justification for your answer. Homeworks are due via Gradescope at 11:59 p.m.

This homework is a little shorter than usual, due to the midterm. Because of that, it will be worth
fewer points than the other homeworks.

Problem 1.

For each of the sequences of numbers shown below, insert the numbers into a binary search tree (BST) in
the exact order given. Draw the binary tree that results (each node in the tree should be labeled by the
number it contains).

a) 50, 30, 70, 20, 40, 60, 80, 10, 35, 45, 55, 65, 75, 85, 5

Solution:

b) 5, 10, 20, 30, 35, 40, 50, 55, 45, 60, 70, 80, 85, 75, 65

Solution:

1

Problem 2.

Suppose a binary search tree has been augmented so that each node contains an additional attribute called
size which contains the number of nodes in the subtree rooted at that node. Complete the following code
so that it computes the value of the kth smallest key in the subtree rooted at node, where k = 1 is the
minimum.

def order_statistic(node, k):
if node.left is None:

left_size = 0
else:

left_size = node.left.size

order = left_size + 1

if order == k:
return node.key

elif order < k:
return order_statistic(...)

else:
return order_statistic(...)

Solution: If order > k, we should check the subtree of the left child. We are looking for the kth smallest
thing among the nodes in the left subtree, so our recursive call is order_statistic(node.left, k).

On the other hand, if order < k, we should check the subtree of the right child, but we have to
“update” the value of k. We do not want the kth smallest thing in the right subtree; rather, we want
the k - order smallest thing (or, equivalently, k - left_size - 1).

To see this, consider a simple example. Suppose we want the k = 7 smallest key in the tree and that
node.left.size is 4. This makes the key of the current node the fifth smallest in the tree. All keys in
the right subtree are larger, so we want the second smallest among them.

2

The recursive call in this case is therefore order_statistic(node.right, k - order).

Programming Problem 1.

Suppose you are trying to remove outliers from a data set consisting of points in Rd. One of the simplest
approaches is to remove points that are in “sparse” regions – that is, points that don’t have many other
points close by. To do this, we might calculate the distance from a point to it’s kth closest neighbor. If this
distance is above some threshold, we consider the point an outlier.

More generally, the task of finding the distance from a query point to its kth closest “neighbor” is a
common one in data science and machine learning. Here, we’ll consider the 1-dimensional version of the
problem of finding kth neighbor distance. In a file named knn_distance.py, write a function named
knn_distance(arr, q, k) that returns a pair of two things:

• the distance between q and the kth closest point to q in arr;

• the kth closest point to q in arr itself

The query point q does not need to be in arr. For simplicity, arr will be a Python list of numbers, and q
will be a number. k should start counting at one, so that knn_distance(arr, q, 1) returns the distance
between q and the point in arr closest to q. Your approach should have an expected time of Θ(n), where n
is the size of the input list. Your function may modify arr. In cases of a tie, the point you return is arbitrary
(though the distance is not). Your code can assume that k will be ≤ len(arr).

Example:

>>> knn_distance([3, 10, 52, 15], 19, 1)
(4, 15)
>>> knn_distance([3, 10, 52, 15,], 19, 2)
(9, 10)
>>> knn_distance([3, 10, 52, 15], 19, 3)
(16, 3)

As this is a programming problem, submit your code to the Gradescope autograder.

Solution: The idea is to compute the distance from q to all of the points in arr in Θ(n) time, then
use quickselect to find the kth order statistic in Θ(n) expected time. The tricky part is recovering the
kth point from the kth distance. You could loop back through the distances searching for the index at
which the kth distance occurs, then use this to index into arr; essentially, a linear search. This would
still be linear time, but there’s an approach that you might consider a little cleaner: instead of doing
quickselect on the distances alone, run quickselect on tuples of distance/point pairs. This solution is
shown below:

import random

def knn_distance(arr, q, k):
"""Compute the kth nearest point and the distance to it."""

compute the distance between x and q
def dist(x):

return abs(x - q)

there's a small trick here that allows us to use `quickselect` from
lecture unmodified; instead of passing in a list of numbers, we pass in a
list of (distance, point) tuples. when Python compares two tuples, it

3

compares their first elements; if there is a tie, it then compares their
second elements, and so on. here, quickselect will find the pair with the
kth smallest first element, which is exactly what we need to return.
distance_point_pairs = [(dist(x), x) for x in arr]
return quickselect(distance_point_pairs, k, 0, len(arr))

everything below is code for quickselect that comes unmodified from lecture

def in_place_partition(arr, start, stop, pivot_ix):
def swap(ix_1, ix_2):

arr[ix_1], arr[ix_2] = arr[ix_2], arr[ix_1]

pivot = arr[pivot_ix]
swap(pivot_ix, stop-1)
middle_barrier = start
for end_barrier in range(start, stop - 1):

if arr[end_barrier] < pivot:
swap(middle_barrier, end_barrier)
middle_barrier += 1

else: do nothing
swap(middle_barrier, stop-1)
return middle_barrier

def quickselect(arr, k, start, stop):
"""Find kth order statistics in arr[start, stop]"""
pivot_ix = random.randrange(start, stop)
pivot_ix = in_place_partition(arr, start, stop, pivot_ix)
pivot_order = pivot_ix + 1
if pivot_order == k:

return arr[pivot_ix]
elif pivot_order < k:

return quickselect(arr, k, pivot_ix+1, stop)
else:

return quickselect(arr, k, start, pivot_ix)

4

