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DSC 40B - Sample Midterm 01

Note: This sample midterm is intended to give you an idea of the format of the exam, but it’s not
intended to be a comprehensive review of the material. Also, note that this sample exam is from a
previous iteration of the course, and topics can change slightly from quarter to quarter depending on
the instructor and how much was covered in lecture – you should expect Midterm 01 to cover the content
from this quarter ’s Lecture 01 through 08.

In addition to this sample exam, you should also study using the problems found at https://dsc40b.
com/practice, as well as the labs and the homeworks.

Problem 1.
What is the time complexity of the following function? State your answer as a function of n using asymptotic
notation in the simplest form possible. E.g., “Θ(n)”.

def foo(n):
for i in range(n**3):

for j in range(n):
print(i + j)

for j in range(n**2):
print(i + j)

Θ(n5)

Problem 2.
What is the time complexity of the following function? State your answer as a function of n using asymptotic
notation in the simplest form possible. E.g., “Θ(n)”.

def foo(n):
for i in range(n):

for j in range(i):
for k in range(n):

print(i + j + k)

Θ(n3)

Problem 3.
What is the time complexity of the following function? State your answer as a function of n using asymptotic
notation in the simplest form possible. E.g., “Θ(n)”.

def foo(n):
for i in range(200, n):

for j in range(i, 2*i + n**2):
print(i + j)

Θ(n3)
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Problem 4.
What is the time complexity of the following function? State your answer as a function of n using asymptotic
notation in the simplest form possible. E.g., “Θ(n)”.

import math

def foo(arr):
"""`arr` is an array with n elements."""
n = len(arr)
ix = 1
s = 0

while ix < n:
s = s + arr[ix]
ix = ix * 5 + 2

return s

Θ(log n)

Problem 5.
The code below takes in an array of n numbers and checks whether there is a pair of numbers in the array
which, when added together, equal the maximum element of the array.
What is the best case time complexity of this code as a function of n? State your answer using asymptotic
notation.

def exists_pair_summing_to_max(arr):
n = len(arr)
maximum = max(arr)
for i in range(n):

for j in range(i + 1, n):
if arr[i] + arr[j] == maximum:

return True
return False

Θ(n)

Problem 6.
What is the worst case time complexity of the function in the last problem? State your answer using
asymptotic notation.

Θ(n2)
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Problem 7.
Consider again the problem of determining whether there exists a pair of numbers in an array which, when
added together, equal the maximum number in the array. Additionally, assume that the array is sorted.
True or False: Θ(n) is a tight theoretical lower bound for this problem.

True
False

Solution: Any algorithm must take Ω(n) time in the worst case, since in the worst case all elements
of the array must be read.
This is tight because there is an algorithm that will compute the answer in worst-case Θ(n) time.
Namely, this is an instance of the “movie problem” from lecture, where instead of finding two numbers
which add to an arbitrary target, we’re looking for a specific target: the maximum. We saw an algorithm
that solved the movie problem in Θ(n) time, where n was the number of movies. Since the maximum
is computed in Θ(1) time for a sorted array, we can use the same algorithm to solve this in Θ(n) time
as well.

Problem 8. (2 points)
Suppose a and b are two numbers, with a ≤ b. Consider the problem of counting the number of elements
in an array which are between a and b; that is, the number of elements x such that a ≤ x ≤ b. You may
assume for simplicity that both a and b are in the array, and there are no duplicates.

a) What is a tight theoretical lower bound for this problem, assuming that the array is unsorted? State
your answer in asymptotic notation as a function of the number of elements in the array, n.

Θ(n)

Solution: Since the array is in arbitrary order, we have to at least read all of the elements,
taking Ω(n) time. This is a tight lower bound, because we can count the number of elements
between a and b by looping through and checking whether each element is in [a, b] in linear time.

b) What is a tight theoretical lower bound for this problem, assuming that the array is sorted? State
your answer in asymptotic notation as a function of the number of elements in the array, n.

Θ(log n)

Solution: We can do this in worst-case Θ(log n) time with binary search: find the index of a in
worst-case Θ(log n) time; find the index of b in worst-case Θ(log n) time; and subtract the two
indices (and add one) to get the total number of elements between a and b, inclusive.
There cannot be an algorithm that is better than Θ(log n) in the worst case, so this is a tight
lower bound. To see why, recognize that we can solve the query problem (determine True/False
if a target t is in a sorted array) with any algorithm that solves this problem by setting a = b = t.
If an algorithm solves this problem in faster than Θ(log n), it will also solve the query problem in
faster than Θ(log n), but we saw in class that the query problem has a theoretical lower bound
of Θ(log n), so such an algorithm cannot exist.

