DSC 40B - Discussion 02

Problem 1.

Are the following asymptotic bounds true?

nlogn = O(n?)

w oo
S

W=

I

)
—~

S

ol
~—

ot
2
S
Il
2]
E

Solution:

1. nlogn = O(n?) : True. %™ = %€ _, (451 — o0, S0 you can use the criterion from slides 6 of

lecture 3.
1\3 _ (1) () _

2. (2)"=0(%)" : False oIy =N 00 asn = 00
1 1

. nz =Q(n3): True: 22 =né — 00 as n — 00

n3

3
4. " = O(n!) True. An easy way to see it is to write the following

e" exexe...xXe
nl 1x2x3...xn
e e e e e e
=-X-X=-X — X = ...x — (remember that e < 4
1 2 3 4 5 ()
~— =~ ~—
<1 <1 <1
3
€ e € e
< — X — X — = — which is a constant
-1 2 3 6

5. logn = Q(y/n): False: 8% 5 0 as n — oo

Problem 2.

a) Let f(n) = 12logs (37" =21 4 2109 _ 10n2 — logsn). Which of the following asymptotic bounds on f is

true?

L f(n) =Q(1)

2. f(n) = O(1)

3. f(n) =0O(logn)
4. f(n) = Q(logn)
5. f(n) = ©(logn)
6. f(n) =O(n)

7. f(n) = O(e")
8. f(n) =O(n)

9. f(n) =O(n?)

Solution: f(n) = ©(n?)
it follows from that that:

1. f(n) =Q(1) (ie f is bounded below by a constant after some time)
2. f(n) # O(1) (ie f is not bounded)

3. f(n) £ O(logn)

4. f(n) = Qlogn)

5. f(n) # ©(logn) (because of 3)

6. f(n) # O(n)

7. f(n) = O(e")

8. f(n) # ©(n) (because of 6)

9. f(n) = O(n?)

This question is meant to develop some intuition for finding asymptotic bounds on tricky func-
tions, so we won’t write up the formal proof (although it is possible, just difficult algebraically.)
We want to start off by finding a simpler expression which is approximately equal to the expres-
sion inside the log for large values of n:

3n’=2n 4 glogn _ 0p2 _ logsn ~ 32 a5 grows to infinity, since 3721 i5 the highest or-
der term. Furthermore, since n? grows much faster than —2n, 3" ~2" ~ 3n°. So, we have
f(n) ~ 12log(3™°).

Applying log rules, we can bring down the exponent to get 12logs (3"2) = n?-12logs(3). Since
12l0g2(3) is a constant with respect to n, we now know that this function is approximately 6(n?).

b) What is the best case time complexity of the following function?

def foo(arr):

"""arr is a sorted array of size n'''
i=0
j = len(arr) - 1

while i < j:
current_sum = arr[i] + arr[j]

if current_sum ==
return sum(arr)

elif current_sum < 5:
i+=1

else:

return False

Solution: ©(n)
There are 2 cases to consider:
1. We reach
return sum(arr)

at some point in the loop. In that case, the best case time complexity is if we reach it on the
first iteration, which gives us ©(n).

2. We never reach

return sum(arr)

. In this case the while loop runs approximately n/2 times, so the complexity is still ©(n).

Both those cases have the same complexity, so the best-case complexity is ©(n)

Problem 3.
Consider the algorithm below.

def bogosearch(numbers, target):
"""search by randomly guessing. “numbers is an array of m numbers

n = len(numbers)

mmnn

while True:
randomly choose a number between 0 and n-1 in constant time

guess = np.random.randint(n)
if numbers[guess] == target:
return guess

We will set up the analysis of the expected time complexity of this algorithm.

a) What are the cases? How many are there?

Solution: Case « occurs when the target is found on iteration . In principle, the algorithm can
run forever, although this is very unlikely (it happens with probability zero). As such, there are
infinitely-many cases.

b) What is the probability of case a?

Solution: P(«) is the probability of guessing wrong o — 1 times and guessing right on the ath

time:
1—1/n)*""-(1/n)

c) What is the running time in case o?

Solution: We perform « iterations in case «, each taking constant time, c. The total work in
case « is therefore ca.

Problem 4.

Provide a tight theoretical lower bound for the problems given below. Provide justification for your answer.

a) Given an array of n numbers, find the sum of the numbers in the array.

Solution: Adding all the elements in the array requires you to visit all the elements at least
once. Therefore, the lower bound is Q(n).

b) Given a sorted array of n > 2 numbers, find the second largest number in the array.

Solution: As the array is sorted, we just need to check the second last element in the array to
get the second largest number in the array. This takes constant time. Therefore, the lower bound

is Q(1).

