
DSC 40B - Homework 01
Due: Wednesday, April 9

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Unless otherwise noted by the problem’s instructions, show your work or provide some
justification for your answer. Homeworks are due via Gradescope at 11:59 p.m.

Problem 1.

Roughly how long will it take for a linear time algorithm to run? What about a quadratic time algorithm?
Or worse, a cubic? In this problem, we’ll estimate these times.

Suppose algorithm A takes n microseconds to run on a problem of size n, while algorithm B takes n2

microseconds and algorithm C takes n3 microseconds (recall that a microsecond is one millionth of a second).
How long will each algorithm take to run when the input is of size one thousand, ten thousand, one hundred
thousand, and one million? That is, fill in the following table:

n = 1,000 n = 10,000 n = 100,000 n = 1,000,000

A (Linear) 0.00 s 0.01 s 0.10 s 1 s
B (Quadratic) ? ? ? ?

C (Cubic) ? ? ? ?

The answers for Algorithm A are already provided; you can use them to check your strategy.

Express each time in either seconds, minutes, hours, days, or years. Use the largest unit that you can without
getting an answer less than one. For example, instead of “365 days”, say “1 year”; but use “364 days” instead
of “0.997 years”.

Example: If your answer is “1,057,536 seconds”, you would report your answer as “12.24 days”. If your
answer is “438 seconds”, you would report it as “7.3 minutes”.

Round to two decimal places (it’s OK for an answer to round to 0.00).

Hint: you can calculate your answers by hand, or you can write some code to compute them. If you write
code, provide it with your solution – if you solve by hand, show your calculations.

Problem 2.

For each of the following pieces of code, state the time complexity using Θ notation in as simple of terms as
possible. You do not need to show your work (but doing so might help you earn partial credit in case your
overall answer is not correct).

a) def f_1(n):
for i in range(2025, n):

for j in range(i):
print(i, j)

b) def f_2(n):
for i in range(n, n**14):

j = 0
while j < n:

print(i, j)
j += 1
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c) def f_3(numbers):
n = len(numbers)
for i in range(n):

for j in range(n):
print(numbers[i], numbers[j])

if n % 2 == 0: # if n is even...
for i in range(n):

print("Unlucky!")

d) def f_4(arr):
"""arr is an array of size n"""
t = 0
n = len(arr)
for i in range(n):

t += sum(arr)

for j in range(n):
print(j//t)

e) def f_5(n):
ranges = [10, n//2, n, n**2]
for rng in ranges:

for i in range(rng):
print(i)

f) def f_5(n):
ranges = [10, n//2, n, n**2]
for rng_a in ranges:

for rng_b in ranges:
for i in range(rng_a + rng_b):

print(i)

Problem 3.

Determine the time complexity of the following piece of code, showing your reasoning and your work.

def f(n):
i = 1
while i <= n:

i *= 3
for j in range(i):

print(i, j)

Hint: you might need to think back to calculus to remember the formula for the sum of a geometric
progression... or you can check wikipedia.1

Problem 4.

Consider the following code which constructs a numpy array of n random numbers:2

1https://en.wikipedia.org/wiki/Geometric_progression
2Note that in practice you wouldn’t do this with a loop; you’d write np.random.uniform(n) to generate the array in one line

of code.
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import numpy as np
results = np.array([])
for i in range(n):

results = np.append(results, np.random.uniform())

Remember that we have to write results = np.append(results, np.random.uniform()) instead of just
np.append(results, np.random.uniform()) because it turns out that np.append returns a copy of results
with the new entry appended to the end.

Note that this code is very similar to how we taught you to run simulations in DSC 10: we first created an
empty numpy array, and then ran our simulation in a loop, appending the result of each simulation with
np.append. When we ran simulations, we often used n = 100,000 or larger (and they took a while to finish).

a) Guess the time complexity of the above code as a function of n. Don’t worry about getting the right
answer (we won’t grade for correctness). You don’t need to explain your answer.

b) Time how long the above code takes when n is: 10,000, 20,000, 40,000, 80,000, 120,000, and 160,000.
Then make a plot of the times, where the x-axis is n (the input size) and the y-axis is the time taken
in seconds.

Remember to provide not only your plot, but to show your work by providing the code that generated
it.

Hint: You can do the timing by hand with the %%time magic function in a Jupyter notebook, or you
can use the time() function in the time module. For example, to time the function foo:

import time
start = time.time()
foo()
stop = time.time()
time_taken = stop - start

c) Looking at your plot, what do you now think the time complexity is? Why does the code have this
time complexity?

Hint: what is the time complexity of np.append, and why?

d) It turns out that creating an empty numpy array and appending to it at the end of each iteration is a
terrible way to do things, and you should never write code like this if you can avoid it.3 Instead, you
should create an empty Python list, append to it, then make an array from that list, like so:

Remember to provide not only your plot, but to show your work by providing the code that generated
it.

lst = []
for i in range(n):

lst.append(np.random.uniform())
arr = np.array(lst)

To check this, repeat part (b), but with this new code. Show your plot. It is OK if your plot is a little
odd, but it shouldn’t be quadratic! (Check with a tutor if you’re concerned).

Problem 5.

Consider the code below:
3We taught you the np.append way because it was conceptually simpler – we didn’t need to introduce you to Python lists.

This is one instance in which your professors lie to you in early courses, then correct their lies later on.
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def foo(n):
i = 1
while i**2 < n:

i += 1
return i

a) What does foo(n) compute, roughly speaking?

b) What is the asymptotic time complexity of foo?

You do not need to show your work for this problem, but providing an explanation might help earn
partial credit in case your answer is incorrect.
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