Problem 9.

3



What is the expected time complexity of the following function? State your answer using asymptotic
notation.

import random

def foo(n):
x = random.randrange(n)

if x < 8:
for j in range(n**3):

print(j)
else:

for j in range(n):
print(j)

Θ(n2)
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Problem 10.
What is the expected time complexity of the function below? State your answer using asymptotic notation.
You may assume that math.sqrt and math.log take Θ(1) time. math.log computes the natural log.

import random
import math

def foo(n):
# draw a number uniformly at random from 0, 1, 2, ..., n-1 in Theta(1)
x = random.randrange(n)

if x < math.log(n):
for j in range(n**2):

print(j)
elif x < math.sqrt(n):

print('Ok!')
else:

for i in range(n):
print(i)

Θ(n log n)

Solution: There are three cases: Case 1) x < log n; Case 2) log n ≥ x <
√
n; and Case 3) x ≥

√
n.

The probability of Case 1 is log n/n. The time taken in case 1 is Θ(n2).
The probability of Case 2 is √

n

n
− log n

n
= Θ(

√
n/n) = Θ(1/

√
n).

The time taken in this case is Θ(1).
The probability of Case 3 is 1 minus the probability of the sum of the other two cases, which will simply
be Θ(1):

1−Θ((log n)/n)−Θ(1/
√
n) = Θ(1)

Therefore, the expected time is:

log n

n
×Θ(n2) + Θ(1/

√
n)×Θ(1) + Θ(1)×Θ(n) = Θ(n log n) + Θ(1/

√
n) + Θ(n)

= Θ(n log n)

Problem 11.
State (but do not solve) the recurrence describing the runtime of the following function.

def foo(n):
if n < 1:

return 0

for i in range(n**2):
print("here")

foo(n/2)

5



T (n) =


Θ(1), n = 1

T (n/2) + Θ(n2) , n > 1
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Problem 12. (2 points)
Solve the below recurrence, stating the solution in asymptotic notation. Show your work.

T (n) =

{
T (n/2) + Θ(n) n > 1

Θ(1) n = 1

Solution: Θ(n).
Unrolling several times, we find:

T (n) = T (n/2) + n

= T (n/4) +
n

2
+ n

= T (n/8) +
n

4
+

n

2
+ n

On the kth unroll, we’ll get:

T (n) = T (n/2k) +
[
n+

n

2
+

n

4
+ . . .+

n

2k−1

]
It will take log2 n unrolls to each the base case. Substituting this for k, we get:

T (n) = T (n/2log2 n) +
[
n+

n

2
+

n

4
+ . . .+

n

2(log2 n)−1

]
= T (1) + n

[
1 +

1

2
+

1

4
+ . . .+

1

2(log2 n)−1

]
︸ ︷︷ ︸

≤2

Here we’ve recognized the summation in square braces as a geometric sum of powers of 1/2, which
converges to 2 when there are infinitely-many terms. We’ve seen this sum in solving a couple of
homework problems.

= T (1) + cn

= Θ(1) + cn

= Θ(n)

Problem 13.
Suppose bar and baz are two functions. Suppose bar’s time complexity is Θ(n3), while baz’s time complexity
is Θ(n2).
Suppose foo is defined as below:

def foo(n):
if n < 1_000:

bar(n)
else:

baz(n)

What is the asymptotic time complexity of foo?
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Θ(n2)
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Problem 14.
Let

f(n) = 5n log n+
n3 + 5

n+ 2 + | sinπn|
+ n

√
n

Write f in asymptotic notation in as simplest terms possible.

f(n) = Θ( n2 )

Problem 15.
Suppose f1(n) is O(n2) and Ω(n). Also suppose that f2(n) = Θ(n2).
Consider the function f(n) = f1(n) + f2(n). True or false: it must be the case that f(n) = Θ(n2).

True
False

Problem 16.
Suppose f1(n) is O(n2) and Ω(n). Also suppose that f2(n) = Θ(n2).
Consider the function g(n) = f2(n)/f1(n). True or false: it must be the case that g(n) = Ω(n).

True
False

Problem 17.
Suppose f1(n) = Ω(g1(n)) and f2 = Ω(g2(n)). Define f(n) = min{f1(n), f2(n)} and g(n) = min{g1(n), g2(n)}.
True or false: it is necessarily the case that f(n) = Ω(g(n)).

True
False

Problem 18.
Consider the function f(n) = n× (sin(n) + 1). A plot of this function is shown below:

True or False: this function is Θ(n).

True
False
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Solution: There is no positive c such that this function is lower-bounded by cn, and so this function
cannot be Θ(n).

Problem 19.
Consider again the function f(n) = n× (sin(n) + 1) from the previous problem.
True or False: f(n) = O(n3).

True
False

Problem 20.
Consider the iterative implementation of binary search shown below:

import math

def iterative_binary_search(arr, target):

start = 0
stop = len(arr)

while (stop - start) > 0:
print(arr[start])
middle = math.floor((start + stop) / 2)
if arr[middle] == target:

return middle
elif arr[middle] > target:

stop = middle
else:

start = middle + 1

Which of the following loop invariants is true, assuming that arr is sorted and non-empty, and target is
not in the array? Select all that apply.

After each iteration, stop - start >= 0.
After each iteration, stop - start >= 1.
After each iteration, arr[start] <= target.
After each iteration, arr[start] <= max(target, arr[0]).

Solution: There was a small bug in the grading here, where originally the last option was marked as
True, when it is not always true. Try, for example, the input arr = [3, 4, 7] and a target of 5.
Since the last option was trickier than intended, both checking it and leaving it unchecked were marked
as correct. Note, though, that the correct answer is that it is false.

Problem 21.
Consider iterative_binary_search from above and note the print statement in the while-loop. Suppose
iterative_binary_search is run on the array:

[-202, -201, -200, -50, -20, -10, -4, -3, 0, 1, 3, 5, 6, 7, 9, 10, 12, 15, 22]
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with target 11.
What will be the last value of arr[start] printed?

10
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Problem 22.
Consider the code below which claims to compute the most common element in the array, returning a pair:
the element along with the number of times it appears.

import math

def most_common(arr, start, stop):
"""Attempts to compute the most common element in arr[start:stop]."""
if stop - start == 1:

return (arr[start], 1)

middle = math.floor((start + stop) / 2)

left_value, left_count = most_common(arr, start, middle)
right_value, right_count = most_common(arr, middle, stop)

if left_count > right_count:
return (left_value, left_count)

else:
return (right_value, right_count)

You may assume that the function is always called on a non-empty array, and with start = 0 and stop = len(arr).
Will this code always return the correct answer (the most common element)?

Yes: it will always return the correct answer.
No: it may recurse infinitely.
No: it may try to access the array at an invalid index.
No: it will run without error, but the element returned may not be the most common element in the
array.

Solution: It is not true in general that the most common element in the array is the most common in
the left or the right. As a simple example, take: [1,1,1,0,0,2,2,2,0,0]. 1 is the most common in
the left half, and 2 is the most common in the right half, but 0 is the most common overall.
So even if we assume that most_common(arr, start, middle) finds the most common element in left
half of the array, and most_common(arr, middle, stop) finds the most common element in the right
of the array, it is not necessarily the case that the most common between them is the overall most
common in the array.
You can also quickly see that the code cannot be correct because nowhere is a count greater than one
ever returned.

Problem 23.
Consider the modification of mergesort shown below, where one of the recursive calls has been replaced by
an in-place version of selection_sort. Recall that selection_sort takes Θ(n2) time.

def kinda_mergesort(arr):
"""Sort array in-place."""
if len(arr) > 1:

middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
mergesort(left)
selection_sort(right)
merge(left, right, arr)
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What is the time complexity of kinda_mergesort?

Θ(n2)
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Problem 24.
Recall the partition operation from quickselect. Which of the following arrays could have been partitioned
at least once? Select all that apply.

[50, 10, 20, 30, 60, 40]

[20, 10, 30, 60, 40, 50]

[20, 50, 10, 40, 30, 60]

[60, 50, 40, 30, 20, 10]

[10, 20, 30, 40, 50, 60]

Problem 25.
Define the largest gap in a collection of numbers to be the largest difference between two distinct elements
in the collection (in absolute value). For example, the largest gap in {4, 9, 1, 6} is 8 (between 1 and 9).
Suppose a collection of n numbers is stored in a balanced binary search tree. What is the time complexity
required for an efficient algorithm to calculate the largest gap of the numbers in the BST? State your answer
as a function of n in asymptotic notation.

Θ(log n)

Problem 26.
Suppose the numbers 41, 32, and 33 are inserted (in that order) into the below binary search tree. Draw
where the new nodes will appear.

50

30

10 40

35 46

56

51 75

Before turning in your exam, please check that your name is on every page.
